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ABSTRACT In this paper, a surrogate model based on a sparsely connected back propagation neural
networks (SC-BPNN) is proposed to reduce the large computational cost of conventional multi-objective
antenna optimization problems. In this model, the connection parameters and network structure can be
adaptively tuned by a hybrid real-binary particle swarm optimization (HPSO) algorithm for better network
global optimization capability. Also, a time-varying transfer function is introduced to improve the problem
of easily trapping into local optimum and to accelerate network convergence. Further, a fast multi-objective
optimization framework based on the proposed SC-BPNN is established for multi-parameter antenna
structures. Finally, a Pareto-optimal planar miniaturized multiband antenna design is presented, indicating
that the proposedmodel predicts antenna performancemore accurately and saves considerable computational
cost compared to those previously published approaches.

INDEX TERMS Antenna design, multi-objective optimization, surrogate model, BP neural network, HPSO,
transfer function.

I. INTRODUCTION AND MOTIVATION
In recent years, different evolutionary algorithms (EAs),
such as genetic algorithm (GA) [1], [2], particle swarm
optimization (PSO) [3], [4], and nondominated sort-
ing genetic algorithm (NSGA) [5], have been widely
used in multi-parameter antenna or array configuration
optimizations. Conventionally, commercial full-wave elec-
tromagnetic (EM) simulators are used to calculate the antenna
response. However, optimization of an antenna configura-
tion involves a huge amount of EM simulations, the process
of which is computationally intensive and time–consuming.
This poses a great challenge on fast antenna designs [6].
Therefore, enhancing the optimization speed while only sac-
rificing a small amount of simulation accuracy would be
significant for fast antenna designs.

Fortunately, the recently developed surrogate-based
optimization techniques [7]–[18] have proven to be
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more computationally efficient than traditional EM-driven
methods. Compared with traditional EM-driven approaches,
surrogate-based optimization techniques construct a mathe-
matical model to predict the antenna performance, thereby
greatly reducing the computational cost. Different surrogate
models are proposed for antenna designs, such as Kriging
[7]–[11], Gaussian Process (GP) [12], [13], and neural net-
works (NNs) [14]–[17]. The Kriging method used in [7]–[11]
is essentially an interpolation method and the model predic-
tion accuracy mostly depends on the initial sample, which
may cause the model to either stop prematurely or search
too locally [18]. The GP method used in [12] and [13] is
still derived from the Kriging model [19] and retains some
defects in the Kriging model. Recently, the Neural Network
(NN) techniques have also been widely used in antenna
designs [14]–[17] to obtain a surrogate model instead of
a fine model which has high computational burden. Neural
networks learn EM data through the training process and the
trained neural networks are then used as fast and accurate
surrogate models for complex antenna structure designs.

77692
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-8220-8424


J. Dong et al.: Fast Multi-Objective Optimization of Multi-Parameter Antenna Structures Based on Improved BPNN Surrogate Model

In [14], a hybrid surrogate model consisting of the radial basis
function neural networks (RBFNN) and the Kriging model
was used to solve high-dimensional antenna optimization
problems. However, in order to achieve a high prediction
accuracy, the hybrid network structure is relatively com-
plicated and requires increased training time, and tends to
over-fit the training data instead of producing generalized
results in the RBF network. In [15], a multi-layer perceptron
neural network (MLP-NN) based model was constructed to
simultaneously predict the size of the slot on the radiat-
ing patch and the size of the air-gap between the ground
plane and the substrate sheet. In [16], an MLP-NN trained
by backpropagation algorithm (MLP-BPNN) was used to
relate the antenna’s operating frequency with its dimensional
parameters and then embedded into the loop of the single-
objective particle swarm optimizer (PSO) to determine the
optimal dimensions for a particular user-defined frequency.
Also, an MLP-BPNN model was derived in [17] to design a
dual-band, circularly-polarized slotted patch antenna, which
allows obtaining antenna physical dimensions satisfying both
near- and far-field goals (i.e., S11 and AR). The above work
indeed reduced the design cycles of antenna optimization, but
made few efforts on the particular NN design (i.e., network
structure and connection parameters), which much affects the
performance of antenna optimization.

