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ABSTRACT In the reliability literature, reliability allocation is an important and widely studied topic.
The existing reliability allocation methods, however, have limitations, including imprecise system decom-
position, single-factor consideration, and poor practicability. To overcome those limitations, we propose
an integrated fuzzy reliability allocation method based on micro-motion decomposition, cost function,
and multi-factor analysis. The problems in the existing methods caused by equally weighted factors and
influences of failures were overcome by correcting the traditional risk priority numbermethod and evaluating
the uncertainties and subjective factors during allocation using fuzzy language and triangular fuzzy number.
A cost model was established based on the state of the art, subsystem intricacy, and environmental
conditions, with which the issues of difficulty applying cost statistics and computational complexity in the
current allocation methods were solved. The contribution of this paper is as follows. A fast approach of
Pareto-optimal solution recommendation using the Pareto reliability index has been utilized to recommend
a list of optimal ranking for decision-makers. Besides, the moving mean of the average precision and the
moving mean standard deviation are utilized to demonstrate the trend of the evolutionary process. A multi-
objective swarm bat algorithm has been developed to handle the multi-objective problems and its feasibility
has been verified in a case study comparing the performance of the proposed method with that of the existing
methods.

INDEX TERMS Micro-motion unit, reliability allocation, reliability cost function, swarm bat algorithm,
uncertainty.

I. INTRODUCTION
The computer numerical control (CNC) machine is an impor-
tant industrial equipment, and its reliability has been one of
the most important symbols to measure the modernization
of advanced manufacturing and it is critical in the aspects
of reliability design improvement, fault monitoring and fault
repair for the CNC machine. The CNC machine’s assembly
process is a significant part in its manufacturing process, and
assembly operation is a major factor in determining the whole
machine’s quality, and assembly process quality analysis is
necessary for CNC machines, in which, reliability allocation
is an essential part of its reliability design.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhonglai Wang.

In the reliability engineering, the reliability allocation is a
method to maximize the reliability of a system at minimal
cost and is a process of assigning reliability requirements to
individual components of a system to attain a pre-specified
reliability. Over the past three decades, it has received plenty
of attention. For a large system, the allocation process is
often performed at different stages of system design. As the
development of the system design evolves, more information
about the components and their operating conditions is gained
and more allocation methods can be applied. In the literature,
the methods of reliability allocation are usually divided into
the following two categories.

a) the optimal reliability allocation methods, which treat
the reliability allocation problem as an optimization prob-
lem. The most applicable solutions can be sought by
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building an optimization model according to the system’s
configuration and physical constraints [6]–[8], redundancy
allocation [20]–[22], minimization of system cost subject to
reliability constraint [23], maximization of system reliabil-
ity under cost constraint [24], [25], and system reliability
optimization [24]–[27].

b) The weighting factors methods. Since reliability relates
to many factors such as cost, maintenance costs, impor-
tance weight, and manufacturing technology, there are
different reliability allocations methods corresponding to
the different constraint goals, including: the equal relia-
bility allocation method [29], [30], the integrated factors
method (IFM) [31], the Aeronautical Radio Inc. (ARINC)
method [9], the feasibility of objectives method [9], the Advi-
sory Group on Reliability of Electronic Equipment (AGREE)
method [10], Karmiol method [11], the integrated factors
method [12], the comprehensive method [13], the max-
imal entropy ordered weighted averaging method [14],
an approach based on the subsystem failure severity and
its relative frequency [15], a modified criticality measure
for subsystems reliability allocation [16], a fuzzy arith-
metic based method [17], etc [18], [19]. The criticality or
risk assessment in the Failure Mode and Effects Analysis
(FMEA) [1]–[3] introduces the index of risk priority number
(RPN) [1], [4], [5], [16], [28], which has been used to pri-
oritize failures by considering three factors of severity (S),
occurrence (O) and detection (D) have different weights is
essential in risk assessments, different combinations of O, S,
and D may computationally create the same values of RPN,
in which, S: Indicates the gravity of the effects of a failure
which affect the system or consumer that uses the component;
O: Indicates the probability of a failure occurring; D: Mea-
sures a failure’s visibility that is the attitude of a failure mode
to be identified by controls or inspections.

The traditional allocation methods failed to consider the
influence of failures on the system and are therefore inferior
in the credibility of allocation outcomes. Focusing on either
the failure effect or themanufacturing costs, all of the existing
allocation methods are based on a single individual factor,
which makes it difficult to achieve optimal allocation due to:
1) In terms of RPN-based allocation methods, allocation out-
come deviates from reality due to factor weight inconsistency
and arithmetic relations between different grades; 2) When
it comes to cost-based allocation methods, it is difficult to
make precise cost statistics, and the cost function is complex
without much practicability; 3) It has lacked tool for optimal
allocation design.

