
Received May 27, 2019, accepted May 31, 2019, date of publication June 5, 2019, date of current version June 19, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2921105

An Improved Coulomb Counting Approach Based
on Numerical Iteration for SOC Estimation With
Real-Time Error Correction Ability
LIANGZONG HE , (Member, IEEE), AND DONG GUO
Electrical Engineering Department, University of Xiamen, Xiamen 361012, China

Corresponding author: Dong Guo (xmuelemec@foxmail.com)

This work was supported in part by the Fujian Province Outstanding Youth Fund under Grant 2018J06016, in part by the Natural Science
Foundation of China under Grant 61671400, and in part by the Xiamen University Nanqiang Young Top Talents Program.

ABSTRACT The coulomb counting (CC) approach is widely used in SOC estimation due to its simplicity
and low calculation cost. However, in practical applications, the lack of error correction ability limits its
accuracy due to the measured noise in the practical occasion. To address the issue, an improved CC (ICC)
approach based on numerical iteration is proposed in this paper. In the proposed approach, a battery model
based on a 2nd-order, RC circuit is first formulated to determine the SOC-OCV curve, R-OCV curve, and
inner parameters. In the model, the slow dynamic and fast dynamic voltages are described separately,
and are utilized for battery state assessment. Then, the SOC will be estimated by the CC approach at the
unsteady state but through a numerical iteration approach at steady state. Consequently, the accumulative
SOC error from the CC approach will be corrected when the numerical iteration approach is applied.
Furthermore, a compensation coefficient is employed into the CC approach to reduce the error accumulation
rate. Hence, the proposed ICC approach could make full use of the advantages of conventional CC in
low computational demand and numerical iteration approach in error correction. Finally, an experiment
platform was built, where two kinds of current sensors with different measuring accuracy were employed
to simulate the measured current with and without noise, respectively. The experimental results suggest that
the accumulative SOC error can be corrected in real-time and the SOC error is reduced to 1%. The error
accumulation rate of SOC is effectively reduced compared with traditional CC approach, simultaneously,
more than 90% of the calculation time can be reduced compared with EKF.

INDEX TERMS Improved coulomb counting (ICC), state of charge (SOC), accumulative error correction,
numerical iteration, error accumulation rate.

I. INTRODUCTION
To cut fossil energy consumption andmitigate the greenhouse
effect, electric vehicle (EV) has been widely concerned.
Battery system, as the energy provider in the EV, requires a
battery management system (BMS) to ensure its safe opera-
tion [1]. Both over-charging and over-discharging will reduce
the lifespan of the battery system or even lead to serious
security accidents. Therefore, monitoring the state of charge
(SOC), which is defined as the percentage of residual charge,
has become one of the key tasks of the BMS. However,
due to the complex electro-chemical behavior in a battery,
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estimating the exact SOC for a battery is extremely difficult
in practice. Hence, the only available way is to perform an
estimation of the SOC based on the measurable external
parameters of the battery, such as current and voltage [2], [3].

The Coulomb Counting (CC) approach and open-circuit
voltage (OCV) approach are the conventional methods to esti-
mate SOC [4]. Ideally, CC approach could obtain relatively
accurate SOC. However, in practice, there will be a large
accumulated error due to the unavoidable measured noise
and the lack of error correction ability. An enhanced CC
approach has been proposed to improve the SOC accuracy,
but the error is impossible to be eliminated fundamentally [5].
As to the OCV method, the relationship curve between SOC
and battery OCV is usually applied for SOC estimation.
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Nevertheless, the OCV can be unavailable online due to the
internal resistance and polarization phenomena of the battery.
All in all, accurate SOC estimation online is still in suspense.

With the galloping progress of computer and artificial
intelligence, intelligent algorithms such as support vector
machine (SVM) and neural network (NN) are extensively
concerned in SOC estimation. Without the need of detailed
physical information of a battery, these algorithms explore
the relationship between SOC and measured variables such
as terminal voltage, current and temperature by historical
data [6]–[10]. However, large amounts of historical data are
required for net-training, resulting in time consuming and
difficulty for implementation [3].

