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ABSTRACT In recent years, there have been increasing reports of missing tourists around the world. The
use of unmanned aerial vehicles (UAVs) can significantly improve the performance of search and rescue
operations. However, planning the search paths of UAVs can be a highly complex optimization problem, and
one of the most challenging tasks in the problem formulation is the estimation of target location probability
distribution over time. This paper presents a problem of scheduling multiple UAVs to search for missing
tourists and proposes a method for estimating tourist location probabilities which change with topographic
features, weather conditions, and time. To solve the problem efficiently, we propose a hybrid evolutionary
algorithm which consists of the main algorithm and a sub-algorithm. The main algorithm uses specific
migration and mutation operators to evolve a population of main solutions, and the sub-algorithm combines a
problem-specific heuristic and tabu search method to optimize each UAV path. The experimental results on a
wide variety of test instances (including five real-world instances) demonstrate the performance advantages
of the proposed method.

INDEX TERMS Unmanned aerial vehicle (UAV), path planning, discrete-time optimization, evolutionary
algorithms.

I. INTRODUCTION
In recent years, there has been an increasing number of
tourists (includingmany so-called ‘‘tour pals’’) goingmissing
when they crossing unmanned areas without approval. Based
on incomplete statistics from the National Tourism Adminis-
tration of China, during 2008-2017, over 1,600 tourists have
been reported missing in the country, among which 76%were
rescued, 6% unfortunately lost their lives, and the remaining
18% are yet to be found, as summarized in Fig. 1. A lot of
human and material resources have been invested in search
and rescue operations. Such operations can greatly benefit
from the use of unmanned aerial vehicles (UAVs) owing to
their advanced sensing functionality, flexibility, and auton-
omy. For instance, in Jan 2017, Australian water police used
an Eagle-3 UAV to locate two missing tourists in Ku-ring-gai
Chase National Park within one hour. On May 2, 2018, two
UAVs launched by the local police took about two hours to
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detect a graduate student with whom contact had been lost
two days before in Taibai Mountain, China.

UAV search problems, including those utilizing a single
UAV or multiple UAVs to search for static or dynamic tar-
gets, have been studied extensively [1]. Early studies mainly
employ local searchmethods such as those that always choose
the next step with the largest payoff [2]–[5] or always fol-
low a systematic offset path without leaving large holes or
overlaps [6], [7]. Such methods are easy to implement and
efficient in small-scale operations, but often lead to poor
search performance in large-scale operations. More recent
studies have considered UAV search as a global optimiza-
tion problem with the objective of minimizing the expected
detection time or maximizing the detection probability accu-
mulated over the whole operation [8]. However, even for the
case of a stationary target and a single UAV, such a search
problem is known to be NP-hard [9], and hence traditional
optimization methods will be prohibitively time-consuming
for large-size instances. Besides, most methods require that
the prior probability distribution of the target location over
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FIGURE 1. Incomplete statistics of reported missing tourists in China
during 2008–2017 (the broken line) and the results of search-and-rescue
operations (the pie chart).

the search area is known. Nevertheless, it is not a trivial task
to estimate the probability distribution, and thus it can be
very difficult to adapt a method that is efficient in a particular
scenario to other similar or different scenarios.

Motivated by experiences from many real-world search-
and-rescue operations, in this paper we formulated a prob-
lem of multi-UAV path planning for searching for missing
tourist as a permutation-based, discrete-time optimization
problem. As a key part of the problem formulation, we pro-
pose a method for estimating the probabilities of tourist
location which change with topographic features, weather
conditions, and time. To solve the highly complex combinato-
rial optimization problem, we propose a hybrid evolutionary
optimization method that consists of a main algorithm for
evolving a population of candidate solutions to the prob-
lem, and sub-algorithm for optimizing the path of each UAV
in the solutions. Computational experiments demonstrate
that the proposed method exhibits significant performance
advantages over other popular methods on a wide variety
of test instances and real-world instances of the problem.
The main contributions of this paper can be summarized as
follows:
• We formulate a new UAV search problem for mini-
mizing the expected time of detecting missing tourists
based on time-varying distribution of tourist location
probabilities. This problem is more practical than many
existing ones in UAV search operations.

• We propose a practical method for estimating the prob-
abilities of tourist location over time, which plays a
key role in the problem formulation and can be used
in many other similar problems. To our knowledge, this
is the first method that providing practical procedures
for estimating the probability distribution of a missing
target in a search region based on target information
and topographical and weather conditions in a relatively
accurate manner.

• We propose a new hybrid evolutionary algorithm for
the problem, which exhibits competitive performance
compared to the state-of-the-art. In particular, the results

on some real-world instances show that our method
can provide a significant improvement to life-critical
operations.

The remainder of this paper is structured as follows.
Section II introduces related work. Section III presents the
UAV search problem. Section IV describes the hybrid evo-
lutionary algorithm in detail. Section V presents the com-
putational results, and Section VI concludes with a brief
discussion.

II. RELATED WORK
Early studies on UAV path planning for search-and-rescue
tasks mainly employ greedy methods (such as lookahead
search which always chooses a region with the maximum
probability of finding the target [3]–[5]), contour search
methods (such as spiral search and potential field search
which follow offset paths in a highly systematic fashion
without leaving large holes or overlap [6], [10]), and their
variants and combinations [3], [6], [7], [11]. Such methods
are relatively easy to implement, but they do not use an
objective function measuring the overall search performance
of the whole operation, and thus often perform poorly in
large-scale search operations.

