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ABSTRACT The impulsive noise can deteriorate sharply the performance of orthogonal frequency division
multiplexing (OFDM) systems. In this paper, we propose a novel joint channel impulse response estimation
and impulsive noise mitigation algorithm based on compressed sensing theory. In this algorithm, both the
channel impulse response and the impulsive noise are treated as a joint sparse vector. Then, the sparse
Bayesian learning framework is adopted to jointly estimate the channel impulse response, the impulsive
noise, and the data symbols, in which the data symbols are regarded as unknown parameters. The Cramér–
Rao Bound is derived for the benchmark. Unlike the previous impulsive noise mitigation methods, the pro-
posed algorithm utilizes all subcarriers without any a priori information of the channel and impulsive noise.
The simulation results show that the proposed algorithm achieves significant performance improvement on
the channel estimation and bit error rate performance.

INDEX TERMS Orthogonal frequency division multiplexing (OFDM), channel estimation, impulsive noise
mitigation, sparse Bayesian learning (SBL), compressed sensing.

I. INTRODUCTION
In several applications of wireless communication technol-
ogy(e.g., vehicular networks [1], smart grid [2], and shallow
sea underwater networks [3]), the transmission of data signals
will be severely deteriorated by the impulsive noise (IN). The
sources of impulsive noise are diverse, such as ignition noise
in automobiles [4], switches for electrical equipments [5],
various maritime operations [6], and so on. Compared to
additive white Gaussian noise (AWGN), the impulsive
noise arises randomly with short duration and high power
impulses.

Orthogonal frequency division multiplexing (OFDM)
technology has been widely adopted in most modern wire-
less communication standards [7]. In conventional OFDM
receivers, the time-domain received signal is converted
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into the frequency domain through a discrete Fourier
transform (DFT), after which each subcarrier is demodulated
independently [8]. Such tone-by-tone demodulation achieves
optimal maximum likelihood detection in AWGN and perfect
channel state information [9]. When the impulsive noise is
present, however, the corresponding frequency-domain noise
samples will be highly dependent, and tone-by-tone demodu-
lation is no longer feasible since the complexity of performing
joint-detection at the receiver increases exponentially with
the number of subcarriers [10].

Efficient impulsive noise suppression method plays an
important role in promoting the performance of OFDM com-
munication systems in the presence of additive impulsive
noise. Since the amplitude of the impulsive noise is usu-
ally much higher than the background noise, it is possible
to determine the presence of impulsive noise by setting a
threshold and then to design a memoryless nonlinear prepro-
cessor (e.g., clipping, blanking, or a combination thereof) to
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eliminate the effect of impulse noise [11]–[14]. By setting
multiple thresholds, the nonlinear estimator for impulsive
noise can improve the signal-to-noise power ratio (SNR) at
the receiver [15]. However, these methods require the noise
priori statistics to obtain the optimal threshold but suffer
from performance degradation when the priori information
mismatchs the time-varying noise statistics, which is not
easy to acquire in reality as well. Moreover, these nonlin-
ear preprocessor may destroy orthogonality among OFDM
subcarriers, thus resulting in intercarrier interference in the
frequency domain [16].

Recently, there has been growing interest in developing
compressed sensing (CS) based impulsive noise mitigation
methods that exploit the time-domain sparsity of impulsive
noise [4], [6], [17]–[21]. These methods all make use of the
information of null tones (i.e., tones that do not carry data
or pilots) of the received OFDM symbol to estimate the
IN sample and then subtract it from the received signal.
Furthermore, some of them have been extended for detect-
ing bursty (i.e., block sparse) impulsive noise [20], [21] by
using structured compressed sensing theory [22]. Although
these methods show obvious advantages over those based
on nonlinear preprocessor, the common drawback of these
algorithms is that their performances are mostly limited by
the number of null tones. It is worth pointing out that these
approaches also assume that the channel state information
is already estimated perfectly before the impulsive noise
removal and do not consider the severe impact of impulsive
noise on the channel estimation [23].

