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ABSTRACT A method to determine the presence of hard X-ray emission processes from a dense plasma
focus (205 J, 22 kV, 6.5 mbar H2) using Ultra High Frequency (UHF) measurements and deep learning
techniques is presented. Simultaneously, the electromagnetic UHF radiation emitted from the plasma
focus was measured with a Vivaldi UHF antenna, while the hard X-ray emission was measured with
a scintillator-photomultiplier system. A classification algorithm based on deep learning methods, using
two-dimensional convolutional layers, was implemented to predict the hard X-ray signal standard deviation
value using only the antenna signal measurement. Two independent datasets, consisting of 999 and 1761 data
pairs each, were used in the analysis. Different realizations of the training/validation process using a deep
learning model, obtained overall better results in comparison to other machine learning methods like k-
neighbors, decision trees, gradient boost, and random forest. The results of the deep learning algorithm,
and even its comparison with other machine learning methods, indicate that a relationship between the
electromagnetic UHF radiation and hard X-ray emission can be established, enabling the indirect detection
of hard X-ray pulses only using the UHF antenna signal. This indirect detection presents the opportunity to
have a simple and low-cost diagnostic, compared to the methods currently used to characterize the pulses of
X-rays emitted from plasma focus discharges.

INDEX TERMS Deep learning, Plasma focus, UHF antenna, X-ray pulse.

I. INTRODUCTION
Pulsed discharges have the capability to produce pulses
of electromagnetic radiation, charged and neutral particles.
These plasma devices have many configurations. One of
them is the Z-pinch [1], which comprises different archi-
tectures such as wire arrays [2], capillary discharges [3],
X-pinch [4], gas embedded Z-pinch [5] and Plasma Focus
(DPF) [6], amongst others. The latter has seen a renewed
interest from the international plasma community due to
its many interesting capabilities: as a portable pulsed neu-
tron source for field applications [7]–[10], as a pulsed X-ray
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source [11], as an ion beam accelerator [12], to produce
plasma shocks [13], to produce supersonic plasma jets of
astrophysical interest [14], to test new materials for the first
wall in fusion reactors [15], to synthesize new materials and
nanomaterials [16], [17], and also as a pulsed neutron source
for cancerous cell irradiation [18].

The Dense Plasma Focus (DPF) device consists of a set of
capacitors, a high voltage spark gap and concentric electrodes
separated by an insulating sleeve. Hydrogen (or deuterium
or other gases) at a low pressure (few mbar) is injected
in a vacuum chamber surrounding the electrodes. Once the
capacitors are charged to voltages in the order of tens of kV,
the spark gap is triggered and a plasma sheath is formed
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above the insulating sleeve. The dynamics of the plasma
discharge are divided into six stages [6]: I) breakdown, when
a current sheath is formed on the surface of the insulator;
II) axial acceleration, when the plasma sheath separates from
the insulator and is accelerated towards the end of the con-
centric electrodes; III) radial acceleration, when the plasma
sheath reaches the top of the electrodes, the magnetic fields
created by the electron current accelerates the plasma sheath
towards the center of the anode; IV) pinch, when the radial
phase reaches an stagnation point, the plasma reaches a
high temperature and density [19]; V) plasma shock, after
the pinch disruption [13]; VI) plasma jet, after the plasma
shock advances away from the electrode, plasma jets are
ejected [14].

During the pinch phase, high intensity electric fields are
generated in the plasma column, producing conditions that
accelerate electrons towards the anode [20]. The interac-
tion of this electron beam with the anode surface enables
the generation of intense hard X-ray pulses [20]–[23],
which can be detected with scintillator-photomultiplier
systems [6], [24]–[28], radiographic film [11], pinhole pho-
tography and semiconductor detectors [27], [28], amongst
other methods [20], [26].

In parallel to the high energy radiation generated by these
devices, emission in the Ultra High Frequency (UHF) range
has also been detected and associated to induced damage in
electronic circuits through coupling of the high frequency
electric field with instrument cables [29]. In order to char-
acterize these electromagnetic transients, antennas with high
efficiency and directivity are paramount due to their excellent
performance. High efficiency is mainly achieved byminimiz-
ing reflection losses with an appropriate geometry, i.e. tun-
ning the antenna for a particular frequency band [30]. On the
other hand, directivity accounts for the maximum radiation
intensity in a particular direction which is also determined
by the design of the antenna [30]. For example, the Vivaldi
antenna is a planar antenna characterized by an exponential
slot line embedded in dielectric substrate and it is feeded with
a microstrip transmission line [31]. This particular design
allows the measurement of a wide frequency band instead
of just particular resonant frequencies, detected when using
dipole or monopole antennas. This type of antenna had been
used for measuring electrical disruptions in insulation sys-
tems (partial discharges), which also emits a fast EM transient
in the VHF/UHF frequency range [32].

