IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 22, 2019, accepted May 27, 2019, date of publication June 5, 2019, date of current version June 19, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2920947

Performance Evaluation of Data Race Detection
Based on Thread Sharing Analysis With Different
Granularities: An Empirical Study

LILI BO“1, SHUJUAN JIANG “12, JUNYAN QIAN "3, RONGCUN WANG'2, AND YAFEI YAOQ'2

!'School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
2Mine Digitization Engineering Research Center of Ministry of Education of the People’s Republic of China, Xuzhou 221116, China
3Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China

Corresponding author: Shujuan Jiang (shjjiang @cumt.edu.cn)

This work was supported by the Fundamental Research Funds for the Central Universities under Grant 2017XKZD03.

ABSTRACT Thread Sharing Analysis (TSA) plays an important role in concurrent program testing.
Providing a TSA to a data race detector may speed up the runtime logging and improve the performance of
data race detection. In this paper, we focus on the empirical study of the performance of data race detection
based on TSA with different granularities. First, three granularities are considered, including object, field
and “field + array element”. Then, an empirical study is conducted to evaluate the performance of data race
detection based on three dynamic TSA approaches. The results show that data race detection based on the
TSA with “field + array element” granularity outperforms those with object and field granularities.

INDEX TERMS Software testing, concurrent program testing, thread sharing analysis (TSA), data race

detection, dynamic analysis

I. INTRODUCTION

Concurrent programs have gradually become popular to fully
utilize multicore CPUs. Data race, a type of concurrency bug,
is difficult to expose, to detect and to fix. A data race occurs
when two or more different threads concurrently access (i.e.,
read-write, write-read, or write-write) a shared variable with-
out any synchronization mechanisms.

Thread Sharing Analysis (TSA) aims to determine whether
a program statement can read or write thread-shared data.
It is defined as the problem of locating thread-shared data
accesses, i.e., shared access points (SAP). TSA is the basis of
concurrent program comprehension, compiler optimization
and software testing. For example, if an access is not to the
shared data, a race detector can ignore this access and save
much more analysis time.

A great number of data race detection techniques have
been developed to find data races. Commonly, there are two
data race detection models: happens-before relation [1], [2]
and lock-sets [3], [4]. In terms of program execution, data
race detection techniques can be divided into static detec-
tion [5], [6] and dynamic detection [7], [8]. Static techniques

The associate editor coordinating the review of this manuscript and
approving it for publication was Roberto Pietrantuono.

extract program information by analyzing control flow, data
flow and synchronization effects of the current program.
Dynamic techniques execute target programs and try to find
data races based on the execution traces.

However, most of data race detection techniques are based
on escape analysis which is a coarse-grained thread shared
analysis approach [9], [10]. Escape analysis is a classic thread
shared analysis approach. It identifies a shared object by
checking if the object escapes from a thread or a method
creating it. However, an object is escaped does not mean that
all the data in the object are shared. Recently, Huang pointed
out some limitations of escape analysis and proposed a field-
sensitive, object-insensitive dynamic-TSA algorithm [11].
This algorithm addresses the runtime overhead problem.
It is based on a location-based approach and tracks memory
accesses at each program location at most twice. If the same
field or array object is accessed by two different threads
from two different program locations, or twice from the
same program location, with at least one write, the field or
array object is marked as shared. All statements accessing it
are marked SAPs. Therefore, dynamic-TSA algorithm is on
the field granularity. However, for efficiency, the dynamic-
TSA algorithm ignores different array elements, which may
produce many false positives. These non-SAPs can increase

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission.

73819

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7267-4923
https://orcid.org/0000-0003-0643-0565
https://orcid.org/0000-0002-1325-6975

IEEE Access

L. Bo et al.: Performance Evaluation of Data Race Detection Based on TSA

Concurrent
Program

Il

TSA with different
granularities

.
Data race detector

prediction

‘ [

[

| |

[[
_”‘ . . Offline data race | !

| Online logging }

[

| |

Evaluate the performance of data
race detection based on TSA
with different granularities

FIGURE 1. Overview of our approach.

the runtime overhead for data race detection. How is the per-
formance of data race detection with the increase of analysis
granularities?

Based on the above questions, we conduct an empiri-
cal study to evaluate the performance of data race detec-
tion based on TSA with different granularities, including
object, field and ‘““field + array element”. We use a data
race detector called RVPredict, which is a maximal sound
predictive race detection tool [12]. Our experiments are con-
ducted on 12 widely used java multi-threaded programs.
The results show that data race detection based on the TSA
with “field 4 array element” granularity obtains the best
performance.

The remainder of this paper is organized as follows. Our
approach is described in Section II. Section III presents an
empirical study to show its validity. Section IV summarizes
the related work. Finally, we draw conclusions of this paper
in Section V.

Il. OUR APPROACH

A. OVERVIEW

Data race detection can benefit a lot from TSA. Given the
shared data and shared access points, data race detectors
can eliminate a lot of instrumentations on concurrent pro-
grams under test, saving online logging time. In addition,
thread shared analysis may affect the result of effectiveness
of data race detector. In this paper, we evaluate the perfor-
mance of data race detection based on TSA with different
granularities, which mainly considers the time benefit from
TSA.

Fig. 1 presents the overview of our approach. It consists of
three steps: thread sharing analysis, data race detection and
performance evaluation. In the first step, we identify shared
data and shared access points in the concurrent program

73820

by using three TSA approaches with different granularities
(i.e., objects, fields, fields + array elements). In the second
step, data race detectors analyze the concurrent program
with the results of three TSA approaches, respectively. Take
RVPredit for example, it first logs the shared access events
online and then predicts data races offline. The final step is
performance evaluation. We evaluate the performance of data
race detection based on different grained TSA in terms of time
overhead.

B. TSA WITH DIFFERENT GRANULARITIES

TSA is a concurrent testing methodology, which can be
described from two perspectives, i.e., static analysis and
dynamic analysis. Given a concurrent program P, static TSA
first constructs an Information Flow Group (IFG) or a Call
Graph (CG) for the whole program, and then traverses the
access statements reachable from each static thread to iden-
tify SAPs. If an object (field) is accessed by two or more static
threads, with at least one write access, this object (field) is
considered to be shared. The corresponding statements on the
shared object (field) are marked as SAPs. Unlike static TSA,
dynamic TSA tracks the thread memory accesses information
during the execution of program P. If the same object (field) is
accessed by two different threads from two different program
locations, or twice from the same program location, with at
least one write, the object (field) is considered to be shared.
The statements which access this object (field) are marked as
SAPs.