The performance of the IN estimator can be improved by
increasing the number of null tones. However having more
null tones means reduced throughput. When the number of
null tones is limited, it is desirable to exploit information
available in all tones to improve the estimation performance
of the impulsive noise. The difficulty for exploiting all tones,
however, is how to simultaneously estimate the channel and
impulsive noise. An approach for jointly estimating channel
and IN is proposed in [24], but it requires that there is no
overlap between the support of impulsive noise and channel
impulse response. In [25], an iterative channel estimation
and impulsive noise mitigation algorithm is proposed on the
assumption that the length of channel impulse response is
known in advance and that the channel is static for several
OFDM symbols. In [26], generalized approximate message
passing (GAMP) [27] has been used to jointly estimate
the channel taps, the impulse noise samples, symbols, and
the unknown bits. This method requires the acquisition of
a priori information of the channel and impulsive noise and
does not offer rigorous convergence although it is lower in
computational complexity [28], [29]. By assuming that the
impulsive noise parameter distributions are known at the
receiver, a joint channel estimation and data decoding algo-
rithm is developed [30]. By exploiting the sparsity of both
them, the orthogonal matching pursuit(OMP) is adopted for
joint channel and impulsive noise estimation in underwater
acoustic OFDM systems [31]. This algorithm needs to collect

the number and position of IN samples by applying a blanking
operation.

In this paper, we propose two novel algorithms based
on Sparse Bayesian Learning (SBL) framework [32], [33]to
jointly estimate both the channel impulse response and impul-
sive noise by exploiting the sparsity of both them. Our algo-
rithms can also be categorized as an extension of the method
proposed in [34]. The first proposed method uses the pilot
subcarriers to jointly estimate the channel impulse response
and impulsive noise. Once the channel and IN are estimated,
the IN is then removed from the received signal and the chan-
nel is transformed into the frequency domain followed with
the channel equalization. In the second proposed algorithm,
we utilize both the data and pilot subcarriers to promote the
joint estimation performance of the channel impulse response
and impulsive noise. Compared with the algorithms which
treat the channel estimation and IN mitigation independently,
our proposed joint estimation algorithms can lead to a signif-
icant improvement in the Mean Square Error (MSE) of chan-
nel estimation. For impulsive noise mitigation, our method
using all subcarriers has a smaller Mean Square Error (MSE)
of IN estimation than existing impulsive noise mitigation
algorithms using only the null subcarriers.

The contributions of this paper are as follows:
• We treat the unknown data symbols as the hyperpa-
rameters and develop an iterative technique based on
the Expectation Maximization (EM) algorithm for joint
channel estimation, IN estimation, and data detection.
Our algorithm can efficiently recover a sparse vector
even when the measurement matrix is partially unknown
due to the presence of unknown data symbols.

• Being different from many CS based IN estimation
methods which use only the null subcarriers, our pro-
posed method can exploit all subcarriers to improve
the IN estimation performance. Our methods need less
null subcarriers and can promote the spectrum effi-
ciency. Apart from the assumption that the channel
impulse response and impulsive noise samples are all
sparse, our proposed methods do not require other priori
information.

• We derive the closed form Bayesian Cramér-Rao
Bound(BCRB) of channel and impulsive noise
estimation.

The rest of the paper is organized as follows. The system
model and INmodel are presented in Section II. In Section III,
the proposed joint channel estimation and impulsive noise
mitigation algorithms are discussed. The Cramér-Rao Lower
Bound(CRLB) is derived in section IV. Numerical simulation
results are shown in Section V to verify the performance
of the proposed algorithms. Finally we draw conclusions in
Section VI.

II. SYSTEM MODEL
We consider an OFDM system with N subcarriers where M
subcarriers are used for carrying pilot and N −M subcarriers
are used for sending data. In some case, we also consider
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the system which has null subcarriers and then these sub-
carriers can also be considered as pilot subcarriers with
setting pilot symbols as zero. At the transmitter, data sym-
bols which are mapped from the source bits and known
pilot symbols are joined as the frequency-domain OFDM
symbol x = (x0, x1, . . . , xN−1)T . The OFDM modulator,
as an inverse discrete Fourier transformation (IDFT), converts
the frequency-domain OFDM symbols into the time-domain
OFDM signals to which the cyclic prefix (CP) is prepended
before feeding into the wireless channel. Assuming that
inter-symbol interference is avoided by simply discarding the
cyclic prefix at the receiver, the received time-domain signal
is expressed as

r = HF∗x+ u (1)

where H is a N × N circulant matrix whose first column is
formed by the zero-padded channel impulse response vec-
tor h = (h0, h1, . . . , hL−1)T , L is the length of channel
impulse response. F is the unitary N-point discrete Fourier
transform (DFT) matrix with (m, n) element [F]m,n =
1
√
N
e−j2πmn/N with m, n ∈ {0, 1, . . . ,N − 1} and F∗is its

conjugate transpose. u = i + g is the additive noise term
which includes i, denoting impulsive noise component, and g,
denoting AWGN component.