More recent studies have considered UAV path plan-
ning as a global optimization problem for maximizing
a performance measure (such as the expected detection
time or detection probability) accumulated over the whole
operation. To efficiently solve such a complex problem,
numerous problem-specific heuristic methods and meta-
heuristic methods have been proposed. The former includes
the goodness ratio heuristic [8], Monte Carlo tree search [12],
improved coverage search with geometric relations [13],
expanding neighborhood search technique [14], etc. How-
ever, problem-specific heuristics have limited extensibility,
and they are easily trapped in local optima.

The latter includes various nature-inspired algorithms or
evolutionary algorithms, which have aroused more interest
because they are capable of obtaining optimal or near-optimal
solutions within an acceptable time by evolving popu-
lations of candidate solutions to simultaneously explore
multiple regions in the solution space [15], [16]. Lin and
Goodrich [17] proposed two genetic algorithms (GAs) for
a UAV search problem with the objective of maximizing
the detection probability accumulated in 2-D space. The
first GA employs a string of directions (i.e., north, east,
south, and west) and the second employs a sequence of
node positions for path encoding. They showed that the
two GAs are much faster than a local hill climbing algo-
rithm and a complete-coverage algorithm. van Willigen
et al. [18] proposed a particle swarm optimization (PSO)
algorithm to generate a pre-planned UAV path for missions
that involve searching and identifying targets. The path can be
adapted at runtime based on the information acquired during
the remainder of the mission. For UAV search-and-rescue
in post-disaster assessment, Heidari and Abbaspour [19]
proposed a bacterial foraging algorithm (BFA) which
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exhibited good robustness on test instances. Zhang and
Duan [20] formulated a global UAV route planning problem
as a constrained optimization problem in 3-D environments,
and proposed for the problem a constrained differential evo-
lution (DE) algorithm that outperforms many existing con-
strained optimization algorithms on the test set. Considering
a problem of UAV path planning to locate a lost target in the
minimum possible time, Perez-Carabaza et al. [21] proposed
an ant colony optimization (ACO) algorithm that combines
the learning capabilities of the pheromone trails left by good
UAV paths with a problem-specific heuristic. Their results
showed that the ACO outperforms some minimum-time-
search heuristics and the GAs presented in [17]. Yang and
Yoo [22] proposed a hybrid GA and ACO algorithm for opti-
mizing UAV paths to maximize the value of gathered sensing
information and minimize the total cost in terms of flying
time, energy consumption, and operational risk. Recently,
Zheng et al. [23] studied a collaborative human-UAV search
problem, the objective of which is to minimize the expected
time at which the target is reached by human searchers.
They proposed a discrete optimization algorithm based on
biogeography-based optimization (BBO) which exhibited
competitive performance compared to other popular meta-
heuristics. In [24] Wang et al. proposed a hyper-heuristic that
integrates different individual metaheuristics and adaptively
invokes them based on real-time feedback. Simulation results
showed that the hyper-heuristic outperforms each individual
metaheuristic.

It is worth noting that almost all existing UAV path plan-
ning methods for target search require that the prior proba-
bility distribution of the target location is known. However,
the probability distribution estimation can be very difficult,
which severely limits the adaptation of such methods from
one scenario to another.

III. PROBLEM
A. PROBLEM INPUTS
The problem considered in this paper is to use a set of n
UAVs to search for missing tourists in a wide area such as
a natural reserve or a geological park. For simplicity, we first
assume there is one tourist (or a group of tourists who move
together). However, as will be described later, the problem
formulation can be easily extended to cases with multiple
tourists dispersed in the search region. The search region A is
divided intom subregions {a1, a2, . . . , am} based on the topo-
graphic features. We use a0 to denote the subregion in which
the tourist was last seen, aj,0 to denote the initial location of
UAV j, and di to denote the distance from a0 to subregion ai.
The target location is unknown, but we can estimate a prior
probability pt (i) of target location in each subregion ai at
time t (i = 1, 2, . . . ,m; t = 0, 1, . . . ,T ), where 0 denotes
the initial time and T is the maximum allowable time of the
operation. In the next subsection, we will discuss the details
on location probability estimation.

If the tourist is located in subregion ai at time t , then we can
also estimate the posterior probability ρt (i, j, k) that he/she

will be detected by UAV uj searching the subregion with
mode k at t (0≤ t≤T ; 1≤ i≤m; 1≤ j≤n; 1≤k≤K ). Here K
denotes the number of search modes of the UAVs. The more
detailed the search mode, the higher the detection probability,
but themore search time required. In subsection III-C, wewill
discuss more details on UAV search modes and detection
probability.

We are also given the time 1τ (i, j, k) required by UAV uj
to search subregion ai with mode k , and the time 1t(i, i′, j)
for UAV uj to fly from a subregion ai to another ai′ . This
formulation allows UAVs to have different detection abilities
and different flight speeds. In many real-world operations,
the UAVs are identical, and hence the variable notations can
be simplified to ρt (i, k), 1τ (i, k) and 1t(i, i′).