In this paper, we employ TSA with three granularities, i.e.,
object, field and ““field + array element”. The details are
described as follows.

1). TSA with object granularity. Standard escape analysis
is a TSA approach which checks if an object escapes a
thread or a method creating it. If an object is thread-escaped,
escape analysis considers that all data associated with the
object are shared. Moreover, all static variables as well as
any object reachable from the static variables are thread-
escaped. Therefore, escape analysis is a coarse-grained TSA
and it is on object granularity. In the empirical study, we use
dynamic escape analysis (DEA) as the TSA approach with
object granularity.

2). TSA with field granularity. Dynamic-TSA proposed by
Huang is a TSA approach which identifies shared fields and
shared array objects. It is a location-based, field-sensitive,
object-insensitive analysis approach. Only if the same field is
accessed by two different threads from two different program
locations, or twice from the same program location, with at
least one write, the field is considered to be shared. For each
shared field or shared array object, all statements accessing
it are classified as shared access points. To pursuit efficiency,
for any program location, it analyzes at most two memory
accesses performed at that location and ignores different array
indexes. In the empirical study, we use dynamic-TSA as the
TSA approach with field and array object granularity.

3). TSA with “field 4 array element” granularity. Iden-
tifying shared array elements accurately can accelerate data

VOLUME 7, 2019

L. Bo et al.: Performance Evaluation of Data Race Detection Based on TSA

IEEE Access

Concurrent
program

dynamic-TSA

{<a,{loc,, loca, loc,...}>,
<b,{locy, locy,, locys,...} >,

<c,{loc.1, locy, loce,...}>,

...}

A set of shared array
objects A4 with all of
their access location

Collect information Identify shared array }

of all array element element accesses with |!
accesses alias

{<$10_i, {loc ..} >,
<810 J, {loC 3.0},

<$rl_k,{loces,...}>,
. ..}

A set of shared array
element with alias SAE*
with their SAPs

Identify the shared array
elements and their SAPs by
using access locations

v

{<a[il, {loca, locys,...}>,
<c[k].{loc,...}>,
. .}

A set of shared array
element SAE with their
SAPs

FIGURE 2. Overview of DTSApE.-

race detection and data race fix. This is more obvious in the
case of “hot-path”, such as loop accesses of an array object.
However, identifying shared array element accesses is dif-
ficult because of alias problem. None of TSA approaches
distinguish between different array elements. In this paper,
we design DTSAfpAg (Dynamic TSA with “Field + Array
Element” granularity) to identify shared fields and shared
array elements.

The process of shared array elements identification is
shown in Fig. 2. First, we use dynamic-TSA to analyze a
concurrent program, which can obtain a set of shared array
objects SA with all of their access locations. Next, we collect
information of all array element accesses. As soon as an array
element access happens, we check if the current element is
shared. The current element is shared when it is accessed by
two different threads, with at least one write. A challenge is
that the names of the shared array elements are still unknown.
Then, we find the true name of shared array elements by
using access locations. For example, we can get <$r0:{loc,o,
locys,... }> from SAE*. Besides, we can find from SA that
array object a is accessed in program location loc,, and loc,3.
Therefore, we know that $r0 is the alias of array object a.
Finally, we obtain the shared array elements and their
SAPs.

VOLUME 7, 2019

Overall, thread sharing analysis can directly impact on the
performance of data race detection. Given accurate SAPs,
a data race detector can eliminate a lot of instrumenta-
tions on non-SAPs, which can save much time and memory
space.

C. AN ILLUSTRATION
We use an example in Fig. 3 to show the TSA results with
three granularities.

As described in Fig. 3, there are in total two threads (i.e.,
main thread and Threadl) accessing a shared object s with
two instance fields x, y, a static field st and an array ref-
erence a. To indicate the access type, a simple annotation
with different color is added after the corresponding state-
ment. For example, R(x) means reading x, and W(x) means
writing x.

The analysis results obtained by thread sharing analysis
approaches with three granularities are shown in Table 1.
Columns 1-6 respectively represent granularity, approach,
shared data, SAPs, the number of SAPs and data races
detected by RVPredict. In this paper, SAP is represented
by the line number. Data race is represented in the form of
“(s:< linel, line2>)”, where s indicates the shared data,
linel and line2 indicate statement positions of data race.

Row 2 in Table 1 presents the analysis results obtained
by escape analysis which is on object granularity. Classical
escape analysis identifies the instance object s as shared,
because it escapes the thread (i.e., main thread) which creates
it. Moreover, escape analysis considers all the fields of s
(including x, y, str, a) and all accesses to the fields as shared
since they are the accesses to the shared object s. In addi-
tion, as the shared field x can be written concurrently by
main thread and Threadl, the data race on x can be easily
detected by RVPredict. However, it will miss the data race
on a[0] because escape analysis mistakenly identifies b as
thread-local.

Row 3 in Table 1 presents the analysis results obtained by
dynamic-TSA which is on field granularity. Dynamic-TSA
identifies field str as thread-local since str is only accessed
by main thread. Besides, dynamic-TSA identifies field y as
thread-local since y is only read after initialization and it
is immutable. Hence, the statements of accesses to str (line
13) and y (line 14) are non-SAPs. Furthermore, as b is an
alias of a, dynamic-TSA identifies all the accesses to the
array object a as SAPs, i.e., lines 15, 16, 23, 25. However,
dynamic-TSA cannot distinguish between different array ele-
ments. Therefore, although RVPredict can detect the data
races (<16,23>) and (<23,16>), the shared array element is
unknown.