To fill this gap, this paper proposes a swarm bat algorithm
with the variable population (BAVP) as the tool to construct
and optimize the proposed approach - fuzzy function-motion-
action (FMA) reliability allocation (fFMA), which will be
embedded into the computational intelligence-assisted design
(CIAD) framework [33], [34]. Integrated consideration of
the influence of failures on a system and manufacturing
costs requires a delicate decomposition of system structure,
a precise decomposition method is proposed in this paper

to improve the accuracy of reliability allocation. To this
end, a Micro-motion Unit (MMU) decomposition-based allo-
cation method that gave integrated consideration to fail-
ure effects and manufacturing costs was proposed in this
study. By improving existing RPN methods, the index of
an improved RPN value was used to characterize the failure
effects of a system. The manufacturing cost of the systemwas
described using the reliability and the maximum reliability of
the current system based on the generalized cost function. The
semi-quantitative cost function was built based on integrated
consideration of SA, EC, and SI. Reliability allocation of the
system was finally conducted by weighing and balancing the
failures of variousMMUs and the costs incurred by reliability
improvement.

To perform the optimal design for the reliability allocation,
this paper proposes a swarm bat algorithm with a variable
population (BAVP), which is inspired by the echolocation
behavior of bats. The first version of bat algorithm (BA) was
firstly introduced by Yang [32] in 2010, which allocates com-
putational resources by adjusting its population and accelerat-
ing the calculation speed. By using echolocation, a swarming
bat can quickly respond to changes in the direction and
speed of its neighbors during activities such as detecting
prey, avoiding obstacles, and locating roosting crevices in
dark surroundings. Useful behavioral information is passed
among bats and guides them to move from one configuration
to another as one unit. By borrowing this intelligence of
social behavior, the proposed BAVP is parallel, independent
of initial values, and able to achieve a global optimum.

The remainder of this paper is organized as follow:
Section 2 describes the BAVP algorithm for the opti-
mization; Section 3 discusses the modeling of the MMU
Decomposition, which compares the reliability allocation
models of traditional, RPN-based and cost-based approaches;
Section 4 proposes the fFMA approach; Section 5 intro-
duces the conceptual framework of CIAD and defines the
fitness function for optimal design for the fFMA approach;
Section 6 presents the empirical results and discussion on the
optimal results; and Section 7 concludes the paper and briefs
the future works.

II. SWARM BAT ALGORITHM WITH VARIABLE
POPULATION
Inspired by the echolocation characteristics of bat swarms,
the BAVP can be idealized as the four following assumptions:

1. As shown in Figure 1, all artificial bats (ABs) utilize
the same echolocation mechanism to measure distance, and
each AB individual Bi is able to detect the difference between
prey (food) and obstacles.

2. Each individual Bi can generate ultrasounds to echolo-
cate the prey and obstacles with a velocity of vij and a position
of xij at time j, which are stated in Equations (1) and (2),
respectively, where x∗ is the current global best position.

vi,j+1 = vi,j +
(
xi,j − x∗

)
fi,j (1)

xi,j+1 = vi,j + xi,j (2)
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FIGURE 1. The bats’ swarm behaviors.

3. Each individual Bi can adjust the frequency of the ultra-
sounds fij at time j within a range of [fmin, fmax], as given in
Equation (3), where β is a random vector of uniform distri-
bution in the range of [0,1]. corresponding to a wavelength λ
in the range of [λmin, λmax] and a loudness A in the range of
[Amin, Amax], as given in Equation (4), Ai,j is the loudness of
the bat Bi at time j, in which α ∈ [0,1] is a reduction factor.

fi,j = fmin + (fmax − fmin) β (3)

Ai,j+1 = αAi,j (4)

4. As shown in Equation (5), the population Pj of ABs
varies from time j to another, which accelerates the optimiza-
tion process, in which PN is the non-replaceable population
and PRj is the replaceable population at time j.

Pj = PN + PRj (5)

As shown in Figure 2, the following flowchart as the four
steps are included in the BAVP pseudocode:
step 1, initialisation of parameters and variables, and moves
into while loop;
step 2, global updating(), in which there are 3 sub-steps,
namely:

step2.1, update of virtual bat movement with frequency
fi, velocity vi and location xi;

step2.2, generates new local solution xs and updates
global solution xglobal at current generation, and generates
new local solutions x0 using Equation (6), where ε ∈ [−1, 1]
is a random-walk factor.

x0i,j+1 = x0i,j + εAi,j. (6)

step 2.3, add flying randomness into xglobal;

FIGURE 2. The BAVP pseudo code.

step 3, update best local solutions by comparing the global
solutions xi,j and local solutions x0i,j, as given in Equation(7).

xi,j =

xi,j
(
if xi,j ≥ x0i,j

)
x0i,j

(
otherwise xi,j < x0i,j

) (7)

step 4, fitness evaluation for each solution, and checking
termination condition of convergence, continue running the
calculation until the terminal conditions have been satisfied.

III. MMU DECOMPOSITION
An MMU is an independent indivisible action unit that per-
forms the most basic action for the fulfillment of func-
tions of the whole machine. The core components of the
micro-motion and the assemblies that have assembly relations
with the core components are known as anMMU, which can
be used for not only MMU based product design, but also
MMU based tests and manufacturing.