Model-based SOC estimation algorithms are another hot
topic for SOC estimation [11]–[33]. In these algorithms,
OCV is calculated based on the battery model, and then the
SOC values obtained by OCV and CC are fused together
using a weight coefficient. Compared with CC, error elimina-
tion ability is obtained. In general, model-based algorithms,
such as EKF, UKF and H infinite filters [11], perform high
accuracy and excellent stability if the battery model is ideal.
However, model error can hardly be avoided in practice
due to the complex chemical reaction in the battery and the
noise [3], [12], even through numerous models have been
proposed [13]–[24], such as the nth Thevenin model [13],
multi-time scale model [14]–[16] and real-time updated
model [17], [18].

To decrease the influence caused by model error, many
information processing technologies are developed. The
adaptive EKF can update the process and measured noise
covariance in real-time [25]–[27]. The wavelet analysis tech-
nology has been employed to preprocess the measured data,
which contain strong noise [28]. Algorithms using multiple
filters and information fusion technologies have also been
presented to improve the accuracy [29]–[33]. In these algo-
rithms, more factors such as state of health (SOH) andmodels
differences are considered. However, additional technologies
result in the increase of calculation cost and implementation
difficulty [9], [28].

In order to solve the contradiction between SOC accuracy
and calculation cost, the ICC approach based on numerical
iteration is proposed, where the battery model based on a
2nd-order RC circuit is built firstly with SOC-OCV curve,
R-OCV curve and inner parameters identified offline. Then,
the SOC is estimated by the CC approach in the unsteady state
of the battery but by a numerical iteration approach in the
steady state. Consequently, the accumulated SOC error from
the CC approach can be corrected through the numerical iter-
ation approach. Furthermore, a compensation coefficient is
employed into CC approach to reduce the error accumulation
rate. Hence, the proposed ICC approach could make full use
of the advantage of conventional CC in the calculation rate
and the numerical iteration approach in error correction.

This paper is organized as follows: In Section II,
the 2nd-order RC model of the battery is introduced and
identified. The principle of the proposed ICC approach is

FIGURE 1. Schematic diagram of the 2nd-order RC model.

described in Section III. Experimental results are presented
and discussed in Section IV. Finally, a brief conclusion is
given in Section V.

II. MODEL AND OFF-LINE PARAMETER IDENTIFICATION
OF LITHIUM-ION BATTERY
A. BATTERY MODEL
The nth-order Thevenin model is widely used for SOC
estimation because of its relatively high accuracy and compu-
tation efficiency compared with other models [1]. Increasing
the order of the Thevenin model will improve the model
accuracy further. However, higher order result in additional
calculation cost [17]. In the paper, a 2nd-order RC model
as shown in Fig. 1 is employed to estimate the dynamic
characteristics of the battery.

The voltage source UOCV represents the battery OCV.
ro is the internal ohmic resistance. The parallel RC net-
work consists of rp1 and cp1 is aimed to model the fast
dynamic voltage of the battery. Similarly, the parallel RC
network consists of rp2 and cp2 is aimed to model the slow
dynamic performance. Up1 and Up2 represent the polariza-
tion voltages across the two RC networks, respectively. Uo
and I are the terminal voltage and load current, respectively.
The electrical behavior of the battery can be expressed as
follows.[

Up1 (k)
Up2 (k)

]
=

[
e−

T
τ1 0

0 e−
T
τ2

]
·

[
Up1 (k − 1)
Up2 (k − 1)

]

+

rp1 ·
(
1− e−

T
τ1

)
rp2 ·

(
1− e−

T
τ2

)
 · I (k) (1)

Uo (k) = Uocv − Up1 (k)− Up2 (k)− ro · I (k) (2){
τ1 = rp1 · cp1
τ2 = rp2 · cp2

(3)

where, k denotes the present step, k-1 denotes the
previous step. T denotes the sampling period, QN denotes
the maximum available capacity of the battery, and τ1 and
τ2 are the time constants of the RC networks. The time
constants denote the response rates of Up1 and Up2, respec-
tively. A higher constant means a longer time for the polar-
ization voltage to reach balance, for a given constant load
current.
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FIGURE 2. The offline identified SOC-OCV curve based on HPPC test.

B. OFF-LINE PARAMETERS IDENTIFICATION
To verify the performance of the proposed algorithm,
an 18650 Li-ion battery with the nominal capacity of 3Ah
and rated voltage of 3.6V was modeled. The parameter iden-
tification tests were performed on a rek-8511 programmable
electronic load, where the measuring accuracy of voltage
and current is 0.03%-0.05%. Then, the data were processed
in Matlab. Different from the identification process in [2],
the lumped resistance R, which is the sum of ro, rp1 and rp2,
was identified independently.