Row 4 in Table 1 presents the analysis results obtained by
DTSAEag which is on “field + array element” granularity.
a[1] is only read after initialization. Thus, it is thread-local.
The statements in line 15 and line 25 are non-SAPs. Finally,
RVPredict can report the data races occur on the shared
fields x and shared array element a[0], i.e., (x:<6,12>),
(x:<12,6>), (a[0]:<16,23>), (a[0]:<23,16>). The results

73821

IEEE Access

L. Bo et al.: Performance Evaluation of Data Race Detection Based on TSA

1 public class Shared { 8 public class Test{

18 static class Threadl extends Thread{

2 intx,y; 9 public static void main(String[] args){ 119 Shareds;
3 static String str; 10 Shared s =new Shared(); 20 public Threadl (Shared s)
4 inta[]=new int[2]; 11 new Threadl(s).start(); 21 {this.s =s;}
5 public int incX() |12 sx=5 /W) | 22 public void run(){
6 {return y+(x++);} 113 s.str=“astatic string”; //W(str) 123 s.a[0]=2; //R(a), W(a[0])
//IR(»), R(x), W(x) 14 print(“y ="+y); //R(y) I 24 print(s.incX());
71} | 15 int[]b=sa; //R(a) | 25 print(“a[1] =" +s.a[1]); //R(a), R(a[1])
16 b[0]=1; //W(b[O]) 26 }
17) 127 1}
: | 28}
FIGURE 3. An example program.
TABLE 1. Analysis results of the program nn fig. 3.
Granularity Approach Shared data | SAPs #SAPs | Data races
object escape analysis | s,x,y,str,a | 6,12,13,14,15,2325 | 7 (x:<6,12>)(x:<12,6>)
field dynamic-TSA | x, a 6,12,15,16,23.25 6 215662132;)(32 ’1126’?
field-+array element | DTSApar x, a[0] 6,12,16,23 4 g :[3]6; if?g;}j[g?@“ 6)
TABLE 2. Description of experimental subjects.
Programs LOC Scale #Threads Native(ms) Description
AirlineTicket 95 Small 11 18 Airline ticket program
Account 155 Small 3 60 Bank account program
Shop 280 Small 4 57 Supplier-Customer system
BoundedBuffer 536 Small 4 159 Bounded buffer
StringBuffer 1320 Middle 3 82 String buffer
RayTracer 1924 Middle 2 109 Measure the performance of a 3D ray tracer
Cache4j 3897 Middle 4 105 Cache for Java objects
ArrayList 5866 Middle 3 100 List for storing array elements
SpecJBB-2005 18K Large 3 1585 Evaluate the performance of server side Java
Avrora 93K Large 9 3471 Discrete event simulator of a sensor network
Sunflow 109K Large 13 933 Render a set of images using ray tracing
Lusearch 410K Large 8 794 Text search of keywords

imply that, with DTSApag, we can know the conflict data as
well as the responding locations.

Given precise SAPs to a data race detector, it can eliminate
the instrumentations on those non-SAPs, which reduces the
logging overhead and improves the runtime performance.
From Table 1, we can see, three approaches that work on
object, field and ““field + array element” granularities mark
seven, six and four SAPs, respectively. DTSAgag marks the
least number of SAPs, which is two less than dynamic-TSA
and three less than escape analysis. Furthermore, this does not
reduce the number of data races reported by RVPredict. Com-
pared with RVPredict based on dynamic-TSA and escape
analysis, RVPredict based on DTSAFAE can report complete
data races.

lll. EMPIRICAL STUDY

In this section, we conduct an empirical study on a suit
of widely used multi-threaded programs to investigate the
validity of our approach. First, we describe the experimental

73822

subjects and the experimental design. Then, we present the
results and analyze them in details.

A. EXPERIMENTAL SUBJECTS

We select 12 multi-threaded Java programs for our eval-
uation. 10 programs are from five common benchmark
suits, i.e., IBM Contest benchmark suite [13] (Account,
Shop), an open library from Suns JDK 1.4.2 (StringBuffer,
ArrayList), Java Parallel Grande (JPG) benchmark suite [14]
(RayTracer), SIR [15] (AirlineTicket, BoundedBuffer) and
Dacapo (Dacapo-9.12-bach) [16] (Avrora, Sunflow, Luse-
arch). Cache4j and SpecJBB-2005 are from reference [17].
These multi-threaded Java programs are widely used in data
race detection.

The details of all subjects are shown in Table 2, where
columns 1-6 represent program name, size in lines of code,
scale, number of dynamic threads, native running time and
a simple description. The subject programs are sorted in

VOLUME 7, 2019

L. Bo et al.: Performance Evaluation of Data Race Detection Based on TSA

IEEE Access

TABLE 3. Four scenes about TSA.

Scene Granularity Approach
S1 no-TSA without TSA
S2 object DEA
S3 field dynamic-TSA
S4 field + array element DTSAFAE

increasing order by their scale. Our experimental subjects
contain small (LOC < 1000), middle (1000 < LOC <
10,000) and large (LOC > 10,000) concurrent programs.
Besides, ‘“Native(ms)” (column 5) indicates the running time
without any analysis tools.

B. EXPERIMENTAL DESIGN

Our experiments are conducted on a four-core Intel i7
3.06GHz machine with Java HotSpot 1.7 and 8GB memory
running Ubuntu-14.04. We compare the performance of data
race detection based on three dynamic TSA approaches with
different granularities, which are described in Section II.B.
Both TSA approaches with field granularity and with
“field 4 array element” granularity are modified from
dynamic-TSA proposed by Jeff Huang.

The data race detection function in our experiments is
performed on RVPredict, a recent, source available data race
detection tool. RVPredict is a maximal sound predictive race
detector. It contains two steps: trace collection and predictive
race analysis. In trace collection, a sequentially consistent
trace which contains shared data accesses, thread synchro-
nizations, and branch events is logged after static instrumen-
tation. In predictive race analysis, a constraint is constructed
for every conflicting operation pair (COP), and then it is
solved through an SMT solver. For scalability and practi-
cality, RVPredict employs a windowing strategy [18]. Large
traces are divided into a sequence of fixed-size windows.
After that, RVPredict performs race analysis on each window
separately.

To evaluate the performance of data race detection based
on TSA, we set four different scenes that are listed in Table 3.
The analysis granularity increases by rows. Column 2 and
column 3 represent the granularity and the corresponding
approach we used in our implementation. In special, “S1”
means to execute data race detection without any TSA
approaches, i.e., tracking all accesses. The last three scenes
which are introduced in Section II.B indicate to track the
shared access points obtained from DEA, dynamic-TSA
and DTSAFEAE, respectively. As three TSA approaches are
dynamic, all data are averaged over 10 runs.

C. EXPERIMENTAL RESULTS AND ANALYSIS

1) SIZE OF TRACE

RVPredict collects an execution trace that contains synchro-
nization operations and shared memory accesses. Therefore,
the size of trace becomes a factor which affects the perfor-
mance of data race detection. Table 4 lists, for each program,
program name (column 1) and size of trace that RVPredict

VOLUME 7, 2019

TABLE 4. Size of trace collected by RVPredict in four scenes.