A CNC machine was selected to be decomposed to
obtain its MMUs. Common decomposition methods of cur-
rent machinery products, such as: the automated confluence
prover (ACP), the frequency based substructuring (FBS)
and the constraint satisfaction problem (CSP), are devel-
oped based on product structure (or component) system and
are therefore oriented for use with static objects. However,
the CNC machine is dynamic throughout its life cycle so the
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FIGURE 3. Diagram of FMA-based decomposition of a CNC machine.

loading and functional failures need to be taken into account
during dynamic processes.

Thus, the structure of the selected CNC machine was
decomposed by following a function-motion-action (FMA)
principle. The core idea of the FMA decomposition was to
divide the complex integrated motions of machining into a
series of basic action units, as shown in Figure 3, in which,
there are four layers, namely, the layers of Working W(t),
Function F(t), Movement M(t) and Action A(t). Specifically,

� the selected CNC machine lies in the W(t) layer;
� the F(t) layer is to complete the function according to the

user requirements to design. Usually a function is the
combination of one or more pre-movement mechanism
to achieve the desired motion;

� the M(t) layer consists of the various drive train mech-
anism, including: power, actuators, end-effectors and
frame;

� the A(t) layer consists of moving and rotating compo-
nents, such as the jawmoving, pulley rotating, stretching
or compressing of spring.

Reliability allocation refers to the allocation of a sys-
tem’s overall reliability to various MMUs via measures in
accordance with the requirements for system reliability and
constraints. To allocate reliability, it was essential to find the
solution to the following inequality:{

Rs(R1,R2, · · · ,Ri, · · · ,Rn) ≥ R∗s
Egs(R1,R2, · · · ,Ri, · · · ,Rn) ≤ Eg∗s .

(8)

where, Rs(∗) and Egs(∗) are the functions of reliability and
constraint, respectively, R∗s denotes the system’s reliability
index, Eg∗s is the constraint (such as cost, volume, weight), and
Ri is the reliability index of the ith MMU.

Suppose that a series system is composed of k MMUs, and
λ∗(t) is the failure rate of the system, and λ∗i (t) is the failure
rate allocated to the ith MMU, described in equation (9).

λ∗i (t) = ωiλ
∗(t), t ≥ 0, i = 1, 2, . . . , k. (9)

in which, ωi denotes the weight allocated to the ith MMU
that could be obtained with the following formula as given
in equation (10):

ωi =
ni∑k
i=1 ni

, i = 1, 2, . . . , k. (10)

Here, ni denotes the evaluated value of the ith MMU, which
could be the number ofMMUs, failure rate, or something else
[1,2]. As a result, it was ni that resulted in different allocation
methods.

A. TRADITIONAL RELIABILITY ALLOCATION METHODS
In traditional reliability allocation methods, subsystems are
evaluated using objective or subjective information based
on a single factor or multiple factors with the weight of
each subsystem calculated by combination operations. These
methods aim to provide the designs based on existing system
reliability. In other words, the more reliable the current sub-
system, the lower the failure rate allocated to the new corre-
sponding subsystem. The requirement for reasonableness of
system/unit reliability also depends on the granularity of the
subsystem.

SA, SI, operating time (OT), and operating conditions (OC)
of a system are closely associated with its current reliability,
and are often taken as the factors of weight allocation in tradi-
tional allocation methods when reliability data is inadequate.
Traditional allocation methods play a role in system reliabil-
ity allocation, however, they do not consider the influence of
failures on the system and system costs.

If system reliability is decomposed by the FMA method,
the failures can directly correlate with the MMUs, which not
only integrates the influence of failures on the system but also
makes the requirements for reliability of various units more
reasonable.

B. RPN-BASED RELIABILITY ALLOCATION
It is inevitable for a system to experience failures during
operation. Different failures can result in varied effects on
a system, and the same failure mode can lead to entirely
different consequences in different systems. Whether major
or minor, failures always accompany system loss. Therefore,
potential failures and the corresponding consequences should
be taken into account during system reliability allocation.

Over the past few years, RPN-based reliability allocation
methods have been used in several studies [i,ii,iii,3]. RPN
is a parameter to describe failure severity by measuring the
severity (S), occurrence (O), and detectability (D) of various
failure modes (scoring 1∼10) during system failure modes
and effects analysis (FMEA). The RPN of the jth failure mode
in subsystem i is described in equation (11).

RPNij = Sij × Oij × Dij (11)

If the detectability of failure mode was taken into
consideration when failure severity was measured [3,iv],
Equation (11) could be transformed into equation (12).

RPNij = Sij × Oij (12)

Suppose that there were N failure modes in a certain sys-
tem. According to a study by Itabashi-Campbell [3], based on
the intentions of allocators, the allocation factor of subsystem
i could be described as

ni = Bi (13)
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or

ni = 1−
Bi∑k
i=1 Bi

(14)

where

Bi =
1
N

N∑
j=1

Sij × Oij (15)

In many studies (see [v,vi,vii,viii], for example), it has
been reported that such RPN-based allocation methods were
unreasonable since different risk factors were assigned with
the sameweights. For example, failuremodes S1 = 2,O1 = 8
and S2 = 8, O2 = 2 shared the same risk priority number in
the RPN-based allocation method although this did not hold
true in the real world.