Different antenna designs have been used in Plasma Focus
devices, in order to obtain information about plasma dynam-
ics and physical processes happening in the discharge. For
example, Schmidt et al. [33] used a monopole antenna placed
inside the vacuum chamber and compared the measured sig-
nal with simulated electric field oscillations (Ez), relating
the high frequency content (up to 5 GHz) emission to good
neutron yield pinches. Horn antennas with a highly direc-
tional radiation pattern and tuned for the microwave range of
frequencies, in combination with waveguides and microwave
crystal detectors, were used as a time of flight spectrometer

for the radiation emitted on the outside from a DPF [34].
A dipole antenna, which has an omni-directional radiation
pattern and is tuned for a particular frequency, was used on
the outside of the vacuum chamber in order to measure the
electromagnetic burst from a DPF device [29]. Except for the
papers of Gerdin et al. [34] and Schmidt et al. [33], no further
relationship of the EM radiation with plasma focus phenom-
ena has been reported. Using a Mirnov Coil, an inductive
sensor, Piriaei et al. [35] associated a relation between the
measured signal and changes in the electrode geometry of a
plasma focus device.

Signals obtained from electromagnetic radiation sensors
have different frequency contents, ranging fromMHz toGHz,
which makes the analysis of this information a very complex
procedure. In order to obtain statisticallymeaningful observa-
tions, a large dataset size is required, as well as the possibility
to adequately characterize the signals in the different dimen-
sions that it can be described. Considering the complexity of
the EM signals, as well as the large amount of data acquired,
the use of artificial intelligence algorithms is crucial to be
able to determine information hidden in those signals. There
has been a resurgence in the area of machine learning due to
the success of the so-called deep learning approach [36], with
remarkable applications in computer vision [37], natural lan-
guage processing [38], audio synthesis and recognition [39],
strategy games such as Go and chess [40], [41] and recently,
in different areas of plasma physics [42] and controlled fusion
plasmas [43], among many others.

This work presents a novel technique to identify highly
transient phenomena that produces exceptional conditions in
the pulsed plasma column, capable to efficiently generate
hard X-ray emission, using the radiated EM signal measured
with a Vivaldi antenna and analyzed with deep learning
algorithms.

II. METHODOLOGY
A. PLASMA FOCUS DISCHARGE
Measurements of the UHF signal and hard X-ray emission
were performed at the PF-400J [7] discharge. The discharge
was operated at ∼ 205 J stored energy ( 22kV charging
voltage, ∼ 332 ns quarter period) with a modified electrode
geometry. The insulator had an effective length of 21.5 mm
(from the top of the cathode plate edge) and the stainless steel
anode had a zeff = 13 mm. Return rods were removed in
this configuration. A very high rate of shots with axial hard
X-ray emission was obtained with these modifications: more
than 75% of shots had a distinguishable hard X-ray signal
on the photomultiplier. The discharge was operated in pure
Hydrogen at a pressure of 6.5 mbar. A schematic drawing of
the experimental setup can be seen in Fig. 1.
The detection of the hard X-ray emission from the

discharges was done with a scintillator-photomultiplier
tube (PMT) system, located axially above at 0.54 m from
the anode. The PMT (Hamamatsu R1828-01) produces
an electrical signal proportional to the amount of inci-
dent light. Simultaneously, the UHF/VHF electromagnetic
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FIGURE 1. Schematic of the experimental configuration of the experiment.

emission was measured using a Vivaldi antenna placed
0.30 m radially from the anode center. These two sig-
nals were acquired, digitized and processed by a PXI sys-
tem, which is composed by a NI-PXIe-1082 chassis, an
NI-PXI 5162 acquisition card (with sampling frequency
of 12.5 GS/s, 8 bits of vertical resolution and 3 GHz of
bandwidth with a 50� input), and a NI-PXIe-8115 controller
with a dual-core i5-2510E processor. This systemwas config-
ured to acquire each of the signals, X-ray emission and EM
radiation, with a sampling frequency of 6.25 GS/s and a time
window of 0.9 µs.
To avoid any over-voltage in the input channels of the

measurement system, commercial attenuators were used.
These devices had 20 and 30 dB attenuation with bandwidths
between 0-18 GHz and 0-6 GHz respectively.