Programs S1 S2 S3 S4
AirlineTicket 100 100 95 90
Account 126 82 65 50
Shop 2120 397 477 379
BoundedBuffer 2228 1943 1337 1116
StringBuffer 81 70 60 36
RayTracer 23836 22531 22524 19043
Cache4j 718256 705681 683733 653114
ArrayList 303 157 164 88
SpecIBB-2005 479413 267817 273282 132317
Avrora 1404160146 502142545 616669987 578794545
Sunflow 505891688 - 281123465 208934640
Lusearch 322827448 175678647 301655570 162360628

collected in four scenes (column 2-5). Column 2 shows
the size of trace collected by RVPredict without any TSA
approach. Columns 3-5 show the size of trace collected by
RVPredict based on TSA with granularities on object, field
and “field + array element”, respectively.

As shown in Table 4, TSA can reduce the size of trace sig-
nificantly. Compared with tracking all accesses (S1), the size
of trace can be reduced by 30%, 33% and 50% on average
after using TSA approach with the granularities on average
after using TSA approach with the granularities on object
field and “field + array element”, respectively. There are
five programs in which the size of trace collected by RVPre-
dict based on TSA with field granularity is larger than that
with object granularity. They are Shop, ArrayList, SpecJBB-
2005, Avrora and Lusearch, which are bold in Table 4. The
reason is that, there are shared array element accesses in
these programs. Dynamic escape analysis that is at object
granularity does not work for array indexing accesses. Both
dynamic-TSA and DTSAFAE track array element accesses.
The difference is that, dynamic-TSA reports all statements
accessing the shared array object as SAPs and DTSAFrag
can distinguish between different array elements, which only
reports the shared array elements.

In addition, we find that, for Sunflow, we cannot get its
size of trace at the object granularity because DEA runs out
of memory for it. This also implies that dynamic-TSA and
DTSAGEaE are efficient than DEA.

2) EFFICIENCY

To further explore the performance of data race detection
based on TSA with different granularities, we compared the
runtime overhead of RVPredict in four scenes.

The comparison results for nine small and middle-scale
programs are displayed in Fig. 4, where x-axis indicates three
phrases of dynamic data race detection (i.e., instrumentation,
logging and prediction), and y-axis indicates the time cost in
four scenes. For example, for most programs, large amount
of time is used for instrumentation. But for BoundedBuffer,
the time consumed for prediction is much more than that for

73823

IEEE Access

L. Bo et al.: Performance Evaluation of Data Race Detection Based on TSA

1.6 2.5 4
mS] mS2mS3 mSs4 WSl mS2 mS3 1S4 15 ®S1 mS2 mS3 ns4
1.4 .
2
1.2 3
Ol 215 225
Q 5 Q
2 o : HE
= =
& 06 =1 L5
1
0.4 0.5 05
0.2
0 0 0
; ; cti Instrumentation ~ Loggin; Prediction Instrumentation Logging Prediction
Instrumentation ~ Logging Prediction gging
(AirlineTicket) (Account) (Shop)
4 35 7
mS1 mS2 mS3 mS4 mS] mS2 mS3 =S4 mS] mS2 mS3 1S4
35 3 6
3 2.5 5
z2s z2 o
£ 2 s £ 5
1.5 a -)
1 1
05 0.5 1
0 0 0) , -
Instrumentation ~ Logging Prediction Instrumentation ~ Logging Prediction Instrumentation Logging Prediction
(BoundedBuffer) (StringBuffer) (RayTracer)
8
mSl mS2 mS3 mS4 20 ENES RN mS1 mS2 mS3 =S4
7 12
6 15 10
~5 P —~
z z 28
24 £10 E
E s &= £ 6
2 5 4
1 2
0 0 0
Instrumentation Logging Prediction Instrumentation Logging Prediction Instrumentation ~ Logging Prediction
(Cachedj) (ArrayList) (SpecJBB-2005)

FIGURE 4. Runtime overhead of RVPredict in four scenes for nine small-scale and middle-scale programs.

logging. The reason is that, there are 13 data races needed
to be checked in BoundedBuffer, which is more than that in
other programs. For Cache4j, the time cost in three phrases
is uniform because the trace collected by RVPredict is much
longer than others.

Moreover, we find that, the instrumentation time and the
logging time are related to the size of trace in Table 4 as
RVPredict instruments on these events and records them. For
example, for Shop, the size of trace collected by RVPredict at
field granularity is 80 more than that at object granularity,
then RVPredict consumes 0.04s and 0.07s more time for
instrumentation and logging shared events, respectively.

In addition, we summarize the runtime overhead of RVPre-
dict in four scenes for three large programs, which is shown
in Table 5. Table 5 lists, for each large program, program
name (column 1), runtime in three phases at four different
granularities (columns 2-5), and the corresponding reduction
compared with that in S1 (columns 6-8). Rows 1-6 describe

73824

the instrumentation time of RVPredict in four scenes. Rows
7-12 describe the online logging time of RVPredict in four
scenes. Rows 13-18 describe the offline prediction time of
RVPredict in four scenes. “—”" in Table 5 indicates that we
cannot get the SAPs identified by DEA as it analyzes Sunflow
over one hour and runs out of memory.

As shown in Table 5, TSA can reduce the logging overhead
significantly. It reduces the instrumentation time, online log-
ging time and prediction time by 26.52%, 52.95%, 56.02%
and 34.76%, 63.91%, 59.91% at field and “field + array
element” granularity, respectively. Although RVPredictin S2
reduces more time than that in S3 and S4 for Avrora and
Lusearch, it is unavailable for Sunflow. What’s more, RVPre-
dict based on the TSA approach worked at array element
outperforms that based on object and field granularity.

From Fig. 4 and Table 5, we can conclude that, for most
programs, the larger the size of trace is, the more time
it consumes for offline prediction, such as AirlineTicket,

VOLUME 7, 2019

L. Bo et al.: Performance Evaluation of Data Race Detection Based on TSA

IEEE Access

TABLE 5. Runtime overhead Of RVPredict in four scenes for three large programs.