B. LOCATION PROBABILITY ESTIMATION
By analyzing the travel paths of numerous tourists, we pro-
pose a method for location probability estimation based on
the information of the tourist and search region. In our
practice, given a search region, we first divide it into sub-
regions such that the area of a subregion is approximately
0.5–2.5 km2, the topographic and environmental features
within a subregion are similar, while different subregions
have different topographic conditions and/or are separated by
terrain obstacles (such as rivers and cliffs). For each subregion
ai, we estimate the location probability pt (i) based on the
likelihood that the tourist travels from a0 to ai during the
period [0, t] using the following steps:

1) Predetermine a topographic suitability indexβi ∈ [0, 1]
of ai. The easier access of the subregion to tourists,
the larger the value of βi.

2) Predetermine a weather suitability index γi,t ∈ [0, 1]
of ai at time t (the subscript i will be omitted if the
search region is not very large and all subregions share
the same weather). We predefine a set of candidate γi,t
values for each combination of 44 weather conditions
(sunny, cloudy, fog, slight haze, severe haze, etc.),
22 temperature ranges (below −19◦C, 20 continuous
intervals between [−19◦C,40◦C], and above 40◦C),
and 24 basic time clocks: the better the conditions,
the larger the value of γi,t . Given a subregion ai and
time t , we query the γi,t value based on the correspond-
ing weather condition, temperature range, and the time
clock at t .

3) Estimate the velocity vt (i) of the tourist when he/she
traverses ai at time t . This step can be further divided
into the following sub-steps:

3.1) Determine a benchmark velocity v of the tourist
based on his/her basic information, e.g., v = 5
km/h for a healthy adult male and v = 2.5 km/h
for a healthy elderly female.

3.2) Determine a basic average velocity vt of the
tourist during [t, t+1]. At the beginning, v0= v,
and vt decreases with t as the tourist’s physical
strength diminishes. In this paper, we calculate
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FIGURE 2. Illustration of the function for estimating the basic velocity,
where the benchmark velocity v = 5 km/h.

vt based on a logistic function as follows (where
time t is in hours):

vt =


v, t<2

1+v−
1+exp(2.33)

1+exp(3.03−0.35t)
, 2≤ t≤8

0.2v, t>8
(1)

Fig. 2 illustrates the function curve. It is easy to
see that, the basic velocity decreases from v to
0.2v as the tourist’s physical strength diminishes
with time (decreases slowly between 3–5 hours
and quickly between 5–8 hours). Note that in
reality, after 8 hours, the tourist’s velocity will
continue to decrease to zero, and then he/she is
very likely to rest for a long time, after which
his/her velocity typically recovers to 0.3v–0.4v,
and then decreases again. . .However, to avoid too
complex expressions, here we assume an average
velocity of 0.2v after 8 hours.

3.3) Estimate the velocity vt (i) based on the basic
velocity, topographic suitability index, and
weather suitability index as follows:

vt (i) = vtβiγi,t (2)

Fig. 3 illustrates the change of vt (i) with βi and
γi,t . The principle of the equation is based on the
fact that, according to exercise physiology [25],
the physical performance of a person is sig-
nificantly affected by environmental conditions,
among which topographic and weather condi-
tions are two main factors. Smaller βi and γi,t
denote worse topographical and weather condi-
tions, which can reduce the velocity vt (i). In our
study, we carefully set the candidate values of
βi and γi,t such that they have an approximately
linear relation with the velocity.

4) Estimate an expected distance dt (i) traveled by the
tourist from time 0 to t if he/she moves from a0
towards ai:

dt (i) = ε
t∑

t ′=1

vt ′ (it ′ ) (3)

FIGURE 3. Illustration of the change of velocity vt (i ) with suitability
indices βi and γt , where the basic velocity vt = 5 km/h.

where it ′ denotes the subregion in which the tourist is
located at time t ′ under the assumption that the tourist
travels from a0 to ai, and ε ∈ [0, 1] is a parameter
indicating the wilderness experience of the tourist: the
smaller the value of ε, the less experienced the tourist
and the more likely he/she will be disorientated and
go around in circles, and thus the shorter the effective
travel distance. If no information is available about the
tourist’s experience, we empirically set ε=0.75.

5) Estimate the location probability pt (i) based on the
difference1dt (i) = dt (i)−di, the topographic suitabil-
ity index βi, and the weather suitability index γt . The
basic principle is: the smaller the difference |1dt (i)|
and the fitter the geographical and weather conditions,
the higher the location probability. In our study, after
trying most typical regression methods, we find that the
following combination of a power curve function and
an exponential curve function fits the data well:

pt (i) =


0, 1dt (i)≤−d̂
c1(1dt (i)+ d̂)10βiγt , −d̂<1dt (i)≤0
c1c2b(1+1dt (i)−20βiγt ), 1dt (i) > 0

(4)

where d̂ is a predefined distance threshold typically
calculated as t times the maximum speed of the tourist,
b is a base in (0,1), and c1 and c2 are two coeffi-
cients that are adjusted to ensure that the function is
continuous at 1dt (i) = 0 and the sum of location
probabilities equals 1. The changes of pt (i) with1dt (i)
are illustrated in Fig. 4 (where the distance is in km).
That is, if 1dt (i) ≤ −d̂ , the probability is 0 because
di is too long for the tourist to travel within time t;
the probability increases with increasing 1dt (i) until
1dt (i)= 0, where the probability is the highest as the
time t is just sufficient for the tourist to arrive in ai;
the probability decreases with increasing 1dt (i) > 0
as the tourist is more likely to move far away from ai.
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FIGURE 4. Illustration of the change of location probability pt (i ) with
1dt (i ) (in km).