In practice, temperature and aging both have effect on
battery performance. Hence, the tests were implemented
under room temperature. Considering limited charging pro-
cess in the test, the influence of aging on the battery
performance is negligible.

1) IDENTIFICATION OF SOC-OCV CURVE
The hybrid pulse power characterization (HPPC) test with
one hour interval and 5% SOC each time was carried out [27].

Due to the employment of accuracy measuring equipment,
the SOC could be calculated accurately based on measured
data, and accuracy OCV could also be accurately measured
after a long rest of the battery. The SOC-OCV relationship
curve fitted by a 5-order polynomial is shown in Fig. 2.

Uocv = 13.22SOC5
− 39.38SOC4

+ 44SOC3

− 22.32SOC2
+ 5.7SOC + 2.95 (4)

2) DENTIFICATION OF R-OCV CURVE
In the paper, theR-OCV curvewill be utilized in the numerical
iteration approach, which will be discussed in Section III.
Hence, the identification accuracy of R is critical to identify
the OCV.

R = ro + rp1 + rp2 (5)

Generally, the lumped resistance R defined in (5) can be
calculated through the identification of ro, rp1 and rp2, respec-
tively. However, the curve fitting errors of ro, rp1 and rp2 will
decrease the accuracy of R. Therefore, the constant current
discharg (CCD) test was carried out to obtain better accuracy.

During the CCD test, the battery was discharged from
100% to 10% with the discharging current of 0.8A.
Consequently, the discharging process would last more than
three hours. As the Li-ion battery can reach its steady state

FIGURE 3. The offline identified OCV-R curve based on CCD test.

after only a few minutes [14]–[16], the transient process
into steady state can be neglected compared with the whole
discharging process. After the dynamic voltage enters steady
state, following equation could be expressed as:

UOCV (k)− Uo (k) = R (k) · I (k) (6)

where, I (k) and Uo(k) are measured based on accurate
measuring instrument. Hence, SOC(k) could be obtained
through the CC approach.UOCV (k) could be calculated using
the SOC-OCV curve discussed in previous Part. Then, R(k)
could be solved through (6). The relationship between OCV
and R is shown in Fig.3.

Obviously, the OCV-R curve in Fig. 3 shows strong
nonlinearity. Thus it requires extremely high order polyno-
mial to fit the curve. To simplify, the OCV-R curve is decom-
posed into seven linear segments according to the inflection
points in the OCV-R curve. The simplified curve is expressed
as the following equations:

R (UOCV )

=



0.268 · UOCV−0.97, UOCV ∈ [4.073, 4.143]
−0.104 · UOCV+0.544, UOCV ∈ [3.882, 4.073]
0.157 · UOCV−0.468, UOCV ∈ [3.677, 3.882]
0.201 · UOCV+0.8482, UOCV ∈ [3.513, 3.677]
0.028 · UOCV−0.44, UOCV ∈ [3.372, 3.513]
−0.501 · UOCV+1.827, UOCV ∈ [3.332, 3.372]
−1.744 · UOCV+5.97, UOCV ∈ [3.278, 3.332]

(7)

3) IDENTIFICATION OF INNER PARAMETERS:
The other inner parameters are identified based on HPPC test
as well. Cooperating with the voltage response expressions
[2], [28], cp1, cp2ro, rp1 and rp2 can be obtained through curve
fitting method.

cp1 =
(
−3.178SOC4

+ 8.528SOC3

− 8.322SOC2
+ 3.311SOC − 2781

)
· 104 (8)

cp2 =
(
−1.015SOC4

+ 1.126SOC3

− 4.196SOC2
+ 2.937SOC + 1124

)
· 105 (9)

ro = 1.06SOC5
− 3.17SOC4

+ 3.58SOC3

− 1.84SOC2
+ 0.4SOC + 0.06 (10)
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rp1 = −4.32SOC5
+ 13.24SOC4

− 15.28SOC3

+ 8.21SOC2
− 2.01SOC + 0.19 (11)

rp2 = −0.1SOC5
− 0.05SOC4

+ 0.45SOC3

− 0.35SOC2
+ 0.05SOC + 0.025 (12)

III. REAL-TIME STATE OF CHARGE ESTIMATION USING
THE IMPROVED COULOMB COUNTING APPROACH
A. STATE JUDGMENT STRATEGY FOR THE BATTERY
The principle of conventional CC approach is shown in (13).
Due to themeasured noise in I (k), an increasing accumulative
error will be introduced into the SOC.