Due to strong generalization ability and simple network
structure, BPNN is suitable for modeling high-dimensional
and highly nonlinear problems like antenna designs.
However, the conventional BPNN faces some disadvantages:
1) the conventional BPNN has a fixed full-connected network
structure with a large number of redundant connections.
These redundant connections may cause the network struc-
ture to be unnecessarily complicated and not be beneficial
to accurately mapping the input-output relationship, which
results in excessive computation and is not favorable for con-
vergence. 2) the number of the hidden layer nodes is derived
from trial and error procedures or personal experience, which
may not always show the best performance during a given
training period [20]. A network with too few nodes may be
unable to efficiently map input-output relationship. However,
a network with too many nodes may become complex and
require increased training time. 3) the performance of the
conventional BPNN often depends on selection of initial
network connection parameters (i.e., connection weights and
thresholds). The commonly used random initialization net-
work connection parameters will lead to network instability
andmake network training easy to fall into local optimization,
which affects network prediction accuracy. To overcome the
above drawbacks of conventional BPNN, we propose an
innovative analysismethodology for fast prediction of the EM
response of multi-parameter antenna structures.

As for the main innovative contributions of this
paper, they include: 1) a new sparsely-connected BPNN
(SC-BPNN) is proposed and hybrid real-binary particle
swarm optimization (HPSO) [21] is used to tune the
connection parameters and link states to improve the global

optimization capability of the network; 2) a transfer function
with a time-varying factor is introduced to reduce the
possibility of model’s trapping into local minima and to
accelerate the network convergence; 3) by combining the
proposed SC-BPNN model and multi-objective evolutionary
algorithms (MOEAs), a fast multi-objective optimization
framework for multi-parameter antenna structures is
developed.

The rest of this paper is organized as follows. First,
the problem of the multi-objective antenna design is math-
ematically formulated in Section II. Then, section III
mainly describes the SC-BPNN based prediction method.
In Section IV, we present a fast multi-objective antenna opti-
mization framework based on SC-BPNN surrogate model,
and Section V reports a design example of a miniaturized
triple-band planar monopole antenna to demonstrate the
effectiveness of the fast multi-objective design method based
on SC-BPNN surrogate model. Finally, section VI concludes
this paper.

II. PROBLEM FORMULATION
The multi-objective design of multi-parameter antenna struc-
tures can be generally stated as a multi-objective optimization
problem (MOOP){

min F(x) = (f1(x), f2(x), . . . , fNobj (x))
T

s.t. x ∈ X
(1)

where x = (x1, . . . , xn) ∈ X ⊂ Rn is an n-dimensional
design vector defining a particular antenna structure; X is a
design space determined by the range of design parameters;
and fk (x), k = 1, 2, . . . ,Nobj is the kth design objective
(e.g., reflection coefficient, gain, efficiency, antenna size,
etc.), and F(x) ∈ Rm is an Nobj-dimensional goal vector.
Multi-objective antenna designs aims to find the Pareto front
(PF) [9], i.e., multiple designs indicating the trade-off among
various antenna specifications under consideration.

For an MOOP, any two designs x(1) and x(2) for which
fk (x(1)) < fk (x(2)) and fl(x(1)) < fl(x(2)) for at least one pair
k 6= l, are not commensurable, that is, none is better than
the other in the multi-objective sense [9]. Thus, we define the
Pareto dominance relation ≺ as: for the two designs x(1) and
x(2), we have x(1) ≺ x(2)(x(1) dominates x(2)) if fk (x(1)) ≤
fk (x(2)) for all k = 1, 2, . . . ,Nobj and fk (x(1)) < fk (x(2)) for at
least one k [9]. In an MOOP, we want to find a representation
of a so-called PF Xp (viz. Pareto-optimal set) of the design
space X , such that for any x ∈ Xp, there is no x

′

∈ X for
which x

′

≺ x [9], [22].