Instrumentation Time(s) Reduction
Programs
S1 S2 S3 S4 S2 S3 S4
Avrora 19.15 13.56 15.98 16.97 29.19% 16.55% 11.37%
Sunflow 19.99 - 16.04 13.76 - 19.78% 31.15%
Lusearch | 33.07 14.36 18.77 12.65 56.58% 43.24% 61.75%
Average 26.52% 34.76%
Online Logging Time(s) Reduction
Programs
S1 S2 S3 S4 S2 S3 S4
Avrora 9730.12 2445.13 3835.92 3137.55 | 74.87% 60.58% 67.75%
Sunflow 2650.17 - 1498.12 1174.24 | - 43.47% 55.69%
Lusearch | 2004.23 679.34 906.06 635.48 66.10% 54.79% 68.29%
Average 52.95% 63.91%
Offline Prediction Time(s) Reduction
Programs
S1 S2 S3 S4 S2 S3 S4
Avrora 2450.79 743.86 1163.74 906.47 69.65% 52.52% 63.01%
Sunflow 831.58 - 451.16 503.42 - 45.75% 39.46%
Lusearch | 514.06 172.65 155.29 116.97 66.41% 69.79% 77.25%
Average 56.02% 59.91%
TABLE 6. Total time for data race detection with three granularities.
Data Race Detection
Thread Sharing Analysis (TSA Total
Programs rea aring Analysis () (RVPredict) ota
DEA(s) dynamic-TSA(s) DTSAgag(s) | S2(s) S3(s) S4(s) S2(s) S3(s) S4(s)
AirlineTicket 0.085 0.064 0.061 2.627 2.487 2.101 2.712 2.551 2.162
Account 0.565 0.56 0.563 2.765 2.761 2.721 3.33 3.321 3.284
Shop 0.079 0.073 0.084 4.527 4.253 4.182 4.606 4.326 4.266
BoundedBuffer 0.204 0.179 0.175 6.512 5.955 5.563 6.716 6.134 5.738
StringBuffer 0.089 0.085 0.085 3.658 3.642 3.102 3.747 3.727 3.187
RayTracer 0.184 0.173 0.158 8.264 7.985 7.153 8.448 8.158 7.311
Cache4j 1.693 1.513 1.551 15.993 14.654 14.781 17.686 16.167 16.332
ArrayList 0.177 0.157 0.156 10.669 10.619 10.033 10.846 10.776 10.189
SpecJBB-2005 526.23 150.15 118.02 16.42 16.60 14.82 542.65 166.75 132.84
Avrora 1876.41 86.14 306.28 3202.55 5015.64 4060.99 | 507896 5101.78 4367.27
Sunflow 3600 93.24 125.15 - 196531 169142 | - 2058.55 1816.57
Lusearch 185.11 98.17 289.07 866.35 1080.12 765.09 1051.46 1178.29 1054.16

Account, Shop, BoundedBuffer, Avrora. However, for Luse-
arch, although the size of trace at object granularity is smaller
than that at field granularity, the offline prediction time at
object granularity is much more. The reason is that, the win-
dowing strategy RVPredict employed divides the trace into a
sequence of fixed-size windows and performs race analysis
on each window separately. A shorter trace may increase the
number of races in a window, which can consume more time
for prediction.

To present an unbiased estimation, we calculate the total
time of data race detection, which consists of the time of
thread sharing analysis and the runtime overhead of RVPre-
dict. The results of 12 programs are summarized in Table 6.
Columns 2-4 report the time of DEA, dynamic-TSA
and DTSAFag, respectively. Columns 5-7 report the time

VOLUME 7, 2019

consumed for RVPredict based on TSA with three gran-
ularities (object, field and ‘“‘field + array element”).
Columns 8-10 represent the total time of data race detection.
The data in Table 6 show that, for small programs, both the
time of TSA and the time of RVPredict reduce along with the
increase of analysis granularity. For middle-scale and large
programs, although RVPredict which based on the TSA with
field granularity has more runtime overhead than that with
object granularity, dynamic-TSA is much efficient than DEA.
Obviously, DEA runs out of memory for Sunflow, making it
unavailable for RVPredict. Therefore, in terms of total time,
the performance of RVPredict based on the TSA with field
granularity is comparable to that with object granularity.
Similarly, although TSA with “field + array element”
granularity consumes more time to distinguish different array

73825

IEEE Access

L. Bo et al.: Performance Evaluation of Data Race Detection Based on TSA

35
mS] mS2 mS3 nS4
8 30
Q
5
s 25
<
=
S 20
o}
z 15
=
“ 10
| I | I
o LI I | I I
S SO S K % &
&SI E TIPS S S
D
& v & @ P L RS
y&‘ N &
R
Programs

FIGURE 5. Number of data races detected by RVPredict in four scenes.

elements compared to that with field granularity, RVPredict
based on TSA with ‘““field 4+ array element” granularity
spends less time on online logging. The data in the Total
columns also shows that RVPredict based on the TSA with
“field 4 array element” granularity outperforms than that
with field and object granularities.

3) EFFECTIVENESS

We evaluate the effectiveness of thread sharing analysis with
different granularities in terms of the number of data races
detected by RVPredict. The time threshold of offline predic-
tion is set to one hour.

Fig. 5 shows, for each program, the number of data races
detected by RVPredict in four scenes. The blue, red, green
and purple bars represent RVPredict without TSA and that
with DEA, dynamic-TSA as well as DTSAFaE, respectively.
For example, RVPredict detects no data race in StringBuffer
in four scenes. For Sunflow, RVPredict with DEA detects no
data race because DEA analyzes it out of time and memory.
For BoundedBuffer, RVPredict with DTSAgaAg and dynamic-
TSA detects two more data races than that with DEA and they
are two real data races through our manual check. In addition,
for Avrora, RVPredict with DTS Agag detects more data races
than that with other thread sharing analysis approaches. Also,
they are real data races.

However, for ArrayList and Sunflow, RVPredict without
TSA detects one more data races than that with other three
TSA approaches. This is probably for two reasons: the first is
that dynamic analysis is unsound, which causes some SAPs
that may involve data races not logged in the trace, and
the second is there are more shared data accesses in a window
of RVPredict.

Overall, the numbers of data races are similar among four
scenes. This mainly attributes to the detection mechanism of
RVPredict, which formulates race detection as a constraint
solving problem. Concretely, it encodes the control flow
and a minimal set of feasibility constraints as a group of
first-order logic formulas, and then solves them by an SMT
solver. Therefore, although there are many potential data
races at the beginning, only the real data races are finally
reported. Furthermore, the results also imply that fine-grained

73826

thread sharing analysis can scarcely reduce the number of
data races, which enhances the availability of DTSApag in
practice.

D. THREATS TO VALIDITY
We find several threats to the validity of our experiments.
They can be summarized into two aspects.

1) INTERNAL VALIDITY

There are two threats to internal validity. One is the perfor-
mance evaluation criterion, the other is the fixed-size win-
dowing strategy.

