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ABSTRACT The atom-bond connectivity (ABC) index is one of the most actively studied degree-based
graph invariants that are found in a vast variety of chemical applications. This paper is devoted to estab-
lishing some extremal results regarding the variant of the ABC index, the so-called multiplicative ABC
index (ABC5), which, for a graph G, is defined as ABC5(G) =

∏
uv∈E(G)

√
d(u)+d(v)−2
d(u)d(v) . We have shown

that the complete graph Kn has a minimum ABC5 index among connected simple graphs with n vertices,
while the star graph Sn−1 has the maximum ABC5 index. As Sn−1 attains the maximum amongst bipartite
graphs on n vertices, we additionally show that the bipartite complete balanced graph Kbn/2c,dn/2e attains the
minimum in this class of graphs. As an interesting problem, we propose to characterize the trees with the
minimum value of this index, and, here, we have some structural properties of these trees. We conclude this
paper with few conjectures for possible further work.

INDEX TERMS Chemical graph theory, atom-bond connectivity, multiplicative atom-bond connectivity
index.

I. INTRODUCTION
Atopological index can be considered as a function f :
G → R which maps each graph to a real number. In the
past 40 years, inspired by the chemical engineering appli-
cations, many degree-based or distance-based indices were
introduced, such as Wiener index, PI index, Zagreb index,
harmonic index, sum connectivity index and so on.

In 1998, Estrada et al. [1] defined a new topological index
called the atom-bond connectivity index (in short, the ABC
index). It has a reputation to be one of the most important
topological indices which reflect the properties of alkanes.
The atom-bond connectivity index of a graph G can be
formulated by

ABC(G) = 6uv∈E(G)

√
d(u)+ d(v)− 2

d(u)d(v)
,

where d(x) is the degree of vertex x. The ABC index has
been widely studied by researchers, and a lot of achieve-
ments on this index have been obtained. Zhang and Yang [2]
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determined the maximum ABC index of a connected graph of
a given order, with a fixed independence number, number of
pendent vertices, edge-connectivity, and chromatic number,
respectively. In [3], [4] an efficient computation technique of
trees with the smallest atom-bond connectivity index were
applied. The structural properties of trees with a minimal
atom-bond connectivity index were studied in several papers
including [5]–[9]. In [2], [10], [11] extremal graph with some
given parameters were considered.

In 2010 Graovac and Ghorbani [12] introduced a distance-
based analog of the ABC index, the Graovac-Ghorbani (GG)
index,

GG(G) =
∑

uv∈E(G)

√
nu + nv − 2

nunv
,

where nu is defined as the number of vertices ofG lying closer
to u than to v and similarly nv as the number of vertices of
G lying closer to v than to u. This topological index yielded
promising results when compared to analogous descrip-
tors [13]. Some of the properties of the Graovac-Ghorbani
index were presented in [14]. Another variant of the ABC
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index, the so-called multiplicative atom-bond connectivity
index

ABC5(G) =
∏

uv∈E(G)

√
d(u)+ d(v)− 2

d(u)d(v)
, (1)

was introduced by Kulli in [15], where the multiplica-
tive atom-bond connectivity index of VC5C7[p, q] and
HC5C7[p, q] nanotubes were computed. Since the multi-
plicative atom-bond connectivity index has not been widely
studied until now, the results on the multiplicative atom-
bond connectivity index are still limited, compared to the
atom-bond connectivity index.

It is worthy to mention that the square root in (1) does not
play any significant role in the nature of this index regard-
lessly one study this index empirically or mathematically.
Anyway, we decided to keep it, as this index is deduced from
the ABC index, though there the square root is much less
transparent.

In this article we have characterized extremal graphs with
respect to ABC5. We have shown that the complete graph
Kn has a minimum ABC5 index among connected simple
graphs with n vertices, while the star graph Sn−1 has the max-
imum ABC5 index. As Sn−1 attains the maximum amongst
bipartite graphs on n vertices, we additionally show that
the bipartite complete balanced graph Kbn/2c,dn/2e attains the
minimum in this class of graphs. As an interesting problem,
we propose to characterize the trees with minimum value of
this index, and here we gave only some structural properties
of them.

II. SOME AUXILIARY RESULTS
For a sake of simplicity, let us define

ϕ(a, b) =
a+ b− 2

ab
. (2)

Then the multiplicative atom-bond connectivity index (1),
can be simply rewritten as

ABC5(G) =
∏

uv∈E(G)

√
ϕ(d(u), d(v)).