After the OFDM demodulator implemented by DFT,
the resulting frequency-domain symbol becomes

y = Fr = FHF∗x+ Fi+ Fg = 3x+ Fi+ n (2)

where 3 , diag(ȟ) is a diagonal matrix with the channel
frequency response ȟ as its diagonal elements. The channel
frequency response ȟ is the DFT of the channel impulse
response h, namely ȟ =

√
NFLh, where FL ∈ CN×L is the

submatrix selected from the first L columns of matrix F. n is
the frequency-domain background noise vector which is still
AWGN since F is unitary matrix.

Gaussian-Mixture(GM) [35], Middleton Class A (MCA)
[36], and Symmetric alpha stable [37] are the three INmodels
most widely adopted in the literature. In this work, we use
GMmodel to simulate the impulsive noise. In particular, a K-
component GM is accepted for performance analysis. The
probability density function(pdf) of a time-domain impulsive
noise sample u is expressed as

p(u) =
N∏
i=1

K∑
k=1

πk fk (ui) (3)

where fk (ui) ∼ CN (ui; 0, γk )denotes a complex Gaussian
pdf with zero mean and variance γk , πk is the mixing prob-
ability with

∑K
k=1 πk = 1. The impulsive noise samples are

assumed to be independent and identically distributed.

III. PROPOSED APPROACHES
From the equation (2), the received OFDM symbol can also
be mathematically represented as

y = diag(ȟ)x+ Fi+ n

= diag(x)ȟ+ Fi+ n

=
√
NXFLh+ Fi+ n (4)

where X , diag(x) is a diagonal matrix with the
frequency-domain symbol x as its diagonal elements.

In wireless communications, the discrete-time channel
impulse response(CIR)h of length L comprising S resolvable
propagation paths can be modeled as [34], [38]:

hl =
S∑
s=1

αsδ[l − τs], 0 ≤ l ≤ L − 1 (5)

where αs and τs denote the path gain and the normalized path
delay of the s-th path, respectively. Without loss of generality,
we assume 0 ≤ τ0 < τ1 < · · · < τs−1 ≤ L − 1. Fortunately,
numerous theoretical analysis and experimental results have
verified that wireless channels are sparse in nature, i.e., in
the CIR model(5), the dimension of the CIR L may be large,
but the number of the active paths S with significant gains
is usually small, i.e., S � L, especially in the wireless
wideband communications [34], [38].

Defining a new vector w , [hT iT ]T ∈ CL+N and a new
matrix 8 , [

√
NXFL F] ∈ CN×(L+N ), we can rephrase (4)

as an ‘‘augmented’’ model

y = 8w+ n (6)

where the matrix 8 is obviously an underdetermined matrix.
Meanwhile noting that both IN vector i and CIR vector h
are sparse, the new constructed vector w is also viewed as
a sparse vector reasonably. So the estimation of w in (6) can
be considered as a typical compressed sensing problem [39].
Moreover, note that the data symbols, namely some element
of the matrix 8, is unknown at the receiver and need to be
estimated, which necessitates the development of techniques
that are capable of handling partially unknown dictionary
matrices.