III. ANTENNA SURROGATE MODEL BASED ON SC-BPNN
In this section, we first briefly describe the conventional
BPNN for antenna design. Then, to avoid the drawbacks
of the conventional BPNN, a novel sparsely-connected
BPNN (SC-BPNN) model is proposed, including the tun-
ing of connection parameters and network structure and the
design of the transfer function with a time-varying transfer
factor.
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FIGURE 1. The structure of a conventional three-layer BPNN.

A. CONVENTIONAL BPNN MODEL
BPNN, proposed by Rumelhart et al. [23], is a multi-layer
feedforward neural network model with strong
generalization capability. A three-layer feedforward NN can
approximate any nonlinear continuous function to an arbi-
trary accuracy [24]. The structure of a three-layer BPNN is
shown in Fig. 1, where the input-output relationship can be
formulated as

yk = TF2

 nh∑
j=1

(wjkTF1(
n∑
i=1

vijxi − b1j )− b
2
k )

 ,

k = 1, 2, . . . , no (2)

where xi is the input of the BPNNand represents the ith design
variable of a particular antenna structure; yk is the output of
the BPNN and represents the kth component of a particular
performance index (e.g., the S11 value at the kth frequency
point); n is the number of inputs and also the number of design
variables; nh is the number of the hidden layer nodes; no is
the number of outputs; vij denotes the link weight between
the ith input and the jth hidden node; wjk denotes the link
weight between the jth hidden node and the kth output; b1j
and b2k denote the biases for the hidden and output nodes,
respectively; TF1 and TF2 are the transfer functions of the
hidden layer and the output layer, respectively. Generally,
TF1 is the sigmoid function and TF2 is the linear function.
For the traditional EAs-based antenna optimization meth-

ods, it is time-consuming to find an optimal antenna solution
satisfying specific performance requirements as they usu-
ally need hundreds or even thousands of EM simulations.
By using BPNN as a surrogate model during the optimiza-
tion process, it can greatly reduce the time on computing
antenna response and hence improve the efficiency of antenna
optimization. The role of a BPNN surrogate model is to
form a mapping between the design parameters of a partic-
ular antenna structure and its antenna performance indexes
(e.g., reflection coefficients, gain, efficiency, etc.), which is
equivalent to form a black box between the antenna design
parameters and performance indexes as shown in Fig. 2.

B. SPARSELY-CONNECTED BPNN MODEL
When constructing the BPNN antenna surrogate model,
the BP algorithm based on gradient descent often relies on the

FIGURE 2. Black box for evaluation of antenna performance.

FIGURE 3. The structure of the proposed SC-BPNN.

selection of network parameters such as initial weights (wjk
and vij) and thresholds (b1j and b

2
k ) [23], [25]. The commonly

used random initialization of network connection parameters
will lead to network instability and make network training
easy to fall into local optimum. Moreover, the conventional
BPNN usually has a fixed full-connected network structure
that does not properly map the input-output relationship for
the particular application. The redundant connection may
result in excessive computation and not be favorable for con-
vergence. In addition, the empirically derived hidden layer
nodes may not always provide the best network convergence
performance during a given training period [20].

Therefore, a new sparsely-connected BPNN (SC-BPNN)
model is given in Fig. 3. As shown in Fig. 3, sij, tjk , δ1j , δ

2
k

are introduced to determine the states of links between nodes,
with a value of 0 or 1. If the structure parameter value is 1,
it means that the link is active and is indicated by a solid line.
Otherwise, the dotted line in Fig. 3 indicates that the structure
parameter is 0 and the link is in-active. In addition, nodes with
an input value of−1 are added to the input layer and the hid-
den layer to adjust thresholds of the hidden layer and output
layer, respectively. Different from the conventional BPNN
model, both connection parameters and link states can be
optimized to simplify the input-output mapping relationship
of SC-BPNN, thus facilitating the improvement of network
prediction accuracy.

