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ABSTRACT In this paper, a novel direction-of-arrival (DOA) estimation algorithm is proposed for noncir-
cular signals with nonuniform noise by using the unitary matrix completion (UMC) technique. First, the pro-
posedmethod utilizes the noncircular property of signals to design a virtual array for approximately doubling
the array aperture. Then, the virtual complex-valued covariance matrix with the unknown nonuniform noise
is transformed into the real-valued one by utilizing the unitary transformation to improve the computational
efficiency. Next, a novel UMC method is formulated for the DOA estimation to remove the influence
of nonuniform noise. Finally, the DOA without the influence of the unknown noncircularity phase is
obtained by using themodified estimation of signal parameters via rotational invariance technique (ESPRIT).
Especially, for handling the coherent sources, the forward–backward spatial smoothing technique is utilized
to reconstruct a full-rank covariancematrix so that the signal subspace and the noise subspace can be correctly
separated. Due to utilizing the extended array aperture and the unitary transformation, the proposed method
can identify more sources than the number of physical sensors and provides higher angular resolution and
better estimation performance. Compared with the existing DOA estimation algorithms for noncircular
signals, the proposed one can effectively suppress the influence of the nonuniform noise. The simulation
results are provided to verify the effectiveness and superiority of the proposed method.

INDEX TERMS Direction-of-arrival estimation, noncircular, nonuniform noise, unitary matrix completion.

I. INTRODUCTION
Direction-of-arrival (DOA) estimation is an important
research topic in the field of array signal processing, and has
been widely applied to various scenarios, such as wireless
communication, radar, sonar, navigation, seismic detection
and medicine [1]. In the past decades, a large number of
DOA estimation methods, such as multiple signal classi-
fication (MUSIC) [2], estimation of signal parameters via
rotational invariance techniques (ESPRIT) [3] and maximum
likelihood (ML) estimation [4], have been developed for
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improving the estimation performance. These methods are
almost always applicable to multiple-input multiple-output
(MIMO) radar systems [5], [6]. However, the majority of
these methods assumed that sources are circular signals. The
complex noncircular signal is often used in the real-valued
modulation schemes, such as binary phase shift keying
(BPSK), minimum shift keying (MSK) and unbalanced qua-
ternary phase shift keyed (UQPSK), and these schemes
have also been employed in most of modern applications,
e.g., sonar, telecommunication and satellite systems. Unfor-
tunately, these DOA estimation methods mentioned above
have not utilized the noncircular property of the signal
effectively.
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So far, some subspace-based DOA estimation algorithms
for noncircular signals have been proposed in [7]–[11]. In [7],
the noncircular ESPRIT (NC-ESPRIT) method was pro-
posed by exploiting noncircularity of signal to achieve the
improved estimation performance and double the number of
identifiable sources. However, it does not take account of
coherent sources. By using the unitary transformation and
the spatial smoothing technique, the NC unitary ESPRIT
in [8] was proposed to improve computational efficiency
and deal with coherent sources. As an extension of [7]
and [8], the R-DNC unitary ESPRIT algorithmwas proposed
in [9], which can estimate the parameters of multidimensional
(R-D) signal, and the spatially smoothed version of R-D NC
unitary ESPRIT algorithm was proposed in [10]. However,
the number of coherent sources estimated by these methods
is limited. In [11], by designing a virtual center-symmetric
array, the conjugate unitary ESPRIT (CU-ESPRIT) algorithm
was proposed to estimate more coherent sources and further
reduce the computational complexity. However, it requires
noncircular signals to be real-valued, which is difficult to
support practical systems. In addition, by utilizing the com-
pressed sensing (CS) technology [12], [13], some sparse
signal recovery (SSR)-based DOA estimation methods have
been developed in [14]–[16]. By exploiting the block-sparse
information, the nuclear norm minimization (NNM)-based
methods have also been reported in [17], [18]. All of these
methods have improved the estimation accuracy and angular
resolution with the assumption that the noise is uniformwhite
noise. However, when the noise becomes nonuniform, their
estimated performance would deteriorate significantly due to
the incorrect noise model.