To overcome the drawbacks of RPN-based allocation
methods, Kim et al. [15] developed a new allocation method
by describing traditional severity using the exponential func-
tion. Suppose that Sij was the severity of the jth failure mode
of the ith subsystem; the new severity S̃ij could be denoted as
given in equation (16).

S̃ij = exp(αSij), (16)

where α was the severity coefficient that was related to how
the decision maker considered the failure mode; α grew
larger when the decision maker took the failure mode more
seriously, and vice versa.

Evaluation criterion of the ith subsystem was given in
equation (17).

ni =
1

miS̃iFi
(17)

where

S̃i = max(S̃i1, S̃i2, . . . , S̃iNi ) (18)

ji = argmax
j
S̃ij, (19)

where mi is the failure mode number that has the same
severity with S̃i and Fi is the frequency ratio of failure mode
ji in subsystem i.
Although the equal weight problem was addressed, there

was still unreasonableness in this method. Values that were
used to evaluate various factors of failure modes were real
numbers in the references, whereas, in practice, judgment
of the failure severity was difficult due to subjectivity and
uncertainty [36], [12]–[14]. Moreover, this RPN-based allo-
cation method neglected the costs incurred by R&D and
manufacturing of the system.

C. COST-BASED RELIABILITY ALLOCATION
Cost must be taken into account during the design and manu-
facturing of any system. Higher reliability is associated with
higher manufacturing cost. Therefore, the manufacturing cost
is an indispensable factor to be considered during reliability
allocation.

Reliability allocation considering cost refers to the optimal
planning of allocation. There are two methods of cost con-
sideration: 1) the cost is considered a constant, which can be
obtained by statistics; 2) the system cost is described as the
growth function of reliability [ix,x].

In a study by Todinov [4], system cost and loss were
considered as the cost factors during reliability allocation.
Supposing that the cost of subsystem iwasQi, and loss caused
by failures of all subsystems was a constant L, then the total
cost of subsystem i, denoted as Ci, was

Ci = Qi + L (20)

Wang et al. [35] measured manufacturing cost by means of
cost sensitivity and described the relationship between cost
and reliability of each subsystem using the numerical values
of 0–1 based on expert experience,

Ci =
1Ci
1Ri

(21)

where 1Ci is the increased cost of subsystem i, and 1Ri is
the increased reliability of subsystem i.

In practice, however, system manufacturing cost often
undulates drastically as technology and price level vary, mak-
ing cost statistics rather difficult to utilize; in consideration
of totally varied failure modes that had different influences,
it was unreasonable to take the failure costs of various sub-
systems as a constant number.

In 1986, Dale [xi] developed the six basic properties of cost
function and described system cost as the growth function of
reliability. A cost function of the diesel engine system was
established by Kuo et al. [xii] based on the basic properties
developed by Dale:

c(Ri) = fi ln
Ri,max − Ri,min

Ri,max − Ri
(22)

where Ri was the reliability allocated to subsystem i; fi was
the cost coefficient of reliability enhancement of subsystem
i, 0 < fi < 1, and a larger fi indicated that the cost would be
higher when the reliability of the subsystem was enhanced;
Ri,max and Ri,min were the limits of reliability that subsystem
i could reach with current technology and current reliability
of subsystem i,respectively; c(Ri) was the cost incurred as
reliability of subsystem i was enhanced from Ri,min to Ri.

According to the three properties of cost function proposed
in references [17], [18]: the cost function must be a posi-
tive definite function; it must be a non-decreasing function;
and it must increase rapidly when reliability approaches 1.
Charles [16] described the total system cost as

Cs =
s∑
i=1

ki∑
j=1

ki · hi(
log(1− Ri)

ki
) (23)

where ki was the number of components of subsystem i, Ri
was the reliability of subsystem i, s was the total number
of subsystems, and hi(∗) was the function that possessed the
three properties mentioned above.
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Although the cost function was able to describe the rela-
tionship between manufacturing cost and reliability of a sub-
system to a certain extent, it was too complex to be used in
practical engineering.

Recently, Yadav and Zhuang [16] took the effort of relia-
bility enhancement into consideration and described effort of
reliability enhancement as a failure rate-correlated function,
and based on the allocation method developed by Kim, cor-
rected the evaluation criterion of the ith subsystem to

ni =
mis̃i
δiei

(24)

where δi denotes the coefficient of difficulty in reliability
enhancement of the ith subsystem, ei denotes effort coeffi-
cient, and ei = ln λi/

∑k
i=1 ln λi.