As obviously, the expression (2) plays an important role
in the definition of the multiplicative atom-bond connectivity
index, we will give some basic mathematical properties of it.
In our case, as values a and b are degrees of vertices of a
connected graphs, i.e., they are positive integers. Moreover,
as we consider larger graphs, at least one of a and b is always
larger than 1.

Two straightforward properties of ϕ are the following:
(P1). ϕ(x, y) = 0 only for x = y = 0, and in all other cases

0 < ϕ(x, y) < 1.
(P2). ϕ(x, 2) = 1

2 for every x ≥ 1.
As a continuation of the above property, one can easily

to show that ϕ(x, 1) is strict increasing function and for
y ≥ 3 being fixed, ϕ(x, y) is a strict decreasing function. This
observation implies the next two properties:

(P3). Let x ∈ [1, 11] and y ∈ [1, 12]. Then ϕ(x, y) attains
its minimum when x = 11 and y = 12 with ϕ(x, y) = (11+

12 − 2)/(1112).
(P4). Let x, y ∈ [1, 1]. Then ϕ(x, y) attains its maximum

when {x, y} = {1, 1} with ϕ(x, y) = 1− 1/1.
(P5). Let x and y be two positive integers such that y ≥ 3.

Then

• ϕ(x, y)/ϕ(x, y− 1) > 1 for x = 1;
• ϕ(x, y)/ϕ(x, y− 1) = 1 for x = 2;
• ϕ(x, y)/ϕ(x, y− 1) < 1 for x ≥ 3.

As ϕ(x, y) is a symmetric function, the above properties are
also valid by interchanging the roles of the first and the second
coordinate. Thus, in what follows, we will use the properties
in both ways.

III. EXTREMAL FOR GENERAL GRAPHS
AND BIPARTITE GRAPHS
In this section, we first characterize the extremal of multi-
plicative atom-bond connectivity index amongst graphs on
n vertices, and next amongst bipartite graphs on n vertices.
Theorem 1: Among all connected graphs on n vertices,

the multiplicative atom-bond connectivity index attains min-
imum at Kn and it attains maximum at Sn−1.

Proof: Consider first the minimum value. Let it be
attained by some graph G on n vertices and m edges. Then

ABC5(G)2 =
∏

uv∈E(G)
ϕ(d(u), d(v))

≥

∏
uv∈E(G)

ϕ(n− 1, n− 1)

= ϕ(n− 1, n− 1)m

≥ ϕ(n− 1, n− 1)(
n
2).

Notice that the first inequality holds by (P3) and the second
inequality by (P1) and the fact that a connected graph has at
most

(n
2

)
edges. Also notice in the first one we have equality if

each vertex is of degree n−1, i.e.,m =
(n
2

)
, and this coincides

precisely when the second inequality becomes equality, and
this is precisely when G is a complete graph.

Let us now consider the maximum value. Again, assume it
is attained by some graph G on n vertices and m edges. Then,

ABC5(G)2 =
∏

uv∈E(G)
ϕ(d(u), d(v))

≥

∏
uv∈E(G)

ϕ(1, n− 1)

= ϕ(1, n− 1)m

≥ ϕ(1, n− 1)n−1.

In a same line as before, the first inequality holds by (P4) and
the second one by (P1) and the fact that a connected graph
has at least n − 1. At the first one we have equality if every
edge has one endvertex of degree 1 and other of degree n− 1
by (P4). This is only possible when G is the star Sn−1. And,
in this case simultaneously the second inequality becomes
equality holds, since then m = n− 1. �
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FIGURE 1. The extremal trees up to 23 vertices.

The multiplicative atom-bond connectivity indices of these
graphs are

ABC5(Kn) =
(

2n− 4
(n− 1)2

) 1
2 (

n
2)

and

ABC5(Sn−1) =
(
n− 2
n− 1

) n−1
2

.

Proposition 2: Among all bipartite graphs on n vertices
the balanced complete bipartite graph Kbn/2c,dn/2e achieves
the minimum multiplicative atom-bond connectivity index.

Proof: Suppose that the minimum is achieved by a bipar-
tite graph G with sizes of bipartitions a and b = n− a, where
a ≤ b. Notice for an edge uv, it holds d(u) + d(v) ≤ n, and
hence

ϕ(d(u), d(v)) =
d(u)+ d(v)− 2

d(u)d(v)
≥
a+ b− 2

ab
,

and by (P3) the lower bound is achieved for a = bn/2c and
b = dn/2e. Thus,

ABC5(G)2 ≥
∏

uv∈E(G)

ϕ(a, b)

≥ ϕ(a, b)a·b ≥ ϕ(bn/2c , dn/2e)a·b.