The nonuniform noise can be regarded as the noise across
the array is spatially white whereas the sensor noise variances
are not identical. This model becomes relevant in situations
with hardware nonideality in receiving channels as well as
for sparse arrays with prevailing external noise such as rever-
beration noise in sonar or external seismic noise. There-
fore, it is important to solve the nonuniform noise problem.
In recent years, many feasible methods have been devel-
oped to solve DOA estimation with the unknown nonuniform
noise [19]–[23]. In [21], two optimization problems based
on the ML and least squares (LS) estimations are proposed
by utilizing iterative method to estimate the signal and noise
subspaces. However, it is time-consuming due to the iterative
procedure. In order to eliminate the covariance matrix of
nonuniform noise without using the iteration method, matrix
completion technique was investigated in [22], which can
transform the nonconvex problem into a convex one by using
the nuclear norm minimization. However, its stability is poor.
Similarly, another matrix completion method was proposed
in [23], where the generalized least squares (GLS) sense and
weighting matrix were analyzed. However, the above matrix
completion-based methods generally require considerable
computation because they deal with complex-valued covari-
ance matrices. In order to improve the computational effi-
ciency, the unitary transformation technique was introduced

in [24], [25]. The unitary transformation-based methods not
only reduce the computational complexity, but also improve
the estimation accuracy. Therefore, based on the advantages
of the unitary transformation, we propose the unitary matrix
completion method to suppress the influence of nonuniform
noise.

In this paper, the unitary matrix completion framework for
DOA estimation of noncircular signals is proposed. In the
proposed method, by integrating the unitary matrix com-
pletion method and the modified CU-ESPRIT algorithm,
the DOA of noncircular signal in nonuniform noise can be
directly estimated. The main contributions of this paper are
as follows

(a) The DOA estimation problem of noncircular signals
under nonuniform noise is solved.

(b) The processing method of coherent noncircular signals
under the above conditions is given.

(c) For an odd number of virtual arrays, new selection
matrices are designed to estimate DOAs of noncircular sig-
nals.

In summary, the proposed method provides superior DOA
estimation performance. Simulation results are provided to
illustrate the performance of the proposed method.

This paper is organized as follows. The noncircular sig-
nal model impinging on ULA in the presence of unknown
nonuniform noise is introduced in Section II. The design
of the virtual array, the unitary transformation, the unitary
matrix completion method and the forward-backward spatial
smoothing technique are shown in Section III. The simulation
results are presented and analyzed in Section IV. The conclu-
sion is given in Section V.
Notation: (·)T , (·)H , (·)∗, Im(·) and Re(·) denote transpose,

conjugate-transpose, conjugate, imaginary part operator and
real part operator, respectively. ⊗ and � denote the
Kronecker product and Khatri-Rao product, respectively.
Ik denotes a k × k dimensional unit matrix, and555k denotes
a k × k dimensional exchange matrix with ones on its
anti-diagonal entries and zeros elsewhere. ‖ · ‖∗, ‖ · ‖2 and
‖ · ‖F denote the nuclear norm, `2 norm and Frobenius norm,
respectively. In addition, diag{·} denotes the diagonal matrix.
E{·} and rank{·} denote the mathematical expectation and the
rank of a matrix. trace{·} denotes the trace of a matrix and
vec(·) denotes the vectorization operator.

II. SIGNAL MODEL
Consider a ULA with M sensors, and the adjacent sensor
spacing, d , is set to be one-half of the wavelength, λ/2. It is
assumed that the far-field noncircular narrow-band sources
impinging on the array are from P distinct angular directions
θ1, θ2, . . . , θP. The received data vector x(t) ∈ CM×1 is
expressed as [8]

x(t) = As(t)+ n(t) (1)

where the manifold matrix A = [a(θ1), a(θ2), . . . , a(θP)] ∈
CM×P, and themanifold vector a(θk ) = [1, exp(jπsinθk ), . . . ,
exp(jπ (M − 1)sinθk )]T , and s(t) ∈ CP×1 denotes the noncir-
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FIGURE 1. Illustration of the virtual array.

cular signal vector, which satisfies with

s(t) =888s0(t) (2)

where888 = diag{[exp(jψ1), . . . , exp(jψP)]} ∈ CP×P denotes
a diagonal matrix containing the noncircularity phase ψψψ =
[ψ1, . . . , ψP], which can be arbitrary for each signal, s0(t) ∈
RP×1 denotes the real-valued signal vector, and n(t) ∈ CM×1

denotes the nonuniform Gaussian noise vector whose covari-
ance matrix can be expressed as

Q = E{n(t)nH (t)} = diag{σ 2
1 , σ

2
2 , . . . , σ

2
M } (3)

where σ 2
m denotes the noise power from the mth sensor, and

the noise powers of these sensors are assumed to be different
and unknown. By collecting L snapshots, the received data in
(1) can be rewritten as

X = AS+ N (4)

where X = [x(t1), . . . , x(tL)] ∈ CM×L denotes the received
data matrix, S = 888S0 ∈ CP×L denotes the noncircular
signal matrix with S0 = [s0(t1), . . . , s0(tL)] ∈ RP×L , and
N = [n(t1), . . . ,n(tL)] ∈ CM×L denotes the nonuniform
Gaussian noise matrix.