A. JOINT CHANNEL AND IN ESTIMATION ALGORITHM
USING PILOT SUBCARRIERS
Let P and D denote the index set corresponding to the pilot
subcarriers and data subcarriers, respectively. The part per-
taining to the pilot subcarriers in (6) can be written as

yP = 8Pw+ nP (7)

where yP is a M × 1 vector containing the elements of y
sampled at pilot locations,8P is aM×(L+N ) submatrix of8
consisting of the rows corresponding to the pilot locations,
and nP is also a M × 1 vector consisting of the components
of n sampled at pilot locations. Since 8P is a known flat
matrix and w is a sparse vector, we may use CS theory to
estimate w directly.
Many CS algorithms have been proposed in the litera-

tures. In practice, different CS algorithms will have different
requirements on the matrix and the sparsity for a reliable
recovery. In this paper, we adopt SBL to solve the problem.
Compared with the greedy CS algorithm, the SBL algorithms
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have shown super recovery performance when the recovering
signal is less sparsity or the measurement matrix is higher
coherence, which could well fit our problem [40], [41].
Another advantage of SBL is that it is capable of handling
partially unknown dictionary matrices by virtue of the EM
framework, which leads to the solution for (6). In the fol-
lowing, we derive the algorithm for joint channel and IN
estimation using pilots based on SBL framework (JCI ).

For observation model (7), SBL imposes firstly a parame-
terized Gaussian prior on the vector w, given by

p(w; 0,0) =
N+L−1∏
i=0

(πγi)−1 exp
(
−
|wi|2

γi

)
(8)

where the covariance matrix 0 , diag(γ0, γ1, . . . , γN+L−1).
Given the observation model (7) and prior (8) ofw, the pos-

terior of w is also a Gaussian distribution

p(w|yP; λ,0) ∼ CN (w;µ,6) (9)

where λ is a scalar corresponding to the background noise
variance. The posterior mean vector µ and covariance matrix
6 are respectively given by

µ =
1
λ
68∗PyP (10)

6 = 0 − 08∗P(λI+8P08
∗
P)
−18P0 (11)

The posterior mean µ and covariance matrix 6 cannot be
obtained directly from (10) and (11) since there are unknown
hyperparameters 0 and λ. The well-known type-II maxi-
mum likelihood (ML) estimator is often used to estimate
them which are solved by maximizing the marginalized pdf
of yP. Since the ML estimation problem cannot be solved
in closed form, iterative algorithm such as EM is employed.
Upon termination of the EM algorithm, the maximum a
posteriori (MAP) estimate ŵ of w is the posterior mean µ,
i.e., ŵ = µ.

Using EM algorithm to estimate the hyperparameter
0 and λ, the k-th iteration procedure is as follows:
(1)E-step: the sparse vector w is treated as latent variable

and the expectation Q(0, λ) of joint pdf p(yP,w;0, λ) under
the posterior pdf p(w|yP) is given by

Q(0, λ|0(k), λ(k)) = Ew|yP
{
log p(yP,w;0

(k), λ(k))
}

(12)

(2)M-step: the updated hyperparameter 0(k+1) and λ(k+1)

can be obtained by maximizing the expectation Q(0, λ),
which is showed in (13):

(0(k+1), λ(k+1)) = argmax
0,λ

Q(0, λ|0(k), λ(k)) (13)

The solution of 0(k+1) and λ(k+1) are expressed as:

γ
(k+1)
i = 6

(k)
i,i + (µ(k)

i,i )
2 (14)

λ(k+1) =
1
M


∥∥∥yP −8Pµ

(k)
∥∥∥2
2

+ λ(k)
N+L−1∑
i=0

[
1− (γ (k)

i )
−1
6

(k)
i,i

]
 (15)

where M is the number of pilot subcarriers.

Upon termination criteria
∥∥µ(k+1)

− µ(k)
∥∥2
2 6 ε of the EM

algorithm, we obtain the MAP estimator ŵ. According the
definition ofw, the MAP estimator of channel and IN are ĥ =
ŵ[1 : L] and î = ŵ[L + 1 : N + L] respectively.
We then transform the estimation of IN into the frequency

domain and subtract it from the received signal in the data
tones according to (16):

ŷ = y− Fî = 3̂x+ F(i− î)+ n (16)

the residual IN is treated as background noise. The main
diagonal elements of matrix 3̂ is the frequency response of
the channel estimation ĥ. Then equalization with zero-force
is used to compensate the channel gain as x̂ = 3̂

−1
ŷ. After

that the conventional detection and decoding algorithms will
be applied. The entire algorithm of JCI is summarized in
Algorithm 1.