FIGURE 5. Illustration of the change of location probability pt (i ) with
βi γt .

The probability also increases with increasing βiγt ,
as illustrated in Fig. 5.

C. SEARCH MODES AND DETECTION PROBABILITY
ESTIMATION
In general, a UAV can fly at any height between its min-
imum and maximum flight heights. However, in practice,
we can define a fixed number K of UAV flight heights
{h1, h2, . . . , hK }, and we say that the search mode is k when
the flight height is hk . Typically, h1 is set to the lowest height
at which the UAV can overlook the whole subregion (i.e.,
the UAV hovers once to complete the search), and hk is set to
the lowest height at which the UAV hovers more times than
that at hk−1 to complete the search (1<k≤K ), as illustrated
by Fig. 6. Therefore, a larger k denotes a more detailed search
mode, which requires a longer search time but has a higher
probability of detecting the target.

For each search mode k (1≤k≤K ), under the assumption
of the best visibility, we predetermine a basic detection proba-
bility ρ(i, j, k) based on the topographic features of subregion
ai, the detection ability of the devices of UAV uj, and the
search height hk . Then, we determine an index δj,t ∈ [0, 1]
representing the impact of the weather condition at time t on
the detection ability of the UAV, and calculate the posterior
detection probability ρt (i, j, k) = δj,tρ(i, j, k). For example,
for a UAV using only cameras and optical sensors, δj,t takes
one of the 11 values in {0, 0.1, 0.2, . . . , 1}: the larger the
value, the better the visibility.

D. DECISION VARIABLES AND OBJECTIVE FUNCTION
The problem is to determine the search path xj of each
UAV uj, such that the tourist can be detected as early as

FIGURE 6. Illustration of two search modes at different heights. (a) The
UAV hovers once at a height of h1 to search the whole subregion. (b) The
UAV hovers four times at a height of h2 to search the whole subregion.

possible. Here we represent xj = {(aj,1, kj,1), (aj,2, kj,2), . . .,
(aj,mj , kj,mj )}, where {aj,1, aj,2, . . . , aj,mj} is the sequence of
subregions to be searched by uj, and kj,i is the search mode
used for the i-th subregion aj,i (1 ≤ i ≤ mj). Based on the
search path xj, the search times 1τ (i, j, k), and the flight
times 1t(i, i′, j), we can determine the action of UAV uj at
each time t . We use xt (j) = (i, k) to denote that uj is searching
in subregion ai with mode k , and xt (j) = (i, i′)T to denote that
uj is flying from a subregion ai to another ai′ .
Let t∗ be a hypothetical time at which the tourist is

detected. Because the events of detection by different
UAVs can be regarded as mutually exclusive, we can iter-
atively calculate the probability of t∗ = t for all t as
follows:

P(t∗=0) = 0 (5)

P(t∗= t) = P(t∗= t|t∗ ≥ t)P(t∗ ≥ t)

=
[ m∑
i=1

n∑
j=1

K∑
k=1

pt (i)ρt (i, j, k|xt (j))
]

×
[
1−

t−1∑
t ′=0

P(t∗= t ′)
]
, t = 1, 2, . . . ,T (6)

where

ρt (i, j, k|xt (j)) =

{
ρt (i, j, k), if xt (j) = (i, k)
0, otherwise

(7)

The objective function is to minimize the expected detec-
tion time:

minE(t∗) =
T∑
t=1

t · P(t∗= t) (8)

According to Eqs. (5)–(8), the time complexity of the
objective function is O(mnKT 2/2).

E. EXTENSION FOR MULTIPLE TOURISTS
When there are a set R of independent tourists, we can use
the method described in subsection III-B to estimate prior
location probabilities pr,t (i) and posterior detection probabil-
ities ρr,t (i, j, k) for each tourist r ∈ R. As the tourists move
independently, the events of detecting different tourists can be
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FIGURE 7. The flowchart of the hybrid evolutionary algorithm for the UAV
search planning problem.

regarded as mutually exclusive, and thus we can iteratively
calculate the probability of t∗r = t for t = 0, 1, . . . ,T ,
where t∗r is a hypothetical time at which the tourist r is
detected, based on Eqs. (5)–(7). The objective function of the
extended problem can be expressed to minimize the sum of
the expected detection times:

minE =
∑
r∈R

T∑
t=1

t · P(t∗r = t) (9)

or to minimize the weighted sum of the expected detection
times:

minE =
∑
r∈R

T∑
t=1

wr t · P(t∗r = t) (10)

where wr is the importance weight of the tourist r .
Note that the decision variables of the extended problems

are the same as those of the original problem, and thus
the procedures of methods for the original problem are still
applicable in such extensions.

IV. ALGORITHM
The above UAV search planning problem is highly com-
plex, while the solution time can be very limited due to the
requirement of fast response. To efficiently solve the prob-
lem, we propose a hybrid evolutionary algorithm consisting
of a main algorithm for evolving a population of candidate
solutions to the problem and a sub-algorithm for optimizing
each UAV path in the solutions. Fig. 7 shows the flowchart
of the problem-solving method, where λ(X ) denotes the
migration rate of solution X (see Section IV-B), and rand()
is a function for generating a number uniformly distributed
in [0,1].