III. UNITARY MATRIX COMPLETION FOR DOA
ESTIMATION OF NONCIRCULAR SIGNALS
A. VIRTUAL ARRAY
Since noncircular signals have real components, their con-
jugation equals to themselves. By utilizing this property of
noncircular signals, a virtual array is constructed as shown
in Fig.1, which has 2M−1 virtual array elements in total. The
virtual array increases the number of array elements, which
changes the signal model. Therefore, the observation vector
xv(t) ∈ C(2M−1)×1 of the virtual array can be expressed as

xv(t) = [x∗M (t), . . . , x∗2(t), x1(t), x2(t), . . . , xM (t)]T (5)

where xi(t) denotes the data received by the ith sensor at the
tth time instant. Therefore, the virtual array receiving data
matrix is described as

Xv =

[
JX∗

X

]
=

[
JA∗S∗

AS

]
+

[
JN∗

N

]
(6)

where J = [0(M−1)×1555M−1]. Because S0 ∈ RP×L , we have
S∗ =888∗S0. Therefore, (6) can be written as

Xv =

[
JA∗888∗

A888

]
S0 +

[
JN∗

N

]
= BS0 + Nv (7)

where B = [b(θ1, ψ1), . . . ,b(θP, ψP)] ∈ C(2M−1)×P denotes
the virtual array manifold matrix, which contains noncircular
phase, and the manifold vector b(θi, ψi) ∈ C(2M−1)×1 can be
written as

b(θi, ψi) = [exp(−jπ (M − 1)sinθi)exp(−jψi),

. . . , exp(−jπsinθi)exp(−jψi), 1

· exp(jψi), exp(jπsinθi)exp(jψi),

. . . , exp(jπ (M − 1)sinθi)exp(jψi)]T (8)

and Nv denotes the virtual array noise matrix.
Then the virtual array covariance matrix is obtained by

Rv = E{xv(t)xHv (t)} = R0 +Qv (9)

where R0 = BPBH ∈ C(2M−1)×(2M−1) denotes
the virtual array noise-free covariance matrix, P =

E{s0(t)sH0 (t)} ∈ RP×Pdenotes the real-valued signal covari-
ance matrix, andQv = diag{σ 2

M , . . . , σ
2
2 , σ

2
1 , σ

2
2 , . . . , σ

2
M } ∈

R(2M−1)×(2M−1) denotes the virtual array noise covariance
matrix. In practice, the virtual array covariance matrix Rv is
not available, and is estimated as

R̂v =
1
L

L∑
t=1

xv(t)xHv (t). (10)

Obviously, when R̂v is adopted instead, we have R̂v 6= R0 +

Qv. Because this estimation error cannot be ignored, it will
be discussed in a GLS sense below.

B. UNITARY TRANSFORMATION
Before discussing this estimation error, let’s preprocess the
estimated virtual array covariance matrix. It is well known
that the complex-valued matrix operations are often used
in most DOA estimation algorithms. By exploiting the uni-
tary transformation, the complex-valued matrix can be trans-
formed into a real-valued one, which reduces the compu-
tational complexity significantly. In addition, it has been
proved in [25] that the DOA estimation performance can be
improved by utilizing the real-valued structure. These merits
motivate us to convert the complex-valued covariance matrix
into real-valued one for DOA estimation.

By exploiting the center-Hermitian property of the virtual
array covariance matrix Rv, the real-valued one is derived
as [11]

Cv = UH
2M−1RvU2M−1 (11)

where Cv denotes the virtual array real-valued covariance
matrix and the odd-order unitary matrix U2n−1 is defined as

U2n−1 =
1
√
2


In−1 0(n−1)×1 jIn−1

0T(n−1)×1
√
2 0T(n−1)×1

555n−1 0(n−1)×1 −j555n−1

 . (12)

However, in practice, because R̂v is not exactly center-
Hermitian matrix, (11) is unavailable directly. Fortunately,
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FIGURE 2. Illustration of the virtual array covariance matrix.

it has been proven in [24] that this problem can be solved
by

Ĉv = Re{UH
2M−1R̂vU2M−1} (13)

where Ĉv denotes the estimated real-valued virtual array
covariance matrix.

C. UNITARY MATRIX COMPLETION
Matrix completion technique is an efficient method to
recover a low-rank matrix by observing some elements of
the matrix. The virtual array covariance matrix structure
is shown in Fig.2. From (9), it is obvious that the virtual
array noise-free covariance matrix R0 is a low rank matrix
and the unknown nonuniform virtual array noise covariance
matrix Qv only affects the diagonal elements of the virtual
array covariance matrix Rv. If Rv is known, then R0 can
be almost known except for its diagonal entries. Hence,
by removing the diagonal elements of Rv and recovering the
entire R0, the estimation problem of R0 can be solved, which
can be regarded as a matrix completion problem. Once R0
is determined, the subspace-based algorithms can be applied
to estimate the DOA without being affected by nonuniform
noise. In the following, we introduce the unitary matrix com-
pletion method.