Algorithm 1 JCI
Input: yP, 8P, rmax , and ε
Output: ŵ

Given the initial value: 0(0)
= I and λ(0) = 1

while
∥∥µ(r+1)

− µ(r)
∥∥2
2 > ε and r 6 rmax do

E-step:
Update µ based on (10)
Update 6 based on (11)
M-step:
Update 0 based on (14)
Update λ based on (15)

end while
return ŵ = µ

B. JOINT CHANNEL AND IN ESTIMATION ALGORITHM
WITH SYMBOL DETECTION
The performance of above proposed JCI is limited by the
number of pilot subcarriers. However increasing the number
of pilot subcarriers will lead to reduced spectra efficiency and
system throughput. If the information in data subcarriers of
OFDM symbol can be exploited, it is desirable to improve
the estimation performance of channel and IN with system
throughput guarantee.

Using all subcarriers, the observation model is the same
as (6). So the posterior mean µ and covariance 6 of w are
respectively expressed as

µ ,

(
µh
µi

)
=

1
λ
68∗y (17)

6 ,

(
6hh 6hi
6ih 6ii

)
= 0 − 08∗(λI+808∗)−180 (18)

where µh and µi are the subsets corresponding to channel
and IN partitions in the mean vector µ respectively and the
same principle is applied to the covariance matrix 6. Note
that (10),(11) and (17),(18) are different in that the former
uses only the known pilot symbols to construct the sensing
matrix 8P, whereas the latter uses the pilot symbols along
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with the estimated transmit symbols to construct the sensing
matrix 8. In order to determine the matrix 8, we need to
estimate the unknown data symbol in data subcarriers. Subse-
quently we derive the algorithm for joint channel estimation,
IN estimation, and symbol detection using pilot and data
subcarriers based on SBL framework, which is denoted as
JCIS.

Define θ , {X,0, λ} for simplicity. Considering the
sparse vectorw as latent variable and θ as the parameters to be
estimated, the E-step and M-step of the JCIS-SBL algorithm
can be given as

E-step : Q(θ |θ (k)) = Ew|y
{
log p(y,w;θ (k))

}
(19)

M-step : θ (k+1) = argmax
θ

Q(θ |θ (k)) (20)

Similar to the (14) and (15), the solutions of 0(k+1) and
λ(k+1) are given as

γ
(k+1)
i = 6

(k)
i,i + (µ(k)

i,i )
2 (21)

λ(k+1) =
1
N


∥∥∥y−8(k)µ(k)

∥∥∥2
2

+ λ(k)
N+L−1∑
i=0

[
1− (γ (k)

i )
−1
6

(k)
i,i

]
 (22)

where N is the number of OFDM symbol subcarriers.
Next we derive the update equation for the data sym-

bol matrix X (k+1) with the 0(k+1) and λ(k+1) already
obtained by (21) and (22). We notice that log p(y,w;θ ) =
log p(y |w ;X, λ) + log p(w;0) and the second term is inde-
pendent on X , so the objective function in the M-Step to
maximize over X (k+1) can be written as

X (k+1)
= argmax

X
Q(X (k+1)

;8(k),0(k+1), λ(k+1))

= argmax
X

{
c− Ew|y

{
‖y−8w‖22

λ

}}
= argmax

X

{
c− λ−1

[
‖y−8µ‖22 + Tr(8∗86)

]}
= argmin

X
‖y−8µ‖22 + Tr(8∗86) (23)

where c is a constant independent of X and Tr(·) denotes the
trace of matrix. Using the definition of 8,µ,6, we can get
the following equation:

‖y−8µ‖22 + Tr(8∗86) =
∥∥∥y−√NXFLµh − Fµi∥∥∥2

2
+Tr(NXFL6hhF∗LX

∗

+
√
NF6ihF∗LX

∗

+
√
NXFL6hiF∗

+F6iiF∗) (24)

Since the channel and IN are independent and uncorrelated
in reality, 6ih and 6hi in (24) can be set to zero matrix.

FIGURE 1. Block diagram of our proposed receivers.