The input-output relationship of the SC-BPNN can be
formulated as

yk = TF2

 nh∑
j=1

(wjk tjk log sig(
n∑
i=1

vijsijxi−b1j δ
1
j )−b

2
kδ

2
k )

 ,

k = 1, 2, . . . , no (3)
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FIGURE 4. The structure of a mixed particle z.

where logsig (·) is the transfer function f 1 and defined as

log sig (xi) =
1

1+ e−xi
, xi ∈ <. (4)

Next, we tune the connection parameters and link states by
using an HPSO to compact network structure and optimize
network performance. Also, we modify the transfer function
TF1 by introducing a time-varying factor to improve the
global optimization ability and speed up the convergence.

1) TUNING OF CONNECTION PARAMETERS AND NETWORK
STRUCTURE by HPSO
The connection parameters and network structure optimiza-
tion problem in the SC-BPNN model can be described as:

find zop = argmax
z=(zr ,zb)

g(z),

s.t. zr ∈ (0, 1)d , zb ∈ [0, 1]d (5)

where z = (zr , zb) is a mixed particle as shown in Fig. 4;
the real number part zr ∈ (0, 1)d is a vector of floating
numbers including all the connection parameters; the binary
number part zb ∈ [0, 1]d represents all the link states, and
each dimension of zb has a value of 0 or 1 (0 means the link
state is in-active and 1 means the link state is active); the total
dimension d of zr and zb is determined by

d = n× nh+ nh× no+ nh+ no (6)

Note that, the total dimension of the mixed particle is
expanded dynamically with the increasing number of hidden
layer nodes nh. zop is the optimal solution to be determined
and ultimately used to construct the antenna surrogate model;
g(z) is the scalar fitness function defined by

g =
1

1+ err
(7)

where err is the mean absolute error (MAE) defined as

err =
q∑
t=1

∑no
k=1 |Yk (t)− yk (t)|

no× q
(8)

where q is the number of input samples; Yk (t) is the response
output of each group of input samples, and yk (t) is the
predicted response output of SC-BPNN for each set of input
samples. It can be seen from (7) and (8) that a larger fitness
value implies a smaller error value.

In order to determine the appropriate network, an HPSO
[21] is adopted for optimizing the connection parameters and
link states. The main procedures are summarized as follows:
Step 1. Determine network training parametersč"
Step 1.1. Determine the range of the number of hidden

layer nodes, i.e., nhmin and nhmax;
Step 1.2. Set the termination condition, i.e., the prede-

termined accuracy ε and the maximum number of iterations;
Step 2. Set nh = nhmin, encode and initialize the mixed

particle swarm z = (zr , zb);
Step 3. Calculate the initial scalar fitness g(z);
Step 4. Update the mixed particle swarm according to the

update method of HPSO;
Step 5.Evaluate themixed particle and update gbest, pbest.
Step 6. Turn to step 5 when the termination condition is not

satisfied, otherwise continue;
Step 7. Update the number of hidden layer nodes (i.e.,

nh ← nh + 1) to generate a new mixed particle swarm and
go to step3.
Step 8. Compare the gbest corresponding to each value of

nh, select the maximum gbest and output the optimal solution
zop.

2) MODIFIED TRANSFER FUNCTION with a TIME-VARYING
FACTOR
After the network structure and connection parameters of
BPNN are determined, the network error is mainly deter-
mined by the transfer function. Different transfer functions
present diverse behaviors and have different effects on the
performance of the network [26]. The logsig (·) given by (4) is
used in our proposed SC-BPNN model, which is responsible
for limiting the output amplitude of the neurons and restrict-
ing the input data to a limited range of values. We summarize
some useful principles that should be taken into account when
designing the transfer function of BPNN as follows:

i) The transfer function should be continuous, monotonous,
and differentiable, as the adjustment of the weight is pro-
portional to the gradient of the error in the reverse learning
algorithm of BPNN.

ii) The input of the transfer function is the dot product of
the weight vector and the input vector, so its domain should
be (−∞, +∞).
iii) The role of the transfer function is to limit the output

amplitude of the neurons, so the return values of a transfer
function should be restricted within the segment [0, 1].