In order to reduce the computational complexity, (9) is
substituted into (11) to yield

Cv = UH
2M−1(R0 +Qv)U2M−1 = Rt +Qt (14)

where Rt = UH
2M−1R0U2M−1 ∈ R(2M−1)×(2M−1) denotes

the virtual array real-valued noise-free covariance matrix,
and Qt = UH

2M−1QvU2M−1 ∈ R(2M−1)×(2M−1) denotes
the virtual noise matrix. It is worth mentioning that Rt and
Qt contain the characteristics of R0 and Qv, respectively.
Because Rt is the real-valued form of R0 by using unitary
transformation, it is a low-rank matrix. In addition, Qt is a
diagonal matrix whose diagonal elements are not completely
the same. In other words,Rt andQt also conform to the anal-
ysis of the above matrix completion technique. Therefore, Rt
can be determined by solving the following rank minimum
problem

minimize
Rt

rank(Rt )

subject to P�(Rt ) = P�(Cv) (15)

where P� : C(2M−1)×(2M−1)
→ C(2M−1)×(2M−1) denotes a

sampling operator, defined as

[P�(X)]ij =
{
Xij, i 6= j
0, otherwise

(16)

where [P�(X)]ij andXij denote the (i, j)th entry ofP�(X) and
X, respectively.
Because the optimization problem of (15) is NP-hard, it is

not solvable in polynomial time deterministically. As the
tightest convex relation of the rank minimization, the nuclear
norm minimization is often used to solve this optimization
problem as follows

minimize
Rt

||Rt ||∗

subject toP�(Rt ) = P�(Cv). (17)

SinceRt is a positive-semidefinite Hermitian matrix, we have
||Rt ||∗ = trace{Rt }. Moreover, the constraint in (17) can
be modified as Cv = Rt + Qt ,Rt � 0,Qt ∈ D+, where
� 0 denotes the matrix is the positive-semidefinite Hermitian
matrix, and D+ denotes the real-valued diagonal matrix.
Therefore, we have

minimize
Rt ,Qt

trace{Rt }

subject to Cv = Rt +Qt , Rt � 0, Qt ∈ D+. (18)

Because only the estimated virtual array real-valued covari-
ance matrix Ĉv in (13) is available, the above constraint
cannot be used in practice. Fortunately, this problem can be
solved in a GLS sense.
The estimation error of the virtual array covariance vec-

tor and real-valued covariance vector are defined as ξξξ =
vec(R̂v − Rv) and ξξξT = vec(Ĉv − Cv), respectively.
According to [26], ξξξ obeys complex Gaussian distribution
ξξξ ∼ CN (0,W), and ξξξT obeys Gaussian distribution ξξξT ∼
N (0,C), where W =

1
L (R

T
v ⊗ Rv), C = 1

2Re{FWFH },
and F = UT

2M−1 ⊗ UH
2M−1. Therefore, in a GLS sense,

and considering Ĉv, the problem in (18) can be reformulated
as [23]

minimize
Rt ,Qt

trace{Rt }

subject to ||C−
1
2 vec(Ĉv − Rt −Qt )||22 ≤ ε

Rt � 0, Qt ∈ D+ (19)

where ε is a user-defined parameter. The estimation prob-
lem of the virtual array real-valued noise-free covariance
matrix with the influence of nonuniform noise is solved
in (19). However, in practice, the covariance matrix C
should be estimated based on Ĉ , 1

2Re{FŴFH }, where
Ŵ =

1
L (R̂

T
v ⊗ R̂v). Thus, the noise-free and noise covari-

ance matrices are estimated by solving the following convex
problem

minimize
Rt ,Qt

trace{Rt }

subject to ||Ĉ−
1
2 vec(Ĉv − Rt −Qt )||22 ≤ ε

Rt � 0, Qt ∈ D+. (20)

The above method is called unitary matrix comple-
tion (UMC) method, and (20) can be solved efficiently by
utilizing an optimization toolbox [27].
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D. DOA ESTIMATION
The real-valued noise-free covariancematrix R̂t can be recov-
ered in (20). Then the DOAs can be determined by using the
unitary subspace-based algorithms. It is worth mentioning
that the CU-ESPRIT algorithm in [11] needs to preprocess
for noncircular signals, i.e., calculating and compensating
their phases, which seriously affects the practicability of the
algorithm. If the CU-ESPRIT algorithm is used, the estimated
direction becomes biased due to the noncircular phase. This
shortcoming motivates us to modify the CU-ESPRIT algo-
rithm to directly estimate DOAs of noncircular signals. Our
modify strategy is to design some novel selection matrices of
CU-ESPRIT algorithm.