Algorithm 1 The Sub-Algorithm Based on the NEH and
Tabu Search Heuristics
/* NEH heuristic */

1 Sort the subregions in Cj in decreasing order of the ratio
of the target location probability to the distance from uj;

2 Construct a partial schedule xj of the first two
subregions in Cj to maximize the current fitness;

3 Let i = 3;
4 while i < |Cj| do
5 Insert the i-th subregion to xj at the position, among

the i possible ones, which maximizes the current
fitness;

6 i← i+ 1;

/* tabu search */
7 Initialize an empty tabu list TL ;
8 Let s = 0, x∗j = xj;
9 while s < ŝ do
10 Let i∗ = argmax

1≤i≤|Cj|−1,i/∈TL
f (x(i)j ), where x(i)j is the

neighbor obtained by swapping the i-th and (i+1)-th
subregions of xj;

11 xj← x(i
∗)
j ;

12 Add i∗ to TL ;
13 if |TL |> L̂ then remove the first element from TL ;
14 if f (xj)< f (x∗j ) then x∗j ← xj;
15 s← s+ 1;

16 return x∗j ;

A. THE SUB-ALGORITHM FOR PATH OPTIMIZATION
Suppose a set Cj ⊂ A of subregions have been assigned
to UAV uj, the sub-algorithm produces the search path xj
of uj based on the NEH heuristic [26] and tabu search
method [27], [28]. The fitness of a path xj is evaluated as
the ratio of the total detection probability to the total time
consumed along the path:

f (xj) =

∑|xj|
i=1 ptj,i (aj,i)ρtj,i (aj,i, j, kj,i)∑|xj|

i=11τ (aj,i, j, kj,i)+
∑|xj|−1

i=1 1t(aj,i, aj,i+1, j)
(11)

where tj,i is the time at which uj begins to search in the i-th
subregion in its path given by:

tj,1 = 1t(aj,0, aj,1, j) (12)

tj,i = tj,i−1 +1τ (aj,i−1, j, kj,i−1)+1t(aj,i−1, aj,i, j),

∀1< i≤|xj| (13)

The NEH heuristic is extended for UAV search path con-
struction as shown in Lines 1–6 of Algorithm 1, where the
search mode of uj in each subregion ai is set to a k , among the
K candidate modes, which maximizes the ratio of detection
probability pt (i)ρt (i, j, k) to the search time 1τ (i, j, k).

The initial path is then iteratively improved by a tabu search
procedure shown in Lines 7–16 of Algorithm 1. It iteratively
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moves the current solution to the best neighboring solution
that is not forbidden by the tabu list, where the neighborhood
structure is defined by swapping two adjacent subregions in
the search path. In addition, on each neighbor we also perform
a local search by changing the search modes k in the swapped
subregions to k ± 1. Empirically, the maximum number ŝ of
tabu search steps is set to |Cj|/2, and the tabu length L̂ is set
to 6. Thus, the sub-algorithm visits at most m/2 neighboring
solutions (but in most cases the average |Cj|/2 is much less
than m/2), and its worst time complexity is O(m2nKT 2/4).

B. THE MAIN EVOLUTIONARY ALGORITHM
The main algorithm initializes a population of N solutions,
including N−1 randomly generated solutions and a solution
generated by a greedy procedure which always chooses the
next step with the largest payoff (in terms of the ratio of
the detection probability to the time consumed), as shown in
Algorithm 2. Such a potentially good solution can acceler-
ate the convergence speed of the algorithm. The time com-
plexity of the greedy procedure is O(Kmn2min(T ,m)/2),
which is less than the complexity of the objective function
if n<m<T .

Algorithm 2 The Greedy Procedure to Produce a Poten-
tially Good Solution to the Problem

1 Let t = 0,A′ = A;
2 while t < T ∧ |A′| > 0 do
3 Let U ′ be the set of idle UAVs;
4 while |U ′| > 0 ∧ |A′| > 0 do
5 Let i∗ = 0, j∗ = 0, k∗ = 0, pay = 0;
6 foreach uj ∈ U ′ do
7 Let ai be the subregion in which uj is

located;
8 foreach ai′ ∈ A′ do
9 Let t ′ = t +1t(i, i′, j);
10 for k = 1 to K do

11 Let pay′ = pt′ (i
′)ρt′ (i

′,j,k)
1t(i,i′,j)+1τ (i′,j,k) ;

12 if pay′ > pay then
13 (i∗, j∗, k∗, pay)← (i′, j, k, pay′);

14 Add (i∗, k∗) to the search path xj∗ , remove uj∗
from U ′, and remove ai∗ from A′;

15 t ← t + 1, update the status of the UAVs;

16 return X = {x1, x2, . . . , xn};

The main algorithm evolves the solutions using two opera-
tors: migration and mutation. The migration operator, taking
from the BBO metaheuristic [29], makes a solution migrate
features from other solutions. For each solution X in the
population, we use a nonlinear model from [30] to calculate
a migration rate λ(X ) as:

λ(X ) = 0.5− 0.5 cos
(
f (X )− fmin + ε

fmax − fmin + ε
π

)
(14)

where fmax and fmin are the maximum andminimum objective
function values among the population, respectively, and ε is
a very small number to avoid division-by-zero.