The influence of current reliability of the subsystem on
reliability improvement was taken into account in the method
developed byYadav, yet it was the level of themost developed
technology of each subsystem that exerted real effects on
effort rather than failure rate. However, each subsystem was
multiplied by a specific difficulty coefficient that was deter-
mined by the allocator’s subjective awareness after severity
and effort were corrected; specifically, the effort was cor-
rected twice, which made the allocation more subjective and
led to reduced credibility of allocation result.

The aforementioned deficiencies indicate the need for a
new reliability allocation method that features integrated con-
sideration and excellent practicability and credibility.

IV. THE FUZZY FMA RELIABILITY ALLOCATION
APPROACH - f FMA
The fuzzy FMA reliability allocation approach (f FMA) –
thesolution to the deficiencies of existing reliability allocation
methods are proposed in this section. To begin with, the CNC
system was divided into various MMUs based on FMA
decomposition method, followed by the description of sub-
jective information of uncertainties in reliability allocation
using fuzzy language. The f FMA - a new practical reliability
allocation method balancing failure effect and manufacturing
cost was developed by giving integrated consideration to the
influence of all system failure modes and the manufacturing
cost of the system with certain reliability.

As shown in Figure 4, the f FMA method has 6 steps as
described below:
Step 1 (Micro-Motion Subsystem Decomposition): A

micro-motion is the smallest action unit of functions of a
machine, and its status of reliability has a notable influence
on the normal operation of the whole system. Importantly,
the reliability of the whole system is built upon the reliability
of each micro-motion (and joint of micro-motions). Motions
of a part are made based on the combined action of multiple
micro-motions; motions of the system are realized by one
motion or interactions of multiple motions. Similarly, poor
reliability of a micro-motion will lead to poor reliability of
the motion, and even the function. System functions and

FIGURE 4. Flow-chart of f FMA.

reliability will not be secured unless the reliability of every
micro-motion is enhanced.
Step 2 (Determination of Influencing Factors): The influ-

ence of failures of the MMUs on the whole system during
operation is also known as the potential risk (PR). A system
consists of several MMUs that have multiple potential failure
modes. The potential risk of each micro-motion subsystem
is determined by the severity (S) and occurrence (O) of all
failure modes. As a result, S and Omust be taken into account
during reliability allocation, which is consistent with the
cases of RPN-based methods. Secondly, it is inevitable that
manufacturing cost rises along with reliability enhancement
in any system. Restricted by manufacturing cost, it is impos-
sible for every device to be as reliable as current technology
would allow it to be. This means cost (C) that corresponds to
a certain reliability is another factor to be considered during
reliability allocation.

It is difficult to collect precise data of system manufac-
turing cost. Even collected with high precision, such data is
not applicable. Cost function-based allocation methods that
feature complex calculations are not feasible for practical
engineering applications. Previous research suggests that the
cost that is required for system reliability enhancement is sub-
ject to current system reliability and the maximum reliability
that the system can reach with existing technology, and that
there is a close relationship between system reliability and
SA, SI, OT, and EC.

In this study, SA, SI, OT, and EC were taken as the factors
to be considered, by which the cost of reliability enhancement
was measured. As OT was basically the same at different
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FIGURE 5. (a) Triangular membership function. (b) ‘3-inputs-1-output’
fuzzy inference system.

levels within the same system, it was omitted for the sake
of allocation simplification. Therefore, the influencing fac-
tor set K could be denoted as K = {PR,C} = {(O, S),
(SA, SI ,EC)}.
Step 3 (Expert Ratings Using Fuzzy Theory): Experts were

invited to rate the influence factor set K based on existing
objective information and their subjective judgment. Since
data is incompletely or imprecisely collected in practice, and
the opinions of decision-makers are essentially fuzzy, there
is always error in judgment due to incomplete information
if the description is made using a single numerical value.
Therefore, the influencing factors were rated based on fuzzy
language and triangular fuzzy number. Fuzzy language and its
membership function relationship are shown in Table 1 and
Figure 5, in which Figure 5 (a) is the triangular membership
function, and (b) is the ‘3-inputs-1-output’ fuzzy inference
system.

Specifically, the ratings of failure modes were: a failure
mode with a higher failure occurrence received a higher

TABLE 1. Fuzzy rating range and membership function of linguistic terms.

score, and that with a more severe influence also received
a higher score. The ratings of MMUs were: suppose that a
micro-motion subsystem with the highest SA, optimal EC,
and the lowest SI currently possible was rated with a full
score; therefore, a higher SA, better EC, and lower SI was
given higher scores.

The fuzzy rating result was defuzzified to calculate the
numerical value of the decision. Methods that have been most
commonly used for defuzzification are the mean of maxima
(MOM), the center of area (COA), and α-cut [36]–[38]. Dif-
ferent methods exert different influence on the decision. For
the sake of simplicity and practicability, the defuzzification
number was calculated by substituting the rating result in
Equation (25) using COA.

x(a) = a1 +
1
3
[(a3 − a1)+ (a2 − a1)], (25)

where x(a) is the value of defuzzification, and a1, a2, and a3
are the upper limit, max probable value, and lower limit of
triangular fuzzy number, respectively.
Step 4 (Determination of Potential Risk): Failure modes

with varied severity levels had different influences on the
system. Failure severity of the traditional RPN-based method
was corrected in Equation (26) based on the method devel-
oped in Kuo et al. [39] in order to overcome the unreasonable-
ness of weight allocation to various factors in the traditional
RPN-based method. Not only did this method effectively
make up for the deficiency of equal weight of various factors,
but it also solved the problem of constant gradient that differ-
ent severity levels shared in traditional RPN-based allocation
methods.