Fig. 5 presents some transfer function curves with different
coefficients in order to investigate their effects on improving
BPNN performance. It is observed that all transfer curves are
monotonically increasing functions. Also, the larger the coef-
ficient is, the steeper the transfer curve becomes. As the input
value x rises, the curve with a larger coefficient approaches to
its saturation much faster than that with a smaller coefficient
does; that is, a transfer function with a larger coefficient
experiences a steeper change in output value s(x), and vice
versa. Therefore, in the early stage of the training, setting a
relatively smaller coefficient means that the transfer function
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FIGURE 5. Transfer function curves with different coefficients.

curve is more flat and helps to improve the search accuracy of
the network. As the training process goes on, the coefficient
is grown to be larger for a steeper TF curve. This facilitates
the model jumping out of the local minimum and speeding
up convergence. So, a transfer function with a time-varying
transfer factor is chosen. The modified transfer function can
be expressed as

TF (xi (k)) =
1

1+ e−α(k)xi(k)
(9)

α (k) = αmax −
αmax − αmin

k
(10)

where α (k) is the transfer factor at the kth iteration, αmax
and αmin are the maximum and minimum transfer factors,
respectively.

IV. FAST MULTI-OBJECTIVE ANTENNA OPTIMIZATION
FRAMEWORK BASED ON SC-BPNN SURROGATE MODEL
The traditional antenna design methods based on full-wave
EM simulations are usually time-consuming due to
repeated parameter sweeping processes, which limits their
applications in complex multi-parameter antenna structure
design problems. In this section, a fast multi-objective opti-
mization framework combining multi-objective evolutionary
algorithms (MOEAs) and the proposed SC-BPNN antenna
surrogate model is developed for multi-parameter antenna
structure designs. In this framework, each individual con-
sists of n structural parameters to be optimized in the
antenna design, which define a specific antenna structure.
The SC-BPNN antenna surrogate model is used to replace
the computationally expensive full-wave EM simulation for
evaluating the individual fitness value. The fitness function
is related to antenna performance indexes, such as reflection
coefficients, gain, etc.

When constructing the SC-BPNN antenna surrogate
model, Latin Hypercube Sampling (LHS) [27], [28] is first
adopted to obtain the sample set S = [s1, s2, · · · , sq]T , si ∈
Rn in the antenna design space, and the EM simulator is
used to obtain the high fidelity response set Y of these
samples. Compared to randomized sampling, LHS can make

FIGURE 6. Flowchart of the fast multi-objective antenna optimization
framework combining the SC-BPNN surrogate model and MOEAs.

the sample points fill the entire parameter space relatively
evenly by layering and non-overlapping random sampling
of parameter intervals. Next, an HPSO algorithm is used to
tune the connection parameters and link states of SC-BPNN
for obtaining the optimal solution zop. Then, a time-varying
transfer function is set to reduce the possibilities of the model
falling into local minima and to accelerate convergence in
BPNN. Finally, the sample set S and response set Y are
utilized to construct an antenna surrogate model Rs(x).
Therefore, the fast multi-objective antenna design frame-

work combining the SC-BPNN surrogate model and MOEAs
can be summarized as follows:

1. Predefine the antenna geometry vector x and parameter
space X ;

2. Obtain the sample set S by adopting LHS to sample
parameter space and calculate the response set Y through EM
simulations;

3. Determine network structure and connection parameters
using HPSO;

4. Set a transfer function with a time-varying transfer
factor;

5. Construct an SC-BPNN antenna surrogate model Rs(x);
6. Optimize the population using MOEAs and Rs(x);
7. Stop when the termination condition is satisfied; other-

wise, turn to step 6.
The flowchart of the fast multi-objective antenna

optimization framework combining the SC-BPNN surrogate
model and MOEAs is shown in Fig. 6.