Conventional electric signal diagnostics were used in order
to monitor the DPF device operation. A Rogowski coil,
widely used to characterize the current derivative signal [44],
was coupled to the current return path of the device. A resis-
tive voltage divider, commonly used for measuring high volt-
age impulses [45], was placed between the anode terminal
and ground. These signals were acquired with a Tektronik
TDS 3054A oscilloscope (4 channels, 5Gs/s and 300 MHz
bandwidth).

B. VIVALDI ANTENNA
Instrumentally, an antenna can be considered as a transducer
capable of bidirectionally converting any electromagnetic
signal into an electrical signal [30]. In practical terms, for
an antenna to properly measure the electromagnetic emis-
sion from the high-energy transients that are generated from
DPF devices, the maximum values of the radiation pat-
tern of both the emission of the transient and the reception
of the antenna must coincide. That is to say, the antenna

radiation pattern must be oriented towards the source of the
transient so that the electric and magnetic fields that are
being captured generate the highest possible voltage at the
terminals of the antenna and, consequently, receive a higher
energy value [46], [47]. Due to the pulsing behavior of DPFs,
some spectral components of the transients, generated dur-
ing their operation, can appear in frequency bands where
there are permanently-present spectral contents associated
with electromagnetic noise: FM radio, digital TV, Digital
Audio Broadcasting (DAB), Global System for Mobile com-
munications (GSM) and Wi-Fi [29], [48]. For this reason,
the antenna must be adjusted or calibrated so that it can
measure the bands where this noise is not present, and thus,
the information captured would correspond as much as pos-
sible to the pulse that is being measured. The Vivaldi antenna
stands out among the possible antennas that can be used in
the measurement and characterization of pulses that come
fromDPFs, as it can be adjusted geometrically so that it omits
frequency bands where the electromagnetic noise is of great
amplitude. According to its waveguide design, the Vivaldi
antenna is very directional, which is an advantage, since it
minimizes the measurement of external sources to the area
where the antenna is directed. Moreover, its simple construc-
tion and low cost make this antenna of great interest for these
types of applications [32], [49]. The Vivaldi antenna that was
used for the experimental measurements of the present work
was constructed from a circuit board, where the total surface
of the antenna measured 8.5 cm x 11.3 cm, with a thickness
of 1.3 mm in the dielectric substrate that is located between
the conductive faces of the plate. Fig. 2 shows the Vivaldi
antenna implemented, together with its corresponding param-
eter S11.
Fig. 2b shows the parameter S11, which was obtained from

a MS2035B network analyzer. This parameter is considered
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FIGURE 2. Vivaldi antenna (a) and its S11 parameter (b).

FIGURE 3. Typical measurement waveforms (data taken with the TDS
oscilloscope): (a) Discharge di/dt signal from Rogowski coil, (b) Voltage
divider signal, (c) Vivaldi antenna signal and (d) photomultiplier signal.

as a reference measure, since it represents the frequencies
to which the antenna is tuned and is key for determining its
efficiency at each of the operating frequencies. According to
what is shown in Fig. 2b, the S11 value of 0 dB indicates a
reflection of 100% of the signal, while that of 10 dB indicates
a power reflection of 10%. Based on the topology and the
dimensions used, the Vivaldi antenna was adapted for the
frequency bands where the losses by reflection were less
than 10 dB, i.e. 1.25 GHz and 2.4 GHz. This configuration
is adequate, since it omits the noise sources associated with
FM radio, DAB and part of the band corresponding to GSM
during the measurement, which have more energy in the
electromagnetic spectrum of up to 3 GHz. However, it should
be noted that the antenna can also measure in the rest of

frequency bands with a greater or lesser degree of attenuation
according to what the parameter S11 indicates.

III. RESULTS
An example of the electrical signals from a pulsed plasma
focus discharge, with high x-ray emission, are shown
in Fig. 3. A high frequency event is seen at t ≈ 425 ns, which
is associated with the pinch (column compression due to high
intensity magnetic fields), and is detected by all the sensors.
Signals from conventional electrical sensors used for DPF
characterization [20], such as a Rogoswki coil and a voltage
divider, can be seen in Fig. 3a and 3b, respectively. Vivaldi
antenna and photomultiplier (PMT) signals, from the same
discharge, are shown in Fig. 3c and 3d. The deep learning
algorithm was fed with data pairs consisting of antenna and
PMT signals for each shot.