For the first one, the performance generally includes not
only time cost but also space cost, which is not consid-
ered in our experiments. All experiments are conducted on
a machine with 8G memory. The situation of running out
of memory only occurs when we analyze Sunflow with
DEA. In fact, the space cost can be shown by the size of
trace which contains synchronization operations and shared
memory accesses, because statements should be instrumented
before them for further recording. Therefore, the logging
overhead of both time and memory space will increase along
with the length of trace.

For the second threat to internal validity, the effectiveness
of data race detection with four different granularities mainly
depends on the size of windows employed by RVPredict.
RVPredict is sound and maximal. Soundness means every
detected race is real, which eliminates false positives. Max-
imality means RVPredict does not miss any race that can
be detected by any sound dynamic race detector based on
the same trace. However, the number of detected data races
may be affected by the number of shared data accesses in
each window. For example, if two shared data accesses that
involves a data race are divided into two windows, it will
produce a false negative. As we can see from Table 4, the sizes
of traces collected by RVPredic are different for a program
after applying different TSA approaches. Therefore, a strat-
egy of self-adapting size of windows may be helpful to further
improve the effectiveness of data race detection.

2) EXTERNAL VALIDITY
Threats to external validity arise when selecting the TSA
approaches and the experimental subjects.

In our experiments, we selected two dynamic thread shar-
ing analysis approaches (i.e., DEA, and dynamic-TSA) and
designed a dynamic DTSAfaEg approach to evaluate the per-
formance of RVPredic. A natural character of dynamic algo-
rithm is unsound, which may cause the recorded traces are
different every time. To alleviate this problem, we run each
program 10 times and take the average value.

Additionally, although our experimental subjects involve
small, middle and large scale programs and they are widely
evaluated in data race detection, we cannot ensure that our
conclusion still holds for all programs. Further generalizabil-
ity requires more programs that are with different characters
and come from various domains.

VOLUME 7, 2019

L. Bo et al.: Performance Evaluation of Data Race Detection Based on TSA

IEEE Access

IV. RELATED WORK

To date, many researchers have proposed a large number of
data race detection techniques. How to improve the perfor-
mance of data race detection has gradually become a hot
topic in concurrent software testing. In this section, we first
summarized the related work on TSA and its application on
data race detection. Then, we reviewed the empirical studies
which are relevant to our work.

Escape analysis is a classic TSA approach which has been
widely applied for many years. It focuses on the object gran-
ularity. Generally, escape analysis can be divided into static
escape analysis and dynamic escape analysis. Originally,
Choi et al. [9], Whaley and Rinard [10] used static escape
analysis for stack allocations and synchronization elimina-
tion. Later on, with static escape analysis, Naik ez al. [5]-[19]
implemented Chord and Jade to detect data race and dead-
lock, respectively. Besides, Halpert et al. [20] proposed to
applied static escape analysis to lock allocation and achieved
good performance. However, static escape analysis should
construct inter-procedural information flow graph (IFG) for
the whole program, and propagate shared nodes in the graph,
which makes it difficult to scale to large programs. The exper-
imental subjects in our empirical study involves programs
with different scales, including small programs, middle-
scaled programs and large systems. Therefore, for scalability,
we use dynamic TSA approaches with three granularities to
obtain SAPs.

Dynamic escape analysis checks when thread-private data
become shared. As dynamic analysis has become the focus of
multithreaded program analysis and concurrency bug detec-
tion, it is widely applied in data race detection [12]. For exam-
ple, Nishiyama [21], Christiaens and Bosschere [22] used
dynamic escape analysis (DEA) to improve the performance
of race detection. Compared with first-shared-access-based
DEA [4], [21]-[23], reachability-based DEA [22], [24], [25]
has more advantage to be a sound filter for data race detection.
Recent work introduced a lightweight data race detection
Caper for production runs [25]. Caper was the first to utilize
reachability-based DEA to prune the results of static data race
detection, obtaining all true data races soundly from observed
executions. In our empirical study, as “object” is selected
to be an evaluation granularity, reachability-based DEA is
implemented to obtain the SAPs.

Considering some limitations of escape analysis (e.g., false
positives, false negatives and hard to scale to large programs),
Huang [11] proposed two scalable TSA approaches, i.e.,
static-TSA and dynamic-TSA. Static-TSA was an object-
sensitive, field-sensitive analysis approach. It leveraged call
graph and points-to analysis to traverse the reachable field
and array access statements to identify SAPs. It is simple,
but less memory-demanding and more precise than static
escape analysis. Dynamic-TSA was a location-based, field-
sensitive, object-insensitive analysis approach. The exper-
imental results showed that it could achieve a significant
performance improvement over a precise dynamic escape
analysis while maintaining close precision. In our empirical

VOLUME 7, 2019

study, dynamic-TSA is implemented to obtain the SAPs since
“field” is selected to be an evaluation granularity. Further-
more, our DTSApAg is designed based on dynamic-TSA.
First, a set of shared array objects with all of their access
locations are obtained by dynamic-TSA. Then, all the shared
array elements and their SAPs are identified by utilizing the
runtime information, i.e., program locations of the accessed
array elements. Therefore, our DTSAFAE is more precise than
dynamic-TSA.

Dynamic analysis gets more popularity in many
applications, such as data race detection [12], [26]-[28],
atomicity violation detection [29]-[31], record and replay
systems [32]-[35]. Researchers have surveyed data race
detection techniques from various views [36]-[38]. Gener-
ally, data race detection techniques are based on two mod-
els: locksets and happens-before relation. Locksets-based
techniques [4], [29], [39] check that whether accesses to
the same shared data are guarded by the same lock via
dynamic analysis. Happens-before relation based techniques
define the partial order on all events of all threads in a
system. If two or more threads access a shared variable
and the accesses are concurrent, a data race bug on this
variable may occur. However, locksets-based techniques may
report many false positives and happens-before relation based
techniques may miss some real races. Our empirical study
adopts RVPredict to perform data race detection. RVPredict
is a dynamic and maximal sound predictive race detector.
It combines locksets and weaker happens-before relations
to predict data races. In addition, we adapt the original
RVPredict for our evaluation. The programs under test are
first analyzed by TSA approaches with three different granu-
larities, then the obtained results are inputted to RVPredict for
predicting.