V. EXPERIMENTS AND DISCUSSIONS
In this section, the predicted results of the reflection coeffi-
cients of a planarmonopole antenna obtained by our proposed
SC-BPNNmodel are given and comparedwith those obtained
by other surrogate models. Then, a miniaturized planar
triple-band antenna design is presented to illustrate the fast
multi-objective antenna optimization framework.

A. SC-BPNN ANTENN SURROGATE MODEL
The initial structure of the planar monopole antenna is shown
in Fig. 7. This antenna is formed by a fork-shaped radiator
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FIGURE 7. Geometry of the planar multiband antenna.

TABLE 1. Initial ranges of design parameters (units: mm).

and a rectangle ground plane, which can produce different
resonant frequency bands to satisfy multi-band applications.
The antenna is printed on a Rogers RO4003(tm) substrate of
thickness 0.5mm, permittivity 3.55, and loss tangent 0.0027.
Design variables are x = [ l l1 l2 l3 l4 l5 ww1 w2 g ]T . The
initial ranges of design variables are listed in Table 1.

The LHS algorithm is used to generate a uniformly dis-
tributed sample set Swithin a given design space. It should be
mentioned that the construction of highly accurate surrogate
models usually needs a large number of samples, implying
very high computational cost because of the involvement of
extensive EM simulations. In our surrogate model, the pre-
dicted values of the reflection coefficients are only to properly
reflect the trends of the S11 curve instead of providing exactly
accurate predictions on the reflection coefficients. Therefore,
after considering the trade-off between construction cost and
prediction accuracy, the number of sample points is chosen
to be 200, and the first 190 sample points are used for
training, and the last 10 sample points are used for testing.
All sample points are transmitted by the HFSS-MATLAB-
API to HFSS through a function call to obtain the reflection
coefficient response set Y . Meanwhile, the early stopping
method integrated in the MATLAB Neural Network Toolbox
is used to mitigate the effects of overfitting. The number
of input nodes n of the BPNN model is consistent with the
number of antenna design variables to be optimized (n = 10
in this example), and the number of output nodes no is the
same as the number of frequency points at which S11 values
are predicted (no = 15 in this example), and the number of
hidden nodes nh varies from 10 to 20. By using the sample set

TABLE 2. Comparison of fitness values for predicting the S11 values.

TABLE 3. Comparison of errors and training times corresponding to
different transfer factor ranges.

S and the response set Y , we construct the SC-BPNN antenna
surrogate model.

According to the parameter setting experience in [20] and
[21], the HPSO parameters are set as follows: the number of
particles is set as 50; the maximum generation is set as 2000;
the learning factors c1 = c2 = 1.49; the real number part
of inertia weight ω decreases linearly from 0.9 to 0.3 and
the binary number part of ω is a constant 1.0; the maximum
values of the real part and binary part of velocities are set to
0.1 and 6.0, respectively. In order to compare the performance
of the proposed SC-BPNNwith the conventional BPNN [16],
[17], and the BPNN only adjusting its connection parameters
by PSO (PSO-BPNN) [29], the experiments are performed
for 30 times, and the results including best fitness values and
the number of links are listed in Table 2. It is observed from
Table 2 that the SC-BPNN provides better results in terms
of fitness values and the number of links. The optimal result
of SC-BPNN is obtained when the number of hidden layer
nodes is 17 and the number of links is 238. Compared to the
conventional BPNN and PSO-BPNN, the number of links is
almost half reduced.