From the naked eye observation of the antenna signal, it is
evident that its complexity makes the identification of shots
with hard X-ray emission, an impossible task. For example,
Fig. 4 shows two different antenna signals from different dis-
charges, which have notorious amplitude differences. At the
pinch moment, the amplitude of the signals is dramatically
different. Nevertheless, both of them had a high hard X-ray
emission. On the contrary, Fig. 5 shows very similar antenna
signals, although Fig. 5a has X-ray emission while 5b is
lacking such emission. As seen in this comparison of the
antenna signals, it is clear that a more complex analysis tool is
needed to determine if the EM emission contains information
about the physical processes that generate the conditions for
hard X-ray emission from the pulsed discharge. Machine
learning algorithms have the capability to identify patterns
in complex signals, which enables the search for a relation
between the EM and hard X-ray emission.

Considering that the machine learning analysis could be
influenced by over-fitting, due to the complexity of the sig-
nals that are fed to the algorithm, a discretization of the
intensity values of the hard X-ray PMT signal was used.

In this case, to obtain a measure of the intensity of the
hard X-ray emission pulse, a discrete version of the root mean
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FIGURE 4. Different Vivaldi antenna waveforms that yielded notorious X-ray signals: (a) small amplitude oscillations and
(b) high amplitude oscillations seen at the pinch moment.

FIGURE 5. Similar Vivaldi antenna waveforms: (a) signal associated with X-ray emission and (b) signal associated with no
X-ray emission.

square (RMS) of the photomultiplier signal –essentially given
by its standard deviation– was used. It can be represented
by

S =

√√√√ 1
N − 1

N∑
i=1

(fi − f )2, (1)

where f is the average of the photomultiplier signal,

f =
1
N

N∑
i=1

fi. (2)

The base level Sref = 2.0185 × 10−4, corresponding to
the background without emission, was used as a reference in
order to report a normalized quantity R = S/Sref, such that
R > 1. Using the value of R, four categories were defined
and are shown in Table 1. Observed frequency corresponds
to the percentage of shots that fulfills a particular category
in relation to the total number of shots. The range of values
for R was selected to have categories with a similar value of
the Observed Frequency, avoiding a bias towards a particular
one. In terms of a binary classification problem, these cate-
gories can be reduced tomerely distinguishing betweenA and
not A.

TABLE 1. Four categories of intensity of emission of hard X-rays,
according to the normalized RMS index R.

It is important to note that no preprocessing of the antenna
signal was performed in terms of frequencies, only its mean
value was substracted and the global scale was fixed so that
the standard deviation of the input signal is always 0.045. This
value was chosen so that the antenna signal values are always
between −1 and 1, as a form of regularization for the neural
network.

The datasets considered for themachine learning algorithm
are shown in Table 2. Dataset 1 corresponds to the first
measurement campaign, two separate days, intended to test
if the deep learning algorithm could detect any relationship
between the signals. Dataset 2 was acquired in a different
campaign, to give more variability and test the generalization
of the algorithm using independent experimental data.

A bidimensional convolutional neural network (CNN) cat-
egorical classifier was constructed in order to analyze the
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TABLE 2. Experimental datasets used in the machine learning algorithm.

data. This was done by stacking three convolutional layers,
each of them followed by a dropout layer (which helps reduce
overfitting) and a max pooling layer, as shown in Fig. 6.
The antenna signal was used as input, padded to form a
vector of length 5625 = 75 × 75, and a categorical output
was obtained using the softmax activation function, as usual.
In summary, the whole neural network works as a nonlinear
function which is able to map the 2D representation of the
antenna signal into a category according to the standard
deviation value of the associated PMT signal, as shown
in Table 1. The algorithm was entirely implemented using
the Keras [50] framework with a TensorFlow backend. The
CNN reported in this paper corresponded to the architecture
that gave better results according to the initial survey using
dataset 1. During the preliminary tests, several neural network
and training parameters were varied in order to avoid overfit-
ting and improve convergence. For instance, the RMSProp
and Adam optimizers were used, and their learning rates
were changed from their Keras default values of 0.001 in
the range (0.01, 0.0001). Regarding the activation functions,
we tested the performance of sigmoid, tanh and relu for
binary classification, finally choosing for the latest, and also
chose softmax for multi-class classification, as is standard.
In all these tests we only noticed differences regarding the
rate of convergence (number of epochs needed to reach a
certain level of validation accuracy), while the success of
the learning process was strongly determined by the size
of the neural networks and the presence and values of the
dropout layers. No modifications of the architecture (num-
ber of layers, activation functions, etc.) were attempted for
dataset 2.