S ′ij = aSij , a > 1, (26)

where a is the risk coefficient, which is related to the product
type. The more severe the influence of the failure, the larger
the a.
The potential risk of a micro-motion subsystem PRi was

jointly determined by the number of failure modes, the sever-
ity of each failure mode, and failure occurrence. The single
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FIGURE 6. Conversion of cost ratings.

loss that was caused to the system by a failure was determined
by the severity of a failure mode; frequency of loss within
a period of time was determined by the number of failure
modes and failure occurrence. As a result, the PRi of each
micro-motion subsystem could be characterized as

PRi =
Ni∑
j=1

OijS ′ij (27)

Step 5 (Determination of Cost Rating): A few research
works have indicated that the relationship between system
reliability enhancement and the cost required is not simply
linear. The cost rises along with system reliability enhance-
ment. When reliability approaches its limit, the cost can also
be quite a large value. Therefore, the cost of system reliability
enhancement was described based on this property using
Equation (28):

C ′i = logb(1−
Ci
Cmax

) (28)

where, C ′i is the final score of cost of the ith micro-motion
subsystem; Ci is the score of cost of the ith micro-motion
subsystem after defuzzification as given in Equation (29),
and the higher the Ci, the more reliable the ith micro-motion
subsystem and the lower potential for its reliability to be
enhanced; Cmax is the maximum level that ith micro-motion
subsystem currently could reach; b is the effort coefficient
and b ∈ (0, 1).

Ci = SAi × SIi × ECi (29)

As shown in Figure 6, the cost described in Equation (28)
had the following features: (1)When the reliability was
increased by 1C , the more reliable the current system was,
the higher the cost was, i.e. 1C ′1 > 1C ′2; (2) when current
reliability remained the same, the cost of reliability enhance-
ment of different types of products whose effort coefficients
were not equal also varied, i.e. C ′i2 > C ′i3.
To prevent one factor from being neglected during reli-

ability allocation due to an excessive value of another
factor, the PR and manufacturing cost of the micro-
motion subsystem were kept within the same magnitude,

i.e. 10−1 ≤ Fi/C ′I ≤ 10. Then,

10 ln(1− Cimin/Cmax)
exp(Fmin)

≤ b ≤
ln(1− Cimax/Cmax)

10 exp(Fmax)
. (30)

Step 6 (The reliability Allocation): Integrated reliability of
a system was based on the combination of the reliability of
various MMUs since system reliability was finally allocated
to each micro-motion subsystem. Reliability allocation was
fundamentally aimed to minimize the potential loss of the
system by means of reasonable allocation, which required a
balance between PRs of various MMUs and manufacturing
cost of the system with certain reliability. The greater the
PR of the micro-motion subsystem, the greater the failure
loss; the lower the manufacturing cost (C ′), the greater the
potential of reliability enhancement. To optimize the alloca-
tion results, a micro-motion subsystem with a greater PR and
lower C ′ should be given a lower failure rate.
Thus, the following allocation method was proposed as

given in Equation (31):

ni = ε

∥∥∥∥∑k

i=1
PRi−PRi

∥∥∥∥+ (1− ε) ∥∥C ′i∥∥ (31)

where, ε is a proportionality factor, included to balance the
weight of the Potential Riskto that of the Cost Rating.Thus,
the allocation weight in Equation (10) can be re-stated as
Equation (32).

ωi =
ε

∥∥∥∑k
i=1 PRi−PRi

∥∥∥+ (1− ε) ∥∥C ′i∥∥∑k
i=1 (ε

∥∥∥∑k
i=1 PRi−PRi

∥∥∥+ (1− ε) ∥∥C ′i∥∥) ,
i = 1, 2, . . . , k. (32)

V. DEFINITION OF FITNESS FUNCTION
In this context, the potential risk and manufacturing cost are
considered as the objectives of reliability allocation, which
can perform the weighing and balancing the failures of vari-
ousMMUs and the costs incurred by reliability improvement.
As stated in Equations (33) and (34), two of the maximizing
design objectives can be obtained from Equations (27) and
(28), respectively.

f1
(
ε, a, Sij,Oij

)
=

1

ε
k∑
i=1

(∥∥∥∑k
i=1 PRi−PRi

∥∥∥)+ eps
(33)

f2 (ε, b, SAi, SIi,ECi) =
1

(1− ε)
∑k

i=1

∥∥C ′i∥∥+ eps (34)

As shown in Figure 7, the optimal fFMA approach using
CIAD framework can be summarized as the following
3 steps:
� Step 1: Pro-process. It defined fitness functions

[f1, f2, . . . , fN ] on the basis of the reliability allocation
model;

� Step 2: Optimal Design. Using the defined fitness
functions to perform optimization, which includes
4 sub-steps. Specifically,
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FIGURE 7. Optimal fFMA approach using CIAD framework.