Next, the time-variant transfer function of the proposed
BPNN is designed with nh = 17 and the number of links
238. By setting different values of αmax and αmin, the exper-
iments are performed for 30 times, and the results including
the minimum error values, the mean error values, and the
average number of trainings are tabulated in Table 3 (the
error refers to the MSE). It is observed from Table 3 that
both the minimum errors and the mean errors of all transfer
functions with the time-variant transfer factor (i.e., lower five
rows) are smaller than those of the original fixed transfer
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FIGURE 8. Training error curves of BPNN, PSO-BPNN and SC-BPNN.

function (αmax = αmin = 1). Also, the larger the varying
range of transfer factor, the smaller theminimum error and the
mean error. As the varying range of transfer factor increases,
the mean number of trainings decreases firstly and then
increases. The above results fully verify the design principle
in Section III-B, that is, a relatively smaller transfer factor
helps to improve the search accuracy of the network but leads
to an increase in the number of trainings, and a larger transfer
factor helps to jump out of the local minimum and speed up
convergence. Considering both mean errors and number of
trainings, the transfer factors with αmax = 1.2 and αmin = 0.8
are chosen. Thus, the proposed time-variant transfer function
can reduce training errors and accelerate convergence.

After determining the network structure, connection
parameters, and the transfer factors, the antenna surrogate
model based on SC-BPNN is constructed. Fig. 8 shows the
training error curves of conventional BPNN, PSO-BPNN, and
our proposed SC-BPNN. It can be seen from Fig. 8 that the
training error and the number of the required iterations are
much smaller than those of the conventional BPNN [16], [17],
and PSO-BPNN [29], indicating that our model can achieve a
much lower training error at a faster convergence speed. This
owes to the optimized connection parameters and simplified
network structure and also the time-varying transfer function
in the proposed SC-BPNN.

To further assess and summarize the differences among
these models, Fig. 9 reports the scatter plots of the pre-
dicted results by Kriging [7], conventional BPNN [16], [17],
PSO-BPNN [29], and our proposed SC-BPNN relative to
the actual results obtained by HFSS. As it can be observed,
the points in Fig. 9(a) are more concentrated on the diagonal
compared to Fig. 9(b), Fig. 9(c), and Fig. 9(d), indicating
SC-BPNN is significantly better than Kriging, conventional
BPNN and PSO-BPNN in terms of prediction accuracy with
the same number of sample points and hidden layer nodes.
Note that, the Kriging model, as a comparison group, is
trained before use as the BPNN models do. If we want
to obtain a high-precision global model by Kriging, more
initial sample points need to be added or the sample points
should be dynamically updated during the optimization pro-
cess [10]. Similarly, the conventional BPNN and PSO-BPNN
need more implementation cost to achieve the same predic-
tion accuracy as SC-BPNN, such as increasing initial sample
points or further optimizing parameters. Also, Table 4 gives
a comparison of the computational time of various surrogate

FIGURE 9. Comparison of actual versus predicted |S11| values when using
(a) SC-BPNN, (b) PSO-BPNN, (c) BPNN, (d) Kriging surrogate models.

TABLE 4. Computational time of various surrogate models and HFSS
simulations.

models and HFSS simulations. The results in Table 4 show
that the use of surrogate models greatly reduces the
computational time compared to HFSS simulation.

In brief, for a given antenna structure, the proposed
SC-BPNN can efficiently replace EM simulation software for
antenna performance prediction and achieve a rapid antenna
optimization with the aid of EAs.

B. PARETO-OPTIMAL DESIGNS of MINIATURIZED
MULTIBAND ANTENNA
The multi-objective optimization of the given planar
multiband antenna structure in Fig. 7 is implemented
by using MOEA/D [30] and the SC-BPNN surrogate
model constructed in Section V-A. Two design goals
are to be achieved: (i) the reflection coefficient values
(|S11|) are below −10dB within the frequency bands of
2.40∼2.60GHz, 3.30∼3.80GHz, 5.00∼5.85GHz, covering
the entire WLAN2.4/5.2/5.8GHz and WiMAX3.5GHz bands
(objective F1); (ii) the antenna structure is miniaturized to fit
into portable devices (objective F2). The objective function
of F1 is specified as

F1 =
1
N

n∑
i=1

Q(fi) (11)
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FIGURE 10. The obtained representations of the Pareto set during the
optimization process for the planar miniaturized multiband antenna.