For the first analysis, dataset 1 and 200 data pairs from one
measurement instance of dataset 2 were used. The training
process was performed using 799 samples (corresponding to
80 percent of the 999 samples available) as training data,
and the remaining 200 samples as testing data. An example
of the evolution of a single neural net during the training
process is shown in Fig. 7. Here we see that, in terms of both
accuracy and loss is clear that a certain amount of overfitting
occurs (because the validation accuracy lags slightly behind
the training accuracy, while the validation loss remains above
the training loss).

A group of 200 data pairs, not used before, were considered
for performance evaluation of this first model against new
data. The results obtained for categorical classification are
shown in Table 3. In this case, full identification means the
neural network correctly predicts the category, while partial
identification means the neural network only correctly pre-
dicts the presence or absence of emission (i.e. if the category
is A or not).

FIGURE 6. Architecture of the convolutional neural network.

FIGURE 7. Training metrics (including cross-validation).

It should be noted that despite the fact that the rate for full
identification is below 50%, it is far above the performance of
randomguessing, which in this case is one out of four, or 25%.
In fact, the probability of obtaining this outcome (92 correct
guesses out of 200) by mere chance is given by a binomial
distribution (3) with p = 1/4,

P(k = 92|n = 200, p = 0.25) =
(
200
92

)(1
4

)92(3
4

)108
= 6.268× 10−11. (3)

As only reporting accuracy (percentage of correct cases
over total cases) may be misleading in the case when the
frequencies in the training/validation set are highly biased,
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TABLE 3. Results for categorical classification.

TABLE 4. Results of several metrics used for binary classification for the
CNN algorithm. Statistics were collected over 40 realizations of the
training process.

we report the results for binary classification (category A
or not A) in terms of several, complementary diagnos-
tics, namely precision, recall, specificity and F1 score. For
this binary classification analysis both datasets were used.
In particular, for each dataset, 80% of the available sam-
ples were used for training and the remaining 20% for
validation. Furthermore, the training/validation process was
carried out 40 times, using randomly selected signals for
training/validation, to take into account the precision and dis-
persion of the results for each metric. The binary classifica-
tion results are shown in Table 4. Complementary diagnostics
are described as follows: accuracy is simply the fraction of
correctly classified samples over the total number of samples;
precision is the fraction of true positives (in our case, real
hard X-ray emission) over the number of announced pos-
itives; recall is the fraction of correctly detected positives
over all existing positive samples, while specificity is the
fraction of correctly detected negative samples (real absence
of hard X-ray emission) over all existing negative samples.
From these diagnostics the F1 score can be computed as the
harmonic average between precision and recall. More details
of these metrics are found elsewhere [51].

From Table 4 it is shown that the F1 score gives a reason-
able performance for the hard X-ray emission identification,
and by extension precision and recall, while the low value of
specificity is consistent with the fact that in our case most of
the misclassifications are false negatives.

Considering the results shown in Table 3 and the met-
rics defined in Table 4, a definitive relation can be inferred
between the emitted EM signal and the hard X-ray emission
from a pulsed plasma device. In some cases the algorithm
could even predict a range for the standard deviation value
associated with a certain PMT signal. These results are rein-
forced by a comparison with several machine learning algo-
rithms, shown in Table 5. We can see that all algorithms are
able to capture the correlation between the signals, to some
degree. As expected, the traditional algorithms such as
k-neighbors and decision trees do not perform as well as
the newer ensemble methods such as gradient boosting and

TABLE 5. Results of several metrics in binary classification for some
traditional machine learning algorithms, using the dataset 2. Statistics
were collected over 40 realizations of the training process. First column
indicates the metric used for the comparison, as seen in Table 4.

random forests, while the CNN gives an additional perfor-
mance increase over all of them.