From the point of empirical studies, there are only a
few empirical researches on concurrent software testing.
Lu et al. [40] provide the first comprehensive real word con-
currency bug characteristic study. They examine concurrency
bug patterns, manifestation and fix strategies of 105 randomly
selected real world concurrency bugs from four representative
server and client open source applications. Hong et al. [41]
explore the effectiveness of concurrency coverage metrics via
a comprehensive empirical investigation. The results high-
light the need for additional work on concurrency coverage
metrics. Melo et al. [42]-[46] conduct a series of empirical
research on concurrent software testing. For example, they
propose a new classification for concurrent testing tools and
construct a characterization schema for concurrent software
testing techniques, which provide a useful selection guide for
testing practitioners [42]. Recently, they conduct a systematic
mapping study to identify and analyze empirical research
on concurrent software testing techniques [46]. The results
show that there is little empirical evidence available about
some specific concurrent testing techniques. Our empirical
study is different from the above ones, because it is focus
on a specific concurrency bug detection technique, i.e., data
race detection. The purpose of our study is to evaluate the

73827

IEEE Access

L. Bo et al.: Performance Evaluation of Data Race Detection Based on TSA

performance of data race detection based on thread shared
analysis with different granularities.

V. CONCLUSION

This paper presents an approach to evaluate the performance
of data race detection based on TSA with different gran-
ularities. In our experiments, we evaluate the performance
of a dynamic data race detector RVPredict based on TSA
approaches with object, field and ‘“‘field 4 array element”
granularities, respectively. The results show that RVPredict
based on the TSA with “field 4 array element” granularity
obtains the best performance without effectiveness reduction.

ACKNOWLEDGMENT

The authors are grateful to editors and anonymous reviewers
for their valuable comments and useful suggestions. Special
thanks to all the individuals who participated and contributed
to improve the quality and readability of this paper.

REFERENCES

[1]
[2]
[3]

[4]

[5]
[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558-565, Jul. 1978.

Y. Cai, J. Zhang, L. Cao, and J. Liu, “A deployable sampling strategy for
data race detection,” in Proc. FSE, Seattle, WA, USA, 2016, pp. 810-821.
A. Dinning and E. Schonberg, “Detecting access anomalies in programs
with critical sections,” in Proc. PADD, Santa Cruz, CA, USA, 1991,
pp. 85-96.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded programs,” in
Proc. SOSP, Saint-Malo, France, 1997, pp. 27-37.

M. Naik, A. Aiken, and J. Whaley, “Effective static race detection for
Java,” in Proc. PLDI, Ottawa, ON, Canada, 2006, pp. 308-319.

C. Radoi and D. Dig, “Effective techniques for static race detection in Java
parallel loops,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 4, pp. 1-30,
2015.

J.Huang and A. K. Rajagopalan, “Precise and maximal race detection from
incomplete traces,” ACM SIGPLAN Notices, vol. 51, no. 10, pp. 462-476,
2016.

Y. Cai and L. Cao, “Effective and precise dynamic detection of hid-
den races for Java programs,” in Proc. FSE, Bergamo, Italy, 2015,
pp. 450-461.

J. D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff, “Escape
analysis for Java,” ACM SIGPLAN Notices, vol. 34, no. 10, pp. 1-19, 2000.
J. Whaley and M. Rinard, “Compositional pointer and escape analysis for
Java programs,” ACM SIGPLAN Notices, vol. 34, no. 10, pp. 187-206,
1999.

J. Huang, ““Scalable thread sharing analysis,” in Proc. ICSE, Austin, TX,
USA, May 2016, pp. 1097-1108.

J. Huang, P. O. N. Meredith, and G. Rosu, “Maximal sound predictive race
detection with control flow abstraction,” in Proc. PLDI, Edinburgh, U.K.,
2014, pp. 337-348.

E. Farchi, Y. Nir, and S. Ur, “Concurrent bug patterns and how to test
them,” in Proc. IPDPS, Nice, France, Apr. 2003, pp. 22-26.

L. A. Smith, J. M. Bull, and J. Obdrizalek, “A parallel Java grande
benchmark suite,” in Proc. SC, Denver, CO, USA, 2001, p. 8.

H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact,”
Empirical Softw. Eng., vol. 10, no. 4, pp. 405-435, 2005.

S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovi¢,
T. VanDrunen, D. V. Dincklage, and B. Wiedermann, “The DaCapo bench-
marks: Java benchmarking development and analysis,” ACM SIGPLAN
Notices, vol. 41, no. 10, pp. 169-190, 2006.

J. Huang and C. Zhang, “Persuasive prediction of concurrency access
anomalies,” in Proc. ISSTA, Toronto, ON, Canada, 2011, pp. 144-154.

Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan, “Sound
predictive race detection in polynomial time,” ACM SIGPLAN Notices,
vol. 47, no. 1, pp. 387-400, Jan. 2012.

73828

(19]

(20]

(21]

(22]
(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

131

—

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

[40]

[41]

(42]

(43]

[44]

M. Naik, C. S. Park, K. Sen, and D. Gay, “Effective static dead-
lock detection,” in Proc. ICSE, Vancouver, BC, Canada, May 2009,
pp. 386-396.

R. L. Halpert, C. J. F. Pickett, and C. Verbrugge, “Component-based lock
allocation,” in Proc. PACT, Brasov, Romania, Sep. 2007, pp. 353-364.
H. Nishiyama, “Detecting data races using dynamic escape analy-
sis based on read barrier,” in Proc. VM, San Jose, CA, USA, 2004,
pp. 127-138.

M. Christiaens and K. D. Bosschere, “TRaDe: Data race detection for
Java,” in Proc. ICCS, Berlin, Germany, 2001, pp. 761-770.

R. O’callahan and J.-D. Choi, ““Hybrid dynamic data race detection,” ACM
SIGPLAN Notices, vol. 38, no. 10, pp. 167-178, 2003.

D. Li, W. Srisa-an, and M. B. Dwyer, “SOS: Saving time in dynamic
race detection with stationary analysis,” ACM SIGPLAN Notices, vol. 46,
no. 10, pp. 35-50, Oct. 2011.

S. Biswas, M. Cao, M. Zhang, M. D. Bond, and B. P. Wood, “Lightweight
data race detection for production runs,” in Proc. CC, Austin, TX, USA,
2017, pp. 11-21.

D. Chen, Y. Jiang, C. Xu, X. Ma, and J. Lu, “Testing multithreaded
programs via thread speed control,” in Proc. ESEC/FSE, Lake Buena Vista,
FL, USA, 2018, pp. 15-25.