According to [11], the DOA estimation of noncircular
signals can be obtained by solving

Hv1Es999 = Hv2Es (21)

where Es is composed of the eigenvectors corresponding to
the first P largest eigenvalues of R̂t , and Hv1 and Hv2 are
defined as

Hv1 = Re{UH
2M−1Jv1U2M−1}, (22)

Hv2 = Im{UH
2M−1Jv2U2M−1} (23)

where Jv1 and Jv2 are selection matrices. Considering the
noncircular phase, we use the selection matrices defined
in [8]. However, they only apply to Es with an even number
of rows. For Es with an odd number of rows, we need to
modify them simply, i.e., ignoring the data in the middle row
of Es. Even if some data is lost, it has little effect on the DOA
estimation results. Thus, the modified selection matrix can
be obtained by (24) and (25), shown at the bottom of the next
page.

Then, the eigenvalues ωk (k = 1, . . . ,P) of 999 are com-
puted. Finally, the DOAs of noncircular signals can be
expressed as

θk = arcsin(− λ
πd arctan(ωk )). (26)

The above modified CU-ESPRIT algorithm can directly esti-
mate DOAs of noncircular signals, which is referred to as the
MCU-ESPRIT algorithm.

E. FORWARD-BACKWARD SPATIAL SMOOTHING
The above analysis assumes that sources are uncorrelated.
However, coherent sources often exist. In this case, the perfor-
mance of many high-resolution DOA estimation algorithms
would suffer from significant degradation. Because coherent
sources make the rank defect of array covariance matrix,
signal and noise subspaces cannot be distinguished cor-
rectly, which leads to the failure of subspace-based DOA
estimation algorithm. The forward-backward spatial smooth-
ing technique is often used to solve coherent signals in
subspace-based algorithms. To separate coherent noncircular
sources, the virtual subarrays were proposed in [11], [28]
by using the spatial smoothing techniques. However, they

assume that sources are real-valued, i.e., the phase of the non-
circular signal is ψi = 0 for an ideal case. This shortcoming
motivates us to propose amethod to solve theDOA estimation
problem of coherent noncircular signals.

Let us first divide the virtual array into K = (2M − 1) −
M̃ + 1 overlapping virtual subarrays, each of which has M̃
virtual sensor elements. It has been proved in [29] that the
modified covariance matrix of signals is a full rank matrix
when the number of subarrays is larger than or equal to the
number of signals, i.e., K ≥ P. In addition, it requires that the
size of each subarray must be at least P+ 1. Considering that
the number of coherent sources is at least two and the virtual
array is a central-symmetric array, each virtual subarray is
required to contain three or more actual elements. Therefore,
similar to the forward-backward spatial smoothing algorithm
in [30], the derivation detail is shown below.

For forward spatial smoothing, the kth virtual subarray
covariance matrix can be expressed asRf

k ∈ CM̃×M̃ to denote

the diagonal part ofRv. Then we haveR
f
s =

1
K

K∑
k=1

Rf
k , where

Rf
s ∈ CM̃×M̃ denotes the forward spatial smoothed covari-

ance matrix. For backward spatial smoothing, the kth virtual
subarray covariance matrix can be expressed as Rb

k ∈ CM̃×M̃

to denote the diagonal part of 555M̃R∗v555M̃ . Then we have

Rb
s =

1
K

K∑
k=1

Rb
k , where Rb

s ∈ CM̃×M̃ denotes the backward

spatial smoothed covariance matrix. Therefore, the virtual
array forward-backward spatial smoothed covariance matrix
Rfb
s ∈ CM̃×M̃ can be obtained as

Rfb
s =

1
2
(Rf

s + Rb
s ). (27)

By exploiting unitary transformation, the estimated smoothed
virtual array real-valued covariance matrix Ĉs is derived as

Ĉs = Re{UH
M̃
R̂fb
s UM̃ } (28)

where R̂fb
s denotes the estimation matrix of Rfb

s . It is worth
mentioning that Ĉv and Ĉs have the same properties, and
their noise components can be removed by using the unitary
matrix completion method. Finally, besides using different
selection matrices, the DOA estimation method of coherent
signals is the same as that of uncorrelated signals. Similarly,
the selection matrices of coherent sources are defined as

Js1 =
[

IM−K−1 0(M−K−1)×1 0(M−K−1)×M
0(M−K−1)×M IM−K−1 0(M−K−1)×1

]
,

(29)

Js2 =
[
0(M−K−1)×1 IM−K−1 0(M−K−1)×M
0(M−K−1)×M 0(M−K−1)×1 IM−K−1

]
.