However, some limitations of the methodology and algo-
rithm implementation can be pointed out. For example,
a number of false negatives (i.e. shots that the algorithm
wrongly indicates that there is no X-ray emission) could be
identified. More datasets may be needed for the algorithm
to learn some of the unidentified features related to the hard
X-ray emission. From the measurement point of view, there is
a possibility that low intensity electric signals from the PMT
were not detected by the oscilloscope, due to the signal-to-
noise ratio at the instrument scale used. This can be explained
considering that the vertical scale of the recording device
was maintained at a constant value sufficiently high to enable
the measurement of the highest intensity signals, without
reaching the full scale. False positive shots were also found
during the validation of the algorithm results. This is the case
when the algorithm inferred from the antenna signal that there
was an hard X-ray emission, but the PMT electric signal
indicates the contrary. It is believed that there is still some
over-fitting made by the algorithm.

IV. DISCUSSION
From the results presented above, it is clear that the emitted
UHF signal has information, hidden in its complexity, about
the conditions that were produced inside the plasma column
that efficiently generate hard X-ray emissions.

There is a relationship, for a significant number of shots,
between the radio-frequencymeasuredwith a Vivaldi antenna
outside the vacuum chamber, and the hard X-ray emission
detected with a Scintillator-Photomultiplier tube system. The
use of an artificial intelligence algorithm proved to be nec-
essary for handling the complexity of the signals. The algo-
rithm found patterns in the antenna signals in terms of the
standard deviation value of the Scintillator-PMT signal which
allowed to detect the hard X-ray emission and, in a significant
number of discharges, infer a standard deviation range value
(R-value).

The binary classification using traditional machine learn-
ing algorithms presented similar results as the ones obtained
using deep learning, in terms of the accuracy, recall and
F1 metrics (see Table 5). From this comparison, it is clear
that different machine learning methods show consistency in
supporting the conclusion about the relationship between the
EM burst measurement and the hard X-ray detection.

Although the neural network showed that a relationship
can be established between the UHF and hard X-ray radiation
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measurements, the physical mechanisms that are responsible
of this phenomena are still to be determined. In this work,
the whole antenna signal is used as an input for the machine
learning algorithm, which does not allow to determine the
influence of the initial breakdownUHF emission with respect
to the pinch phase emission in the presence of hard X-ray
pulses. It is needed to deepen the understanding of the early
physical processes [20] that determine the plasma column
formation, and the UHF characterization of the pulsed plasma
devices opens a new perspective to this analysis, including
a more complete diagnostic that can include the electrical
circuit oscillation into the study objects.

In order to comprehend the radiofrequency radiation emis-
sion from DPF devices, a detailed study on the discharge
geometry is needed. Due to the compact design of the
PF-400J, to be able to maintain the circuit impedance to
the minimum, the origin of the radiofrequency emitted from
the device cannot be traced back to a particular circuit ele-
ment. Gerdin et at. [34] found that the parallel plates of the
transmission line and capacitor bank of a DPF device were
acting as antennas rather than waveguides. In the PF-400J,
the entire device (electric circuit plus vacuum chamber) acts
like an antenna, where the main EM transients detected with
the Vivaldi antenna are those of the initial spark gap con-
duction, initial breakdown inside the vacuum chamber, pinch
stage and column disruption (Fig. 3c). The plasma dynamics
happening inside the device, that the antenna outside cannot
measure, are believed to be indirectly responsible of the
radiofrequency emitted outside the device and, because of
this, it may be related in someway to the hard X-ray emission.

V. CONCLUSION
This work presents a novel diagnostic that enables the
identification of hard X-ray emission from a pulsed plasma
discharge, by analyzing the UHF electromagnetic radiation
generated by the device, with machine learning techniques.

This diagnostic is based on the acquisition and analysis of
the electromagnetic fields radiated from the electrical circuit
that forms the discharge, at the moment of maximum col-
umn compression. These highly transient electric fields are
responsible for the conditions for efficient electron acceler-
ation towards the anode, and the generation of hard X-ray
pulses.

The diagnostic presented in this work comprises the use
of a low cost antenna design and artificial intelligence algo-
rithms to relate the UHF emission with the hard X-ray pulse
appearance during the normal operation of a transient current
device. The capability to identify the presence of x-ray pulses
with high certainty presents this diagnostic as a powerful and
low cost tool to characterize pulsed plasma devices remotely,
and without the need of high cost and complex detection
systems for pulsed radiation.
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