At each generation, each solution X has a probability
λ(X ) of immigrating features from other solutions, which are
selected from the best half of the population with probabil-
ities proportional to their fitness, or inversely proportional
to their migration rates. Algorithm 3 presents the migration
procedure, where C(xj) denotes the set of subregions in the
path xj. The time complexity of the migration procedure is
O(m2n2KT 2/4).

Algorithm 3 The Migration Procedure

1 for j = 1 to n do
2 Select an emigrating solution X ′ from the best half

of population with a probability proportional to
1−λ(X ′);

3 Let Aj = C(xj)\C(x′j);
4 Randomly remove a subset of subregions in Aj from

xj;
5 Let A′j = C(x′j)\C(xj);
6 Randomly add a subset of subregions in A′j to xj;
7 Call Algorithm 1 to reorder xj;

After migration, some subregions may be repeatedly
searched. Suppose that a subregion ai is in the paths of multi-
ple UAVs, the set of which is denoted by U (ai). We improve
the solution by only retaining a UAV uj∗ , among all the UAVs
in U (ai), whose ratio of the detection probability to the time
consumed in ai is the maximum:

j∗=argmax
uj∈U (ai)

ρt (i, j, k)
1tpre(i),i,j +1τi,j,k +1ti,next(i),j

(15)

where pre(i) and next(i) respectively denote the subregions
previous and next to ai in the path of uj. Then, ai is removed
from the path of other UAVs in U (ai). Afterwards, we try to
add unexplored subareas (if any exist) to the paths of those
UAVs, also in decreasing order of the ratio of the detection
probability to the time consumed, until the operational time
exceeds T .
If a solution X is not selected for migration, it will

be mutated by regenerating the search paths for a part of
UAVs. Similar to the propagation operator of the water wave
optimization (WWO) metaheuristic [31], each solution X is
assigned with a mutation rate µ(X ), which is uniformly ini-
tialized to 0.5 and then updated at each generation as:

µ(X ) = µ(X ) · α−(fmax−f (X )+ε)/(fmax−fmin+ε) (16)

where α is a mutation reduction coefficient typically set to
1.0026. According to Eq. (16), a fitter solution has a smaller
mutation rate and hence explores a narrow area around
it, while a worse solution has a larger mutation rate and
hence explores a wide area. Moreover, the average mutation
rate decreases with the number of generations, which can
also accelerate the convergence. Algorithm 4 presents the
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mutation procedure. The mutated solution, if better than the
original solution X , will replace X in the population. The time
complexity of the mutation procedure is alsoO(m2n2KT 2/4).

Algorithm 4 The Mutation Procedure

1 Let A′ = A,U ′ = ∅;
2 for j = 1 to n do
3 if rand() < µ(X ) then U ′← U ′ ∪ {uj} ;
4 else remove the subregions in xj from A′ ;

5 Randomly assign the subregions in A′ to UAVs in U ′;
6 foreach uj ∈ U ′ do
7 Call Algorithm 1 to reorder xj;

If a solution has not been improved for ĝ (a control param-
eter typically set to 6) generations, it will be replaced with a
new solution randomly generated so as to improve solution
diversity.

Let G be the maximum number of the generations of
the hybrid evolutionary algorithm. At each generation, for
each of the N solutions in the population, the sub-algorithm
is called n times, and either the migration or the mutation
procedure is called once, and thus the total time complexity
of the algorithm is O(GNm2n2KT 2/2).

V. RESULTS
To test the performance of the proposed method, we con-
struct a variety of test instances in three regions, including
the Jiuzhaigou National Nature Reserve, Hua’eshan National
Nature Reserve, and Taibai Mountain National Forest Park,
the search areas of which are approximately 64,000, 48,000,
and 8,000 ha, respectively. On each region, we simulate
100 incidents of missing tourists, and randomly generate
their routes based on the location probability distribution in
the subregions. Besides, we add five real-world incidents of
missing tourists, including two incidents in Jiuzhaigou, two
in Hua’eshan, and one in Taibai Mountain. For each incident,
we respectively simulate the use of two, four, and eight UAVs
to search for the tourist. The UAV functions conform to the
specification of the DJI Inspire 2 with a Zenmuse X5R cam-
era (i.e., we use identical UAVs in the test). The experimental
environment is a workstation with an i7-6500 2.5GH CPU,
8GB DDR4 RAM, and an NVIDIA Quadro M500M card.

For comparison, we implement eight other methods to
solve the instances. The methods can be divided into two
groups. The first group consists of the following four popular
UAV search planning methods, which are used to compare
with the UAV search planning framework proposed in this
paper:
• A greedy (one-step lookahead) method [2] that always
chooses an unexplored subarea with the maximum loca-
tion probability and assign it to the closest idle UAV.

• A partially observable Markov decision process
(POMDP) based heuristic that yields the action of each
UAV to maximize the expected reward (detection prob-
ability) over the time horizon [3].

• A method based on Gaussian mixture model and reced-
ing horizon control (RHC) where subregions are priori-
tized hierarchically based on their Gaussian components
and then allocated to UAVs to maximize the predicted
reward [32].

• An ACO algorithm that combines the learning capabil-
ities of the ant colony with the minimum-time-search
heuristic [21].

The second group consists of the following four state-of-
the-art metaheuristics adapted to our problem for comparison
with the proposed evolutionary algorithm using path migra-
tion and mutation:

• A two-phased evolutionary algorithm that integrates
PSO and GA [33], denoted by PSO-GA.