SOC (k) = SOC (k − 1)−
ηI (k)T
QN

(13)

Generally, if the battery model is precise, model-based
SOC estimation approaches, such as EKF and UKF, perform
well without accumulative error. However, the accuracy of the
model will be reduced at the unsteady state of a battery and
model-based SOC estimation approaches have heavy calcu-
lation [16], [19], [34]. Hence, in the proposed approach, CC
approach is still employed at unsteady state, and numerical
iteration based on battery model is proposed to correct the
SOC value at steady state. Before the proposed approach is
implemented, whether the battery has been steady should be
assessed.

As mentioned previously, at the steady state of a battery,
the current flowing through the capacitors of the RC circuits
in the model are negligible. That is to say, it can be assumed
that the measured current I only goes through rp1 and rp2.
Therefore, following criterion could be formulated:

s1 (k) =
Up1 (k)
I (k) · rp1

= 1

s2 (k) =
Up2 (k)
I (k) · rp2

= 1
(14)

where, s1 and s2 are defined as the steady coefficients,
reflecting the divergence degree of the dynamic voltages from
steady state. In practice, the criterion in (14) can hardly be
achieved due to the complex operation condition of EVs.
To address the issue, a looser criterion shown in (15) is
employed. This criterion denotes that if Up1 and Up2 approx-
imate to the steady state in an adjacent time domain, their
mean values will also close to the steady state. Namely,
the battery is in quasi-steady state. The restrictions for the
mean values are aimed to eliminate the misjudgment caused
by the oscillation in I (k).

{s1 (k − i) ∈ [0.95, 1.05] |i = [1, 2, · · · , n] }
{s2 (k − i) ∈ [0.95, 1.05] |i = [1, 2, · · · , n] }
10∑
i=1

s1 (k − i)

n
∈ [0.95, 1.05]

10∑
i=1

s2 (k − i)

n
∈ [0.95, 1.05]

(15)

B. OCV ESTIMATION USING NUMERICAL ITERATION
A simple iteration algorithm is employed for OCV estimation
and then the SOC could be estimated directly through SOC-
OCV curve. Corresponding principle can be illustrated by
(16)-(19).

x = 8(x) (16)

xl+1 = 8(xl) (17)

x∗ = lim
l→∞

xl+1 = lim
l→∞

8(xl+1)

= 8

(
lim
l→∞

xl+1

)
= 8

(
x∗
)

(18)

xl+1 = xl + ε (19)

The equation to be solved needs to be deformed into
(16) firstly, where 8(x) is named as iterative function. Fur-
ther, corresponding iteration structure can be discretized as
(17), where xl is the solution of the lth iteration and will
be taken as the input variable of the next iteration. If xl+1
satisfies equation (18) after infinite iterations, it is treated
as x∗, named the fixed point of 8(x), which is the approx-
imate solution of x. In practice, infinite iteration is unnec-
essary, and xl satisfying equation (19) is sufficient. ε is a
pretty small value, which is set according to the required
accuracy.
Assuming that the battery is in steady state at k , following

iteration function can be obtained.

UOCV (k) = Uo (k)+ R (UOCV (k)) · I (k) (20)

Corresponding iteration structure is shown in (21).UOCV l
is the solution of the lth iteration, andUOCV l+1 is the solution
of the (l+1)th iteration. With iteration going on, UOCV l+1
will converge to a certain value, which is the solution of
UOCV (k). It is notable that, the initial value ofUOCV 1 should
be within the OCV range of the battery.

UOCV _l+1 = Uo (k)+ R (UOCV _l) · I (k) (21)

Hence, given Uo(k) and I (k) at time k , the Uocv could be
determined. To clarify the principle, an example is given in
Fig. 4. In the example, Uo(k) is set to be 3.2V, I (k) equals to
2A. Then, curve of (20) can be calculated. The initial value
UOCV 1 is set to be 4V. In Fig.4, the arrows are used to denote
the iteration process. The blue arrows start from UOCV 1 and
end at UOCV 2, the red arrows start from UOCV 2 and end at
UOCV 3. It is obvious that, the estimated UOCV l will finally
converge to a numerical value after finite iterations, which is
taken as the numerical solution of UOCV (k). After UOCV (k)
is estimated, SOC(k) can be precisely obtained by SOC-OCV
curve without the accumulative error.