Sub-step 1: normalization of the fitness function as [f 01 ,
f 02 , . . . , f

0
N ];

Sub-step 2: calculate the Pareto Reliability Index β2 using
[f 01 , f

0
2 , . . . , f

0
N ]

Sub-step 3: rank using β2, as given in Equation (35);

β2 (f ) =
σf

µf
(35)

Sub-step 4: calculate the evolutionary trend indices as the
fitness function as given in Equation (36), usingmean average
precision (mmAP) and mean standard deviation (mmSTD)
for β2. Based on the FPR approach [41], this multi-objective
optimization fitness function can be expressed in Equa-
tion (36), by utilizing two design objectives, as defined
in Equations (33) and (34) and the indices of the mean
average precision (mmAP) and the mean standard deviation
(mmSTD).

MAX : {F = mmAP [β2 (f1, f2)]} (36)

The fitness function F is in a reciprocal form of the normal-
ized ‘potential risk and ‘ manufacturing cost’ over-potential
difference function, in which maximizing $\digamma$ is
a way to minimize the normalized ‘potential risk and ‘
manufacturing cost’, and the goal of this function is to
determine the optimal combination of eight parameters,
ε, a, Sij,Oij, b, SAi, SIi,ECi that simultaneously minimizes
the objective of f1 and f2. eps is the floating-point relative
accuracy, which prevents singularity in the case where the
denominator of f1 or f2 is approaching 0 and F is approaching
inf.

� Step 3: Post-process. It is to perform the analysis and
generate the results, then terminate the program.

VI. RESULTS AND DISCUSSION
In this section, an example of reliability allocation of a
CNC machine’s spindle system was used to illustrate the
validity of the method proposed in this paper. The aim is to
maximize the fitness function F that yields the minimum of
potential risk and manufacturing cost, as defined in Equa-
tions (33) and (34), which is fulfilled by using the spe-
cially designed toolboxes SwarmBat [42], SECFLAB [43]
and SGALAB [44], respectively. The computer facilities for
the simulations are an Intel Core i7-5500U 2.4 GHz Intel
dual-core processor, Windows 7 flagship x64 service pack
1, an 8.0 GB 1600 MHz dual-channel DDR3L SDRAM,
MATLAB R2010a, and the simulation parameters are given
in Tables 2 (as given in the appendix) and 3, respectively.

TABLE 2. Ratings of failure modes with respect to risk factors assessed
by FMEA team members.

As shown in Table 2, the spindle system of the CNC
machine is composed of five MMUs: (1) the spindle body,
(2) the support bearings, (3) the cooling system, (4) the
broach mechanism, and (5) the rotating mechanism. Three
experts, D1, D2 and D3, were invited to rate the MMUs
and their failure modes using the fuzzy language in Table
1, with their fuzzy ratings shown in Table 3. According to
the previous work and simulation experience, the simulation
parameters defined in Section 2 are also initialized, as shown
in Table 3. The fuzzy language was converted into a corre-
sponding triangular fuzzy number, followed by the defuzzi-
fication of the mean value of ratings given by three experts,
and the optimal rating result is shown in Table 4.

In Figure 8, the solid line represents the mmAP scores
for the fitness function F as given in Equation (36), and
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TABLE 3. Parameters for optimization.

FIGURE 8. Optimization process.

both the upper and lower boundaries of mmAP ±mmSTD
are defined by the dashed lines for the optimization process
(generation versus fitness F). Figure 8 illustrates the fitness
mmAP curves, in which, the curves go down very quickly
from generation 1 to reach a plateau point (within gener-
ation 200) and then remain steady from generation 200 to
300, the upper and lower range of mmAP ±mmSTD curves
move closer and converge, indicating the high efficiency and

FIGURE 9. Optimization histogram.

TABLE 4. Optimal rating results.

TABLE 5. Comparison between different allocation methods.

accuracy of this optimization. Figure 9 shows the histogram
over the optimization process.

As shown by Table 4 (as given in the appendix) and
Figure 10, the failure rate allocated to each MMU varies
among different methods. The failure rate of the cooling
system was the highest according to the method developed in
this study, which was consistent with the result of the RPN-
based allocation method. As shown in Tables 4 and 5, Ci
ratings of the cooling system were the highest among the
five MMUs, indicating it was the most reliable. Thus, the
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TABLE 6. Influence of cost coefficient b on allocation.

FIGURE 10. Comparison of allocation results between different allocation
methods.

reliability enhancement of the cooling system will inevitably
incur a large amount of cost. On the other hand, its potential
risk, PRi, was the lowest, indicating that it had the least
impact on the system. Thus, compared with the other four
MMUs, the reliability enhancement of the cooling system
was unnecessary, and the highest failure rate should therefore
be allocated to it.