As ϕ(bn/2c , dn/2e) < 1 by (P1), we obtain also here min-
imum for a = bn/2c and b = dn/2e. Thus, the complete
balanced bipartite graph attains the minimum. �
The multiplicative atom-bond connectivity index of this

graph is

ABC5(Kbn/2c,dn/2e) =
(

n− 2
bn/2c dn/2e

) 1
2 bn/2cdn/2e

.

IV. EXTREMAL TREES
This section is devoted to trees. As Sn−1 attains the maximum
value of multiplicative atom-bond connectivity index, we will
consider the problem of determining the minimum value.
It turned that this problem is harder, and we are not able to
give a complete solution at this moment. We first state it, and
then later we give some properties of the extremal trees.
Problem 3: Find the trees on n vertices with minimum

value of multiplicative atom-bond connectivity index.
For a sake of simplicity, in what follows, let us denote by

Tn a tree on n vertices with minimum value of multiplicative
atom-bond connectivity index. Our computations show that
for small values of n, it is not uniquely determined, i.e., there
could be several such optimal trees (see Figure 1, where all
extremal trees of order up to 23 are depicted).
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By the following result we show some basic properties
of Tn. Therein we use the following definitions A thread in a
path in a graph of length ≥ 2 which internal vertices are of
degree 2, but the endvertices are not. A thread is internal if
both of its endvertices are of degree ≥ 3. And, it is open, if it
has an endvertex of degree 1.

Next we show few properties of the trees with minimal
multiplicative atom-bond connectivity index regarding the
internal and open threads, vertices of degree at least 2 and
the neighborhood of leaves.
Theorem 4: The following properties of Tn holds:
(a) Tn has no internal thread;
(b) If n ≥ 10, then Tn has at least two vertices of

degree ≥ 3;
(c) Every leaf of Tn (n ≥ 4) is adjacent to a 2-vertex;
(d) Tn has no open thread of length ≥ 4;
(e) Tn has no two open threads of length 3.

Proof:We prove each of the claims separately.
(a). Suppose Tn has an internal thread u0u1 · · · uk . Let

degrees of u0 and uk be a and b, respectively. Then a, b ≥ 3,
and d(ui) = 2 for i = 1, . . . , k−1. Let ` be a leaf attached to a
vertex v, whose degree is s ≥ 2. Observe that v could coincide
with u0 or uk , but this does not change the proof presented in
the sequel.

Construct tree T ′n by removing the path of 2-vertices
u1 · · · uk−1 from Tn and reattaching to ` and then connecting
u0 and uk by an edge. Notice that ` is a 2-vertex and uk−1 is
a leaf in T ′n. See Figure 2 for an illustration.

FIGURE 2. The transformation used in the proof of Theorem 4(a).

As vertices u1, . . . , uk−1 are of degree 2 in Tn and T ′n
and the vertex ` is of degree 1 in Tn and of degree 2 in T ′n,
we obtain by (P2) that

ABC5(Tn)2

ABC5(T ′n)2
=

( 12 )
kϕ(s, 1)

( 12 )
kϕ(a, b)

=
(s− 1)
s

ab
a+ b− 2

≥
1
2
·
9
4

> 1.

Observe that the lowest value of the above expression is
obtained for a = b = 3. Thus, this calculation shows that T ′n
has a smaller value of multiplicative atom-bond connectivity
index than Tn, a contradiction.
(b). Suppose Tn has at most one vertex of degree≥ 3. Then

for every edge e = uv of Tn, we have ϕ(d(u), d(v)) = 1/2 if
one of the vertices u, v is of degree 2, and if not, then one of
u, v is of degree 1 and the other is of degree s ≥ 3, which

gives ϕ(d(u), d(v) = 1 − 1/s > 1/2. Thus, among such
trees the path Pn attains ABC5(Pn)2 = 1/2n−1 minimum
value. But as n ≥ 10, we can do better by taking an edge
uv and attaching on each of the endvertices u and v two
open treads of length ≥ 2, as n ≥ 10, we have at least
9 edges, so this is possible to construct. Denote this graph
by T ′n. Note that in this graph every edge contribute 1/2 except
uv which contributes 1/3, thus ABC5(T ′n)

2
= 1/(2n−23),

a contradiction to the minimality of Tn.
(c). Suppose that v is a vertex of degree s ≥ 3 and it is

adjacent to a leaf `1. And, let `2 be another leaf of Tn, say it is
attached to a vertex u of degree p ≥ 2. We may assume s ≥ p.
Notice that possibly u = v. Let T ′n be the tree that obtained
from Tn by reattaching `1 to `2. Note that v becomes a vertex
of degree s − 1, and `1 and `2 are of degree 1 and 2 in T ′n,
respectively (see Figure 3).