Q(fi) =

{
|S11(fi)| |S11(fi)| > −10
−10 |S11(fi)| ≤ −10

(12)

where fi is the ith sample within the given operation bands;
S11(fi) is the reflection coefficient at fi; N is the total number
of sampling frequencies. The objective function of F2 is
defined as

F2 = w× l (13)

Based on the parameter selection principle of MOEA/D
in [30] and experiment experiences, the size of the
randomly initialized population is set as 100, and the max-
imum iteration number is set as 200. The representations
of the Pareto set for the miniaturized tri-band antenna dur-
ing the optimization process are shown in Fig. 10, which
displays the evolution behavior of the objective functions.
The Pareto-optimal designs’ corresponding |S11| values
obtained byHFSS simulation and SC-BPNN surrogate model
are shown in Fig. 11 and the detailed antenna designs are
given in Table 5. Fig. 11 show that the predicted points by
SC-BPNN surrogate model well match the trend of the HFSS
simulation curve. Also, it is observed that the S11 curve is
lower than −10dB within the three frequency bands of 2.33-
2.66GHz, 3.05-3.89GHz, and 4.94-6.05GHz, satisfying the
WLAN and WiMAX applications simultaneously. Thus, all
of these designs are able to provide versatile choices for
practical antenna applications.

To validate the effectiveness of SC-BPNN, Table 6 shows
the results of F1 for those chosen Pareto-optimal designs
obtained by different surrogate models. The predictive results
I and predictive results II are obtained by the conventional
BPNN and SC-BPNN, respectively. Also, the error rates of
the two prediction results with respect to HFSS simulations
are given, separately. Table 6 shows that the prediction results
of our proposed SC-BPNN (average error rate 2.25%) are
significantly better than those of the conventional BPNN
(average error rate 7.00%).

FIGURE 11. Simulated (—) and predicted (o) reflection responses for the
obtained representations of the Pareto set for the planar miniaturized
multiband antenna (from top left to bottom right): x(1), x(2), x(3), x(4), x(5),
and x(6).

TABLE 5. Planar multiband antenna: Selected pareto-optimal designs.

Further, we compare the proposed SC-BPNN with other
techniques in terms of computation time. One EM simulation
takes about 59 seconds under running environment equipped
with a 64-bit operating system, 4GB RAM and 3.20GHz
i5 processor. This work uses only 1.13% of the time cost of
direct MOEA/D-based optimization without surrogate model
(scheme I), and MOEA/D-based optimization with the con-
ventional BPNN (scheme II) are about 1.03% of the time
cost of scheme I. Compared MOEA-D with the conventional
BPNN, the SC-BPNN surrogate model only takes slightly
more time due to the extra time spent on HPSO tuning in
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TABLE 6. Comparison of fitness values F1 of selected pareto-optimal
designs obtained by surrogate models and HFSS.

TABLE 7. Comparison of computational cost among different antenna
optimization schemes.

this work. The detailed time cost is given in Table 7. It can be
seen that the overall CPU-time required by our technique and
scheme II is considerably lower than scheme I. Although the
computational cost of ourmethod is slightly larger than that of
scheme II, the prediction accuracy is much higher than that of
scheme II as is observed from Table 6. In brief, the proposed
technique can provide versatile desired antenna designs with
affordable computational cost, thereby improving the antenna
design cycle.

VI. CONCLUSION
An efficient technique based on an improved BPNN surrogate
model is proposed to implement the fast multi-objective
multi-parameter antenna optimization in this paper. To over-
come the drawbacks of the conventional BPNN, a new
sparsely-connected BPNN (SC-BPNN) model is proposed.
Rather than a fixed network structure, this SC-BPNN model
dynamically tunes the link states and connection coeffi-
cients between the nodes. By integrating the SC-BPNN sur-
rogate model with MOEAs, a fast multi-objective antenna
optimization framework is established. The Pareto-optimal
designs of a compact tri-band planar monopole antenna are
given, indicating that the proposed technique gives higher
prediction accuracy and significant reductions of antenna
optimization cost compared to other existing antenna
structure optimization methods.
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