The lowest failure rate was allocated to the broach mech-
anism, according to the proposed method. In contrast, it was
allocated to the cooling system by the traditional method
and the spindle by the RPN-based method. This difference
occurred because MMUs with higher reliability levels were
allocated with lower failure rates in the traditional method
that focused on the current system reliability, whereasMMUs
that might cause severe consequences were allocated with
lower failure rates in the RPN-based method that focused on
the influence of failure of the micro-subsystem on the system
in hope of reducing the influence of failure on the system.
As demonstrated in Table 3 and Table 4, of all five MMUs,
the Ci of the cooling system was the largest (reliability was
the highest), and the mean value of the failure mode ratings
of the spindle was the largest (the influence of potential

FIGURE 11. Influence of cost coefficient b on allocation.

failure on a system was the greatest). Therefore, the lowest
failure rate was allocated to the cooling system and spindle
with these two methods. However, instead of optimizing
the allocation result, the allocation was made from a single
aspect in both the traditional method and RPN-based method.
Although the spindle system was the most potentially risky,
it was more reliable. Thus, the reliability enhancement of the
spindle system incurs a substantial cost. It was also unreason-
able to allocate the lowest failure rate to the cooling system.
The broach mechanism was not as reliable as the other four
MMUs, so there was much room for its reliability to be
enhanced. Furthermore, its potential risk was in the second
place, so it deserved more attention from the designer. As a
result, the lowest failure rate should be allocated to broach
mechanism for the sake of optimal system allocation.

The allocation of various MMUs with varying cost coeffi-
cients b is shown in Table 6 (as given in the appendix) and
Figure 11, respectively. The range of b satisfying the
requirement that PRi and Ci are of the same magnitude was
calculated, i.e. b ∈ [0.9867, 0.9998]. As shown in Table 5
(as given in the appendix), failure rates allocated to vari-
ous MMUs changed as cost coefficient b varied. When b
approached its lower limit (b = 0.9880), the cooling system
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was assigned the highest failure rate while the spindle was
assigned the lowest failure rate among the five MMUs. When
b approached its upper limit (b = 0.9990), the broach mech-
anism was assigned the lowest failure rate while the failure
rate of spindle was third. The reason was that the value of b
in Equation (21) increased when the manufacturing cost of
a product grew higher or the designer emphasized it more
than others. The cost incurred by reliability enhancement was
still small, compared with the failure effect, which played a
dominant role during allocation when b = 0.9880. Therefore,
the allocation (sorting) result of the method developed in
this study was similar to that of the RPN-based method. The
reason why the failure rates allocated to broach mechanism
and rotation mechanism differed slightly was that the value
taken in the RPN-based allocation in Equation (7) was a
mean and the weight allocated to averaged broachmechanism
increased. When b = 0.9990, however, it was the cost that
dominated during allocation since the designer paid more
attention to design cost.

Accordingly, the consequence of failure exerted little
impact on allocation result; the allocation result was contrary
to that of the traditional method. When b took a value beyond
the given range, the factor with a far smaller weight than the
other factor was neglected, and credibility of the allocation
result was reduced.

VII. CONCLUSION AND FUTURE WORK
This paper presents a micro-motion subsystem
decomposition-based fFMA (fuzzy FMA reliability alloca-
tion) reliability allocation method, in which the integration of
failure effects, manufacturing cost, the potential risk, and reli-
ability cost of the micro-motion subsystem were allocation
factors. In this work, the potential risk of the micro-motion
subsystem was characterized based on the corrected risk
priority number, the cost function for system reliability was
created using relative reliability, and the allocation model
was built for the purpose of an optimal allocation result.
Specifically, (1) adjustment of risk coefficient and cost coef-
ficient was conducted in accordance with the allocator’s
intention with flexibility; (2) Uncertainties of allocation
were described using the fuzzy method; (3) ranges of risk
coefficient and cost coefficient were presented, ensuring the
balance between various factors and improving the credibility
of allocation result.

The contribution of this research lies the fact that this
paper proposes a MMU decomposition-based fFMA reliabil-
ity allocation method, which is weighing and balancing the
failures of various MMUs and the Costs via the Improved
RPN Value and the Semi-quantitative Cost Function using
a CIAD framework embedded with a BAVP algorithm. The
problems in current allocation methods, such as inadequate
consideration of relevant factors and lack of practicability,
were solved by the proposed method.

Our future research will focus on developing new types of
CI algorithms, such as the heredity algorithm (HA), the artifi-
cial fish swarm algorithm, the artificial wolf pack algorithm,

the firefly swarm algorithm, the swarm dolphin algorithm
and their hybrid derivatives, to optimize further prediction
decoupling of quality characteristics. To achieve a ’state-of-
practice’ design framework for the predictive control, further
experimental research is needed to establish an advanced
model for dynamical coupled behaviors and the CNC
machines’ reliability design and improvement [45]–[50].
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