(30)

F. SUMMARY AND CRAMER-RAO BOUND
For uncorrelated sources, the procedure of the proposed
method is summarized in Algorithm 1. For coherent sources,
the procedure of the proposed method is summarized in
Algorithm 2.
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Algorithm 1 UMC for DOA Estimation of Uncorrelated
Noncircular Signals in the Presence of Nonuniform Noise
1: Construct the virtual array receiving data matrixXv using

(6), and compute the estimated virtual array covariance
matrix R̂v using (10).

2: Obtain the estimated real-valued virtual array covariance
matrix Ĉv using (13).

3: Recover the estimated real-valued virtual array noise-free
covariance matrix R̂t using (20).

4: Perform the EVD of R̂t and return Ês.
5: Estimate the DOA using (26).

Algorithm 2 UMC for DOA Estimation of Coherent Noncir-
cular Signals in the Presence of Nonuniform Noise
1: Construct the virtual array receiving data matrix Xv

using (6), and compute the estimated virtual array covari-
ance matrix R̂v using (10).

2: Compute the estimated virtual array forward-backward
spatial smoothed covariance matrix R̂fb

s .
3: Obtain the estimated virtual array forward-backward

spatial smoothed real-valued covariance matrix Ĉs
using (28).

4: Recover the estimated real-valued virtual array noise-free
covariance matrix R̂t using (20).

5: Perform the EVD of R̂t and return Ês.
6: Estimate the DOA using (29), (30) and (26).

Remark 1: It is noteworthy that due to the influence of non-
circular phase, the spatial smoothing process will destroy the
special structure of sources. If the virtual subarrays method
proposed in [11] is adopted to solve the coherent source
problem, the special structure of the source will be com-
pletely destroyed, resulting in the failure of DOA estimation.
Because the proposed method requires each virtual subarray
to contain at least three actual elements, the special structure
of the source is not completely destroyed. Therefore, these
selection matrices in (29) and (30) are to select the sources
that have not been destroyed for DOA estimation. Neverthe-
less, since the proposed method uses the spatial smoothing
technique, its performance inevitably decreases.
Remark 2:Considering that the virtual subarray contains at

least three actual elements, the proposed method can estimate
at most M − 2 coherent sources. Nevertheless, the proposed
method can estimate more coherent sources than the uni-
tary ESPRIT algorithm in [25] and the NC unitary ESPRIT
algorithm in [8].

Remark 3: From the previous discussions, it is obvious that
the proposed method has certain computational complexity
for using the extension of the array aperture. First, comput-
ing R̂v in (10) requires O{(2M − 1)2L}. Compared with the
subsequent convex optimization process, the computational
complexity of the unitary transformation process is very low
and can be ignored. Then, computing Ŵ = 1

L (R̂
T
v ⊗ R̂v) and

Ĉ , 1
2Re{FŴFH } requiresO{(2M − 1)4}, where the compu-

tational complexity of Ĉ , 1
2Re{FŴFH } is ignored due to its

low computational complexity. Next, solving the convex opti-
mization problem in (20) requires O{ 14 (2M − 1)6}, where all
calculations are real-valued. Finally, since R̂t is a real-valued
positive-semidefinite Hermitian matrix, the EVD of R̂t is
also real-valued, so that it only requires O{ 14 (2M − 1)3}.
In summary, the proposed method with uncorrelated sources
requires O{(2M − 1)2L + (2M − 1)4 + 1

4 (2M − 1)6 +
1
4 (2M − 1)3}. However, combining the ESPRIT algorithm
in [3] with the LRMD method in [23], the method only
requires O{M2L +M4

+M6
+M3

}.
Cramér-Rao Bound (CRB): According to [31], the CRB

based on the received data of noncircular signals in nonuni-
form noise can be expressed as

CRB = {F̄1 − F̄2F̄−13 F̄4}
−1 (31)

where F̄1 = LDH
1 WRD1,F̄2 = LDH

1 WRD2, F̄3 =

LDH
2 WRD2, F̄4 = LDH

2 WRD1, WR = R−Tv ⊗ R−1v ,
D1 = [Ā∗888∗ � Ā′888 + (Ā′)

∗
888∗ � Ā888]P, Ā =[

JA∗

A

]
, Ā′ = [∂ ā(θ1)/∂(θ1), . . . , ∂ ā(θP)/∂(θP)], ā(θk ) =

[exp(−jπ (M − 1)sinθk ), . . . , 1, . . . , exp(jπ (M − 1)sinθk )]
and D2 = [Ā∗888∗ � A888, I2M−1 � I2M−1].