C. COMPENSATION COEFICIENT TO PREVENT ERROR
ACCUMULATION IN CC APPROACH
Assuming that numeral iteration happens at ki. Then, the
accumulative SOC error Ei during each time interval can be
calculated by following equation.

Ei = SOC (ki)− SOC (ki − 1) i = 1, 2, 3 . . . (22)
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FIGURE 4. Convergence process of numerical iteration.

where, SOC(ki) is the precise SOC estimated by numerical
iteration. SOC(ki−1) is the last SOC value got by CC, which
contains the SOC error accumulated during [ki−1+1, ki−1].
Therefore, the error accumulation rate α can be estimated by
following equation.

αi = αi−1 +
SOC (ki)− SOC (ki − 1)

tki − tki−1
(23)

where, the denominator is the time interval during ki and ki−1,
αi−1 represents the estimated accumulation rate at ki−1, and
αi represents the estimated accumulation rate at ki. Taking αi
as a compensation coefficient, the SOC estimation equation
for CC approach can be improved as follows

SOC (k) = SOC (k − 1)−
I (k)
QN
· T + αi (24)

Fig. 5 shows the flow chart of the proposed ICC
approach. In Fig.5, a restrictive condition n is introduced to
prevent numerical iteration from occurring frequently. Con-
sidering the negligible accumulative SOC error in a short
time, an interval of fewminutes is suitable for each numerical
iteration in practice.

IV. EXPERIMENTAL VERIFICATION
A. EXPRIMENTAL PLATFORM
The established experimental platform shown in Fig. 6 was
utilized to verify the proposed ICC approach. The 18650
Li-ion cell, which was employed for modeling in Section II,
was used in the verification experiment. The electronic
load Rek-8511 was employed as discharging load. The host
computer was utilized to control the discharging current of
Rek-8511, while the current measured by Rek-8511with high
accuracy will be transferred to the host computer to calculate
the real SOC. During the discharge process, the terminal
voltage Uo(k) of the cell was measured by the PXIe-7846R,
a FPGA module of NI, and the current sensor ACS7127 with
a low accuracy was employed to simulate the measured load

FIGURE 5. Flow chart of the proposed ICC approach.

FIGURE 6. Block diagram of the experimental platform.

current I with noise in practice. Then, I (k) and Uo(k) were
transmitted to the host computer as the input of the ICC
approach. It is well known that ACS7127 is operated based on
hall principle, and a current of 1A may lead a voltage output
of 66mV. Correspondingly, a small error on the voltage output
of ACS7127 means a relatively large error on the measured
current I .

B. DATA COLLECTION AND MODEL PERFORMANCE
ANALYSIS
To illustrate the efficiency of the proposed ICC approach,
the urban dynamometer driving schedule (UDDS) test was
implemented [8]. The UDDS test lasted 4 repetitive discharg-
ing cycles. Where, the discharging current ranged from 0 to
1C-rate (3A) and the sampling period was 0.2s. During the
test, 70% of the total battery charge was discharged.

Fig. 7 (a) shows the load currents measured by the elec-
tronic load Rek-8511 and the current sensor ACS7127,
respectively. High frequency oscillation can be observed in I ,
it may be caused by the EMI from experimental environment.
In fact, if the mean of the oscillation is zero, no error will
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FIGURE 7. Measured load currents comparison between electronic load
and ACS7127. (a) Measured currents. (b) Real SOC and Estimated SOC
based on CC approach.

be brought into SOC for CC approach, but if the mean of
the oscillation is non-zero, there will be converse result.
To confirm whether the oscillation will reduce the SOC accu-
racy, the SOC curves estimated by CC are given in Fig. 7(b),
where, the initial SOC is defined to be 1 and the estimated
SOC based on the accurately measured current is defined
as the real SOC. Obviously, the estimated SOC contains
an increasing accumulative error. Therefore, it verified that
the noise with non-zero mean is contained in the measured
current I .
The measured and model-estimated terminal voltage

curves are shown in Fig. 8 (a). The measured voltage is
defined as Uo. In general, the proposed model can be used
to estimate the battery performance well. However, there are
peaks in the error curve in Fig. 8 (b). To analyze the error
peaks, the zoomed-in error curve and measured current curve
are shown in Fig. 8 (c). It is obvious that these error peaks
are mainly caused by the current step. When the current
changes relatively slow, the model performs well. Therefore,
the battery model affords to identify whether the battery is at
steady state.