• An artificial bee colony (ABC) algorithm for coopera-
tive task assignment and scheduling [34].

• A hybrid max-min ant system combined with tabu
search (ASTS) [35].

• A symbiotic organism search (SOS) optimization
algorithm [36].

For fairness, we set the maximum allowable CPU time
to 900 seconds for all the methods, because in practice it
typically requires 10-15 minutes to prepare and mobilize
UAVs since the report of a missing event, and such a time
period is just sufficient for producing a solution in response
to the event. The control parameters of the algorithms are all
fine-tuned on the test instances. For the proposed algorithm
combining migration, mutation, and local search (denoted by
CMM), we set the tabu length to 12, and set the population
size to 60 on the instances of the Jiuzhaigou and Hua’eshan
regions and 45 of the instances in the Taibai Mountain,
respectively. Because the last five methods and our method
are inherently stochastic optimization algorithms, we run
each of them 30 times on each instance, and record themedian
detection time over the 30 runs.

Fig. 8 presents the box plots of the expected detection
times obtained by our method and the other eight methods
on the 100 simulated incidents in the Jiuzhaigou region.
Furthermore, we conduct a nonparametric Wilcoxon rank
sum test to compare the results of our method with those
of the other methods on each instance, and present the test
results in Fig. 9, where 0 indicates that there is no significant
difference between the two methods (at a 95% confidence
level), + indicates that the result of our method is signif-
icantly better than that of the corresponding comparative
method, and− vice versa. From the results, it can be observed
that the greedy method using the local one-step lookahead
search policy exhibits the worst performance, because max-
imizing the payoff of the next step often results in a low
payoff over the whole time horizon. The POMDP method
extends the local search steps and thus obtains better results
than Greedy does, but the improvement is slight. By using
a hierarchical strategy to control the local search, the RHC
method achieves further performance improvement over the
Greedy and POMDP methods. The ACO method that uses
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FIGURE 8. The maximum, minimum, median, first quartile (Q1), and third quartile (Q3) of the expected detection times (in minutes) obtained by the
comparative methods on the 100 simulated incidents in the Jiuzhaigou region. (a) Using two UAVs. (b) Using four UAVs. (c) Using eight UAVs.

FIGURE 9. Statistical significance tests on the result of our method compared with those of the other methods on the 100 simulated incidents in the
Jiuzhaigou region. 0 indicates that there is no significant difference between two methods (at a 95% confidence level), + indicates that the result of our
method is significantly better than that of the corresponding comparative method, and − vice versa. (a) Using two UAVs. (b) Using four UAVs. (c) Using
eight UAVs.

the global minimum time search policy achieves a significant
performance improvement over the first three local search
methods, demonstrating that planning UAV paths from the
global perspective is crucial for solving the problem of UAV
search for missing tourists.

The expected detection times obtained by the last five
methods are significantly shorter than those of the first four
methods, validating the effectiveness and efficiency of the
proposed search planning framework for the problem.Among
the last five metaheuristics using the search planning frame-
work proposed in this paper, the hybrid PSO-GA yields the
longest median expected detection time, because both the
PSO learning operator and the GA crossover operator easily
lead to premature convergence. SOS yields better results than
PSO-GA, ABC, and ASTS do, but its performance is still
worse than our CMM algorithm on most of the instances.
Among all the comparative methods, CMM obtains the short-
est median expected detection time, because its path migra-
tion and mutation operators can well balance the global
exploration and local exploitation, and its sub-algorithm can
effectively improve the solution accuracies. Consequently,

the proposed algorithm exhibits a promising performance in
solving this complex problem.

From Fig. 9(a)–(c), we can also observe that, on instances
using more UAVs, the performance advantages of our method
are more significant. In terms of statistical tests, our CMM
method achieves significantly better results than the other
methods on amajority of instances. Compared to the first four
UAV search methods, our method achieves significantly bet-
ter results on approximately 90% of the instances. Compared
to the last four metaheuristics, when two UAVs are used,
our CMM algorithm achieves significantly better results than
PSO-GA, ABC, ASTS, and SOS on 67, 60, 71, and 51 among
the 100 instances, respectively. When eight UAVs are used,
CMM obtains significantly better results than the other four
metaheuristics on 85, 81, 86, and 77 instances, respectively.
On the contrary, none of the other methods can obtain sig-
nificantly better results than our method on more than ten
instances. As the solution space increases exponentially with
the number of UAVs, the test results demonstrate that the
combination of the path migration and mutation operators
of our algorithm can explore the large solution space of the
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FIGURE 10. The maximum, minimum, median, first quartile (Q1), and third quartile (Q3) of the expected detection times (in minutes) obtained by the
comparative methods on the 100 simulated incidents in the Hua’eshan region. (a) Using two UAVs. (b) Using four UAVs. (c) Using eight UAVs.

FIGURE 11. Statistical significance tests on the result of our method compared with those of the other methods on the 100 simulated incidents in the
Hua’eshan region. 0 indicates that there is no significant difference between two methods (at a 95% confidence level), + indicates that the result of our
method is significantly better than that of the corresponding comparative method, and − vice versa. (a) Using two UAVs. (b) Using four UAVs. (c) Using
eight UAVs.