IV. SIMULATION RESULTS
In this section, some simulation results are presented to illus-
trate the performance of the proposedmethod by comparing it
with othermethods, which include theMCU-ESPRITmethod
and the LRMD method in [23]. Among them, the MCU-
ESPRIT method is a modified version of the CU-ESPRIT
method in [11], which can estimate the DOAs of noncircular
signals, and the LRMDmethod uses traditional ESPRIT algo-
rithm to obtain DOAs. In our simulations, a ULA hasM = 8
sensors, and the adjacent sensor spacing is one-half wave-
length. It is assumed that sources are narrow-band noncircular
signals (BPSK, UQPSK orMSKmodulation), and the powers
of source signals are the same, which can be expressed as
σ 2
s . The noise, σσσ = [σ 2

1 , σ
2
2 , . . . , σ

2
M ]

T
, is nonuniform, and

their powers are not exactly equal to each other. The signal-
to-noise ratio (SNR) is defined as SNR= 1

M6
M
m=1(σ

2
s /σ

2
m).

Jv1 =
[
IM−2 0(M−2)×1 0(M−2)×1 0(M−2)×(M−1)
0(M−2)×(M−1) 0(M−2)×1 IM−2 0(M−2)×1

]
(24)

Jv2 =
[
0(M−2)×1 IM−2 0(M−2)×1 0(M−2)×(M−1)
0(M−2)×(M−1) 0(M−2)×1 0(M−2)×1 IM−2

]
(25)
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FIGURE 3. The DOA estimation results (SNR = −5dB and L = 500).
(a) LRMD [23]. (b) CU-ESPRIT [11]. (c) MCU-ESPRIT. (d) Proposed method
(uncorrelated case).

Unless stated in the following simulation, it is assumed that
the number of far-field sources is P = 3. The DOAs of three
uncorrelated sources are θ1 = −5◦, θ2 = 0◦ and θ3 = 45◦,
respectively, and their phases are set to ϕ1 = 10◦, ϕ2 = 20◦

and ϕ3 = 50◦, respectively. Note that Algorithm 1 is used
when sources are uncorrelated and Algorithm 2 is used when
sources are coherent. Moreover, the nonuniform noise isQ =
diag{20,1,5,7,2,8,1.5,0.5}, and η = 100 is the number of the
Monte Carlo trials. The root mean squared error (RMSE) is
defined as

RMSE =

√√√√√ 1
ηP

η∑
i=1

P∑
p=1

(θp − θ̂p,i)
2

(32)

where θ̂p,i is the DOA estimated value of the pth object in the
ith trial.

Fig.3 shows the results of DOA estimation achieved by dif-
ferent methods with did 100 trials in this simulation. Among
them, the CU-ESPRIT method uses the unitary matrix com-
pletion method to eliminate the interference of nonuniform
noise. However, the MCU-ESPRIT method does not use it.
Also, note that the line in Fig.3 represents the true DOA.
It is seen that the noncircular phase has an impact on the
CU-ESPRIT method estimation, which has an angular devi-
ation as shown in Fig.3 (b). If the nonuniform noise is not
eliminated, the estimated performance will decrease signif-
icantly as shown in Fig.3 (c). Although the other methods
can estimate correct DOAs, the proposed method has a better
estimation performance. In addition, it is worth mentioning
that two closely located sources and one source with large
angle separation from them are considered in this simula-
tion result, which proves that the proposed method provides
higher angular resolution and better estimation performance.

Based on 100 trials, Fig.4 shows ten uncorrelated DOAs
estimation of the proposed method, which are θ1 =

−40◦, θ2 = −30◦, θ3 = −20◦, θ4 = −10◦, θ5 = 0◦, θ6 =
10◦, θ7 = 20◦, θ8 = 30◦, θ9 = 40◦ and θ10 = 50◦. It is
observed that the proposedmethod can estimate more sources
than sensors because of the fact that the designed virtual

FIGURE 4. The DOA estimation results for uncorrelated sources
(SNR = 5dB and L = 500).

FIGURE 5. The RMSE versus SNRs (L = 500).

array extends the array aperture by utilizing the noncircular
property of signals.With theoretical analysis, this method can
estimate up to 2M − 2 uncorrelated sources.
Fig.5 shows the RMSE versus SNRs obtained with differ-

ent methods and the CRB. It is seen that the LRMD method
has better estimation performance than the MCU-ESPRIT
method when SNR < 0dB, because the LRMD method
eliminates the interference of nonuniform noise. With the
increase of SNR, the noise power gradually decreases, and the
MCU-ESPRIT method presents better performance by using
the extension of the array aperture. Furthermore, the pro-
posed method always maintains performance better than
other methods in the entire SNR range.

Fig.6 shows the RMSE versus the number of snapshots
obtained with different methods and the CRB. The LRMD
method requires a certain number of snapshots to approxi-
mately recover the noise-free covariance matrix. Therefore,
as seen in Fig.6, the RMSE of the LRMD method is larger
than that of the MCU-ESPRIT method when L ≤ 100.
By utilizing the unitary transformation, the proposed method
doubles the number of snapshots to achieve excellent perfor-
mance with a small number of snapshots.