C. SOC ESTIMATION
Among the counterpart model-based algorithms, the EKF
algorithm was taken for comparison with the proposed
algorithm, considering its relatively lower computational
time in each SOC estimation process.

In the paper, n was set to be 100. Namely, the interval
between numerical iterations was no less than 20s. The initial

FIGURE 8. Terminal voltage. (a) Measured and model estimated terminal
voltage. (b) Modeling error. (c) Zoom-in figures of modeling error and
measured current.

value UOCV _1 for the numerical iteration process was set to
be 3.7V. The max value of l in (21) was set to be 12.
The SOC estimation curves are shown in Fig. 9. Obviously,

due to the noise in the measured current I , the accumulated
SOC error increases over time. As to EKF, it appears a weak
performance with huge and oscillation error during discharg-
ing process, even though the SOC error can be corrected after
the battery discharging stops. It is because only Gaussian
white noise can be dealt in EKF [25]. Meanwhile, it is highly
dependent on the noise statistic information [27] for EKF. The
proposed ICC approach shows the best accuracy among those
approaches, the SOC error in ICC approach is successfully
limited to 1%. Seen from Fig.9 (b), there are many step points
in the error curve based on the ICC approach. These points
are where the numerical iteration occur and accumulative
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FIGURE 9. SOC estimation curves for UDDS. (a) SOC curve. (b) Error
curves.

TABLE 1. Total time consumption of different algorithms under UDDS.

error is corrected. In addition, compared with traditional CC
approach, the proposed ICC approach shows much slower
error accumulation rate between two step points. It veri-
fies the effectiveness of the employment of compensation
coefficient α.
To further understand the SOC estimation process based

on numerical iteration, four points are selected for analysis,
as marked in Fig. 9 (b).

Fig. 10 (a)-Fig.10(c) show the zoomed-in terminal volt-
age and the model-estimated dynamic voltages around the
marked points. At each marked point, the curves of Up1 and
Up2 are most close to the orange curves. Namely,Up1 andUp2
have reached to the quasi-steady state, as shown in equation
(15). Fig. 10 (d) shows the numeration process at the four
points. The estimated OCV value converges to a certain value
after only 3 iterations in each process, suggesting an feasible
calculation cost.

D. CALCULATION COST COMPARISON
A comparison of calculation cost was performed on a 3.3GHz
Intel Core i5-4590 CPU computer. The elapsed time was
recorded in Matlab. Table 1 shows the results.

Seen from Table 1, the calculation time of the EKF
algorithm is 197 times longer than that of the CC algorithm,

FIGURE 10. Details for the marked points (a)-(c) zoom-in figures of
measured and model estimated terminal voltages at the marked points.
(d) Numerical iteration process at the marked points.

while the proposed ICC algorithm is only 11 times longer
than that of CC algorithm. Compared with EKF, about 94.4%
of the calculation time is reduced in the proposed ICC
approach. It is benefit for the BMS in the EV since the BMS
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FIGURE 10. (Continued.) Details for the marked points (a)-(c)
zoom-in figures of measured and model estimated terminal voltages at
the marked points. (d) Numerical iteration process at the marked points.

owns much weaker calculation capability compared with the
computer. Correspondingly, more computing resource can be
saved for other tasks in the BMS, such as temperature control
and power balance control.

V. CONCLUSION
In the paper, an ICC approach with real-time error
correction ability is proposed. The SOC is estimated online
by the CC approach at unsteady state, leading a much higher
estimation rate. At steady state, numerical iteration approach
can accurately eliminate the accumulated SOC error of CC
approach, leading amuch higher accuracy than traditional CC
approach. The numerical iteration approach is based on a 2nd-
order RC circuit model, where its parameters were identified
offline during HPPC and CCD tests. Hence, the proposed

approach could combine the advantages of CC approach and
model-based approach together. Furthermore, a compensa-
tion coefficient α is employed into the CC approach to reduce
the error accumulation rate. Experimental results suggest
that the SOC error of ICC is effectively limited within 1%
and its calculation cost is 94% lower than that of EKF.
Therefore, it provides beneficial guidance for the real-time
SOC estimation in EVs.

In the future, the authors will focus on battery pack
modeling under variable temperature to get accurate SOC
estimation even under complex operation condition.
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