K. Sen, “Race directed random testing of concurrent programs,” in Proc.
PLDI, Tucson, AZ, USA, 2008, pp. 11-21.

D. Kini, U. Mathur, and M. Viswanathan, “Data race detection on com-
pressed traces,” in Proc. ESEC/FSE, Lake Buena Vista, FL, USA, 2018,
pp. 26-37.

C. Flanagan and S. N. Freund, “Atomizer: A dynamic atomicity checker
for multithreaded programs,” Sci. Comput. Program., vol. 71, no. 2,
pp- 89-109, Apr. 2008.

Q. Shi,J. Huang, Z. Chen, and B. Xu, *“Verifying synchronization for atom-
icity violation fixing,” IEEE Trans. Softw. Eng., vol. 42, no. 3, pp. 280-296,
Mar. 2016.

S. Biswas, J. Huang, A. Sengupta, and M. D. Bond, “DoubleChecker: Effi-
cient sound and precise atomicity checking,” in Proc. PLDI, Edinburgh,
U.K., 2014, pp. 28-39.

J. Huang, P. Liu, and C. Zhang, “LEAP: Lightweight deterministic multi-
processor replay of concurrent java programs,” in Proc. FSE, Santa Fe,
NM, USA, 2010, pp. 207-216.

J. Huang, C. Zhang, and J. Dolby, “CLAP: Recording local executions to
reproduce concurrency failures,” in Proc. PLDI, Seattle, WA, USA, 2013,
pp. 141-152.

Y. Jiang, T. Gu, C. Xu, X. Ma, and J. Lu, “CARE: Cache guided deter-
ministic replay for concurrent java programs,” in Proc. ICSE, Hyderabad,
India, 2014, pp. 457-467.

J. Wang, Y. Jiang, C. Xu, Q. Li, T. Gu, J. Ma, X. Ma, and J. Lu, “AATT+:
Effectively manifesting concurrency bugs in Android apps,” Sci. Comput.
Program., vol. 163, pp. 1-18, Oct. 2018.

P. Kang, “Software analysis techniques for detecting data race,” IEICE
Trans. Inf. Syst., vol. E100-D, no. 11, pp. 2674-2682, 2017.

S. Hong and M. Kim, “A survey of race bug detection techniques for
multithreaded programmes,” Softw. Test., Verification Rel., vol. 25, no. 3,
pp. 191-217, May 2015.

J. S. Alowibdi and L. Stenneth, “An empirical study of data race detector
tools,” in Proc. CCDC, Guiyang, China, May 2013, pp. 3951-3955.

T. Elmas, S. Qadeer, and S. Tasiran, “Goldilocks: A race and transaction-
aware java runtime,” in Proc. PLDI, San Diego, CA, USA, 2007,
pp. 245-255.

S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A com-
prehensive study on real world concurrency bug characteristics,” in Proc.
ASPLOS, Seattle, WA, USA, 2008, pp. 329-339.

S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel, “Are concur-
rency coverage metrics effective for testing: A comprehensive empirical
investigation,” Softw. Test., Verification Rel., vol. 25, no. 4, pp. 334-370,
2015.

S. M. Melo, S. R. S. Souza, R. A. Silva, and P. S. L. Souza, “Concur-
rent software testing in practice: A catalog of tools,” in Proc. A-TEST,
Bergamo, Italy, 2015, pp. 31-40.

S.M. Melo, P. S. L. Souza, and S. R. S. Souza, ‘“Towards an empirical study
design for concurrent software testing,” in Proc. SE-HPCCSE, Nov. 2016,
p. 49.

S. M. Melo, S. D. R. S. de Souza, P. S. L. Souza, and J. C. Carver,
“How to test your concurrent software: An approach for the selection
of testing techniques,” in Proc. SEPS, Vancouver, BC, Canada, 2017,
pp. 42-43.

VOLUME 7, 2019

L. Bo et al.: Performance Evaluation of Data Race Detection Based on TSA

IEEE Access

[45] S. M. Melo, S. do Rocio Senger de Souza, F. S. Sarmanho, and
P. S. L. Souza, “Contributions for the structural testing of multithreaded
programs: Coverage criteria, testing tool, and experimental evaluation,”
Softw. Qual. J., vol. 26, no. 3, pp. 921-959, 2018.

[46] S. M. Melo, J. C. Carver, P. S. L. Souza, and S. R. S. Souza, “Empirical
research on concurrent software testing: A systematic mapping study,” Inf.
Softw. Technol., vol. 105, pp. 226-251, Jan. 2019.

VOLUME 7, 2019

LILI BO is currently pursuing the Ph.D. degree
with the School of Computer Science and Technol-
ogy, China University of Mining and Technology.
Her research interest includes software analysis
and testing.

SHUJUAN JIANG received the Ph.D. degree from
the Southeast University, in 2006. She is a Pro-
fessor and Ph.D. Supervisor with the School of
Computer Science and Technology, China Univer-
sity of Mining and Technology. Her research inter-
ests include compilation techniques and software
engineering.

JUNYAN QIAN received the Ph.D. degree from
Southeast University, in 2008. He is currently
a Professor and a Ph.D. Supervisor with the
Guangxi Key Laboratory of Trusted Software,
Guilin University of Electronic Technology. His
research interests include software engineering,
model checking, and program verification.

RONGCUN WANG received the Ph.D. degree
from Huazhong University of Science and Tech-
nology, in 2015. He is an Assistant Professor with
the School of Computer Science and Technology,
China University of Mining and Technology. His
research interests include software testing, soft-
ware maintenance, and machine learning.

YAFEI YAO is currently pursuing the M.Sc. degree
with the School of Computer Science and Technol-
ogy, China University of Mining and Technology.
Her research interest includes software analysis
and testing.

73829

	INTRODUCTION
	OUR APPROACH
	OVERVIEW
	TSA WITH DIFFERENT GRANULARITIES
	AN ILLUSTRATION

	EMPIRICAL STUDY
	EXPERIMENTAL SUBJECTS
	EXPERIMENTAL DESIGN
	EXPERIMENTAL RESULTS AND ANALYSIS
	SIZE OF TRACE
	EFFICIENCY
	EFFECTIVENESS

	THREATS TO VALIDITY
	INTERNAL VALIDITY
	EXTERNAL VALIDITY

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	LILI BO
	SHUJUAN JIANG
	JUNYAN QIAN
	RONGCUN WANG
	YAFEI YAO