Fig.7 shows the probability of successful detection versus
SNRs obtained with different methods. The successful detec-
tion satisfies that the absolute error of all estimated angles
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FIGURE 6. The RMSE versus the number of snapshots (SNR = −5dB).

FIGURE 7. The probability of successful detection versus SNRs (L = 500).

FIGURE 8. The DOA estimation results for coherent sources (SNR = 10dB
and L = 64). (a) LRMD [23]. (b) CU-ESPRIT [11]. (c) MCU-ESPRIT.
(d) Proposed method (coherent case).

are smaller than 0.5◦. Similar to the previous conclusion,
theMCU-ESPRITmethod does not achieve successful detec-
tion in low SNR region due to the nonuniform noise. The
successful detection of the LRMD method is always lower
than the proposed method. It is observed that the proposed
method has a 100% successfully detection when SNR >

0dB, which further illustrates that the proposed method has
superior resolution than other methods.

Fig.8 shows the DOA estimation results for coherent
sources with different methods based on 100 trials in this
simulation. There are P = 2 coherent sources with θ1 = −5◦

FIGURE 9. The RMSE for coherent sources versus SNRs (P = 2, θ1 = −5◦,
θ2 = 5◦ and L = 64).

and θ2 = 5◦. The spatial smoothing technique is used in
the CU-ESPRIT method, which has K = 8 virtual subar-
rays. Other methods take advantage of the forward-backward
spatial smoothing technique, and have K = 2 virtual sub-
arrays. The other conditions of this test are the same as
in the first one. In addition, it is noteworthy that we use
Algorithm 2 of the proposed method in this simulation and
the next simulation. As seen in Fig.8, the LRMD method
cannot obtain ideal estimation performance when the number
of snapshots is small, and the CU-ESPRIT method is affected
by the noncircular phase and its estimated performance is also
significantly reduced. Since noise powers are small when the
SNR is high, the other two methods have similar estimation
performance.

Fig.9 shows the RMSE for coherent sources versus SNRs
obtained with different methods. Note that these meth-
ods have mitigated the coherence of signals. Because the
forward-backward spatial smoothing technique reduces the
angular resolution, the RMSE of the LRMD method is also
very large when the SNR is high. On the other hand, the spe-
cial structure of the noncircular source was destroyed, which
leads to the performance degradation of the proposedmethod.
Fortunately, by extending the array aperture, the proposed
method has certain compensation in performance and angular
resolution. As seen in Fig.9, using matrix completion tech-
nique, there are inevitably some estimation errors, resulting
in a slight decline in estimation performance. Therefore,
theMCU-ESPRITmethod is slightly better than the proposed
method when SNR is high.

Fig.10 shows the RMSE versus worst noise power
ratios (WNPRs) obtained with different methods, where the
WNPR = σ 2

max/σ
2
min, σ

2
max and σ

2
min denote the maximal and

minimal noise power, respectively. As previously assumed,
we have σ 2

min = σ
2
8 = 0.5, and σ 2

1 is from 10 to 40. Therefore,
the WNPR is varied from 20 to 80. It is seen that both
the LRMD method and the proposed method can mitigate
the influence of nonuniform noise. However, the proposed
method has better performance than the LRMD method.

Fig.11 shows the simulation time comparison between the
proposed method and the LRMD method. As mentioned

73726 VOLUME 7, 2019



X. Wang et al.: UMC-Based DOA Estimation of Noncircular Signals in Nonuniform Noise

FIGURE 10. The RMSE versus WNPRs (SNR = −5dB, and L = 500).

FIGURE 11. The simulation time comparison (SNR = −5dB, and L = 500).

earlier, the proposed method needs certain computational
complexity for the extension of the array aperture. Therefore,
the proposed method requires more computation time than
the LRMD method. Nevertheless, the proposed method can
achieve DOA estimation within one second.

V. CONCLUSION
In this paper, we proposed a unitary matrix completion
method to estimate DOAs of noncircular signals in nonuni-
form noise. The proposed method deals with the virtual
array by exploiting the noncircular property of signals. Then,
the unitary transformation was utilized to enhance the perfor-
mance and efficiency of the method. Next, the unitary matrix
completion method was applied to mitigate the effect of
nonuniform noise with noncircular sources. Finally, the mod-
ified CU-ESPRIT algorithm was formulated to estimate the
DOAs without the influence of the unknown noncircularity
phase. In addition, the estimation problem of coherent non-
circular sources was solved by using the forward-backward
smoothing technique. The proposed method can effectively
suppress the influence of nonuniform noise, and identify
more sources than sensors with better estimation performance
and higher angular resolution. Simulation results have veri-
fied the performances of the proposed method.
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