FIGURE 3. The transformation used in the proof of Theorem 4(c).

By (b), we may assume that u 6= v. We argue similarly as
before. Denote by a1, a2, . . . , as−1 the neighbors of v distinct
from `1. We obtain

ABC5(Tn)2

ABC5(T ′n)2
=

ϕ(p, 1) · ϕ(s, 1)
ϕ(p, 2) · ϕ(2, 1)

s−1∏
i=1

ϕ(d(ai), s)
ϕ(d(ai), s− 1)

. (3)

Notice that ϕ(d(ai), s)/ϕ(d(ai), s − 1) ≥ 1 for d(ai) = 1
and 2 by (P5). If d(ai) ≥ 3, then this ratio is smaller than one
but we have

ϕ(d(ai), s)
ϕ(d(ai), s− 1)

≥
s− 1
s
·
d(ai)+ s− 2
d(ai)+ s− 3

> 1−
1
s
.

Now by (3), we have

ABC5(Tn)2

ABC5(T ′n)2
> 4

(
1−

1
s

)s(
1−

1
p

)
> 1.

Notice that (1 − 1/s)s is an increasing function (as the first
derivative of this expression is positive for s ≥ 3), thus it takes
minimum at s = 3, and since 1−1/p ≥ 1/2, we conclude that
the expression is bigger than 1. This contradicts the choice
of Tn.

(d). Suppose that Tn has such a thread v0v1 · · · vk with
k ≥ 4, d(v0) ≥ 3, and d(vk ) = 1. Let s = d(v0) and denote
by a1, a2, . . . ak−1 the other neighbors of v0. Let T ′n be the
tree obtained from Tn by reattaching vk−1 to vk . Note that v0
becomes of degree s + 1, and vk−2 and vk are leaves in T ′n.
See Figure 4.

As each edge vivi+1 has at least one endvertex of degree 2,
we have ϕ(d(vi), d(vi+1)) = 1/2 in both Tn and T ′n. By (c),
v0 has no leaf attached, so each ai is of degree> 1. This gives
that ϕ(s, d(ai))/ϕ(s + 1, d(ai)) ≥ 1 by (P5). By (a) and (b)
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FIGURE 4. The transformation used in the proof of Theorem 4(d ).

we have that at least one neighboring vertex of v0, say aj, has
degree at least 3. It follows that ϕ(s, d(aj))/ϕ(s+1, d(aj))>1.
Consequently, we have

ABC5(Tn)2

ABC5(T ′n)2
=

s−1∏
i=1

ϕ(d(ai), s)
ϕ(d(ai), s+ 1)

> 1,

which contradicts the minimality of Tn.
(e). Suppose that Tn has two such threads v0v1v2v3 and

u0u1u2u3 with u0, v0 being of degree ≥ 3 and u3, v3 being
leaves. Let T ′n be the tree that obtained from Tn by reattaching
v3 to v0, and u3 to v3. Thus, from the two 3-threads, we are
making three 2-threads, two attached at v0 and one at u0. Note
that each of the thread edges e is incident with a 2-vertex thus
it has value ϕ(e) = 1/2 by (P5). The degree of v0 is increased
by one, say from s to s+ 1. Again denote by a1, a2, . . . as−1
the other neighbors of v0.
By the same arguments as in (d), we have also here that

each ai is of degree> 1, which gives that ϕ(s, d(ai))/ϕ(s+1,
d(ai) ≥ 1. Also at least one neighboring vertex of v0,
denoted by aj, has degree at least 3, which implies ϕ(s, d(aj))/
ϕ(s+ 1, d(aj) > 1. This assures that T ′n has smaller value of
multiplicative atom-bond connectivity index than Tn

ABC5(Tn)2

ABC5(T ′n)2
=

s−1∏
i=1

ϕ(d(ai), s)
ϕ(d(ai), s+ 1)

> 1,

a contradiction. �
Due to Theorem 4(a), we have the following immediate

consequence.
Corollary 5: For n ≥ 10, the vertices of Tn with degrees

at least 3 induce a tree.
We conclude with the following two, related to each other,

conjectures.
Conjecture 6: For n ≥ 17, the tree Tn is uniquely defined.
Conjecture 7: For n ≥ 17, the tree Tn has no open thread

of length 3.
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