FIGURE 12. The maximum, minimum, median, first quartile (Q1), and third quartile (Q3) of the expected detection times (in minutes) obtained by the
comparative methods on the 100 simulated incidents in the Taibai Mountain. (a) Using two UAVs. (b) Using four UAVs. (c) Using eight UAVs.

problem much more efficiently than the evolutionary opera-
tors of the other metaheuristics.

Fig. 10 and Fig. 12 present the box plots of the expected
detection times obtained by the comparative methods on the
simulated incidents in the Hua’eshan region and the Taibai
Mountain, respectively, and Fig. 11 and Fig. 13 present the
corresponding statistical test results. As we can observe,

the results are similar to those in the Jiuzhaigou region, that
is, the five metaheuristics using our UAV search framework
exhibit significantly better performance than the other four
UAV search methods, and the proposed CMM algorithm
obtains the best results among all the methods. Compara-
tively, the performance advantages of the proposed method
are more significant on the instances of the Jiuzhaigou and

VOLUME 7, 2019 73489



Y.-C. Du et al.: Evolutionary Planning of Multi-UAV Search for Missing Tourists

FIGURE 13. Statistical significance tests on the result of our method compared with those of the other methods on the 100 simulated incidents in the
Taibai Mountain. 0 indicates that there is no significant difference between two methods (at a 95% confidence level), + indicates that the result of our
method is significantly better than that of the corresponding comparative method, and − vice versa. (a) Using two UAVs. (b) Using four UAVs. (c) Using
eight UAVs.

FIGURE 14. Expected and actual detection times (in minutes) obtained by the nine UAV search methods in the five real-world incidents of tourist
missing. (a) Incident 1 (four UAVs in Jiuzhaigou). (b) Incident 2 (three UAVs in Jiuzhaigou). (c) Incident 3 (three UAVs in Hua’eshan). (d) Incident 4 (two
UAVs in Hua’eshan). (e) Incident 5 (two UAVs in Taibai Moutain).

Hua’eshan regions than those on the instances of the Taibai
Mountain, because the area (and consequently the number of
subregions) of the Taibai Mountain are much smaller. This
also demonstrates that the proposed method is well designed
for solving large-size instances of this complex problem.

For the five real-world incidents, the numbers of UAVs
available in local emergency departments at those times were
four, three, three, two, and two, respectively, which are also
used in our tests. For each instance, we also employ each of
the above nine methods to produce a UAV search solution.

Besides the expected detection time (i.e., the objective func-
tion value) of the solution, we calculate an ‘‘actual’’ detection
time, i.e., the earliest time at which the missing tourist enters
into the detection range of (at least) a UAV, according to the
UAV paths in the solution and the real route of the tourist.
Fig. 14 presents the results on the five real-world prob-
lem instances. The results show that the difference between
the expected and actual detection times of the methods are
relatively small (typically within 10%), demonstrating the
practicability and rationality of the proposed problem model
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as well as the probability estimation method. Typically,
the expected detection times of the methods are longer than
their actual detection times on the first four instances, but the
opposite is the case on the last instance. This is because the
areas of search regions of the first four instances are large,
and thus the estimation of tourist location probability is more
likely to deviate from the actual route. On the five real-world
instances, our CMM algorithm still exhibits the best perfor-
mance (in terms of either expected or actual detection time)
among the nine methods. As far as we know, the local emer-
gency departments have mainly used greedy methods similar
to the method in [2] for UAV search planning. The main
advantage of the greedy methods is that they can produce a
solution within only 1–3 minutes, while our algorithm uses
5–10 minutes for middle-size instances and approximately
15 minutes for large-size instances. However, in practice,
the algorithm can be executed in parallel with the preparation
of UAVs. More importantly, compared to the greedy method,
using our method shortens the actual detection times by more
than 20 minutes on the first four instances and approximately
10 minutes on the last instance. Consequently, our method
has a promising performance in response to the life-critical
tasks.

VI. CONCLUSION
In this paper we present a problem of multiple UAV search
for missing tourists, the objective of which is to mini-
mize the expected detection time calculated based on the
location probability distribution. We propose a hybrid evo-
lutionary optimization method consisting of a main algo-
rithm for evolving a population of main solutions and a
sub-algorithm for optimizing each UAV search path. Compu-
tational results demonstrate that the proposedmethod exhibits
promising performance on a wide variety of test instances
and can provide a significant improvement in real-world
operations.

The presented problem can be extended for a variety of tar-
get search problems with time-varying distribution of target
location probabilities, such as searching for survivors in dis-
asters, searching for dubious targets in battlefields, searching
for escaping criminals, etc. In particular, the proposed proba-
bility estimation method provides a good basis for estimating
the probabilities of target location in different scenarios. Our
hybrid evolutionary optimization method can also be easily
adapted or extended for this class of problems.

Currently, we are popularizing the proposed method to
more nature reserves and scenic areas in China and neigh-
boring countries. Subdividing the search regions and pre-
determining the parameters for probability estimation and
instance construction are heavy tasks, but can help in improv-
ing our method. A new requirement from the local emergency
department is to optimally deploy the available UAVs in
the search regions to facilitate future search operations [37],
which can be integrated into our UAV search problem.We are
also extending our problem and solution method to UAV
search for a large number of victims in large-scale rescue

operations (such as in natural disasters), where we must pay
more attention to the probability distribution of a population
rather than an individual.
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