Substituting (24) into (23), we can get the update rule of X :

xj(k+1) = argmin
xj∈�


∣∣∣y (j)− xj√NFL (j, :) ĥ− F (j, :) î∣∣∣2
+
∣∣xj∣∣2Cb (j, j)


(25)

where j ∈ D, � denotes M-QAM constellation points from
which the transmitted symbol is selected, Cb = NFL6hhF∗L ,
F (j, :) is the jth row of the matrix F.
The JCIS requires initial estimate of the unknown data

symbolX to construct the initial measurementmatrix8(0). To
ensure the convergence of JCIS, we firstly adopt the previous
proposed JCI algorithm to estimate the channel and IN. Then
we obtain the initial estimate X (0) of X through the equaliza-
tion and detection according to (16). Hence, the initialization
of measurement matrix8(0) can be constructed by usingX (0).
The entire algorithm of JCIS is summarized in Algorithm 2
and the receiver structure is depicted in Fig.1.

Algorithm 2 JCIS
Input: y, 8p, rmax , and ε
Output: ŵ, X̂

Given the initial value: 0(0)
= I, λ(0) = 1 and X (0)

obtained by using JCI
while

∥∥µ(r+1)
− µ(r)

∥∥2
2 > ε and r 6 rmax do

Construct 8(r)
= [
√
NX (r)FL F]

E-step:
Update µ based on (17)
Update 6 based on (18)
M-step:
Update 0 based on (21)
Update λ based on (22)
Update X based on (25)

end while
return ŵ, X̂

C. COMPLEXITY ANALYSIS
The computational complexity of the JCI is dominated by
the matrix multiplication and inversion operations in (10)
and (11), which has a complexity of O(M (N + L)2) per iter-
ation. After given the initial values of data symbols, the JCIS
using all tones to estimate channel and IN has a complexity of
O(N (N+L)2) per iteration. So the total complexity of JCIS is
O((N +M )(N +L)2). Compared with JCI, the complexity of
JCIS is higher. This means JCIS improves the performance at
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TABLE 1. Parameters for simulations.

the expense of increasing complexity, which will be verified
by simulation results in the next Section.

IV. CRLB ANALYSIS
The CRLB provides a fundamental lower limit on the MSE
performance of unbiased estimators. For random param-
eter estimation with availability of a priori information,
the Bayesian Cramér-Rao Bound(BCRB) is already used
to obtain lower bounds of dynamical Rayleigh channel
complex gains estimation in OFDM system [42]. CRLB
for SBL algorithm was derived in [43]. In this section,
we present a closed-form BCRB expression for our proposed
JCIS algorithm.
Let ŵ(y) denotes an unbiased estimator of w using the

observations y. The MSE matrix of ŵ(y) is defined as

Mw , Ey,w[(ŵ(y)− w)(ŵ(y)− w)H ] (26)

and the Bayesian Information Matrix(BIM) is defined as

Jw , Ey,w[−∇2
w log(p(y,w))]

= Ey,w[−∇2
w log(p(y|w))]+ Ey,w[−∇2

w log(p(w))] (27)

where p(y|w) is the conditional probability density function
of y given w and p(w) is the priori probability distribution of
w. Assuming that the MSE matrix exists and the BIM is non-
singular, they should satisfyMw

�
(
Jw
)−1.

Proposition 1: Using the signal model in (6), the BCRB
of the variable w is given by

BCRB(w) =
(
Jw
)−1

=

(
8∗8

λ
+ 0−1

)−1
= 0 − 08∗(λI+808∗)−180 (28)

Proof: See Appendix A. �
The closed form expressions of BCRBs associated to the

estimation of h and i are separately given by

BCRB(h) = Tr(BCRB(w)[1:L,1:L]). (29)

and

BCRB(i) = Tr(BCRB(w)[L+1:N+L,L+1:N+L]). (30)

V. SIMULATION RESULTS
In this section, we demonstrate the performance of the pro-
posed joint channel estimation and IN estimation algorithms
through Monte Carlo simulations. We consider a 3 MHz

OFDM system with 256 subcarriers, with a sampling fre-
quency of fs = 3.84MHz, resulting in an OFDM symbol
duration of 83.3µs with Cyclic Prefix (CP) of 16.67µs. The
Rayleigh-fading uncorrelated-scattering model with sparse
impulse response [44] is adopted and the length of channel
length(L) equals the length of CP. It is assumed that the
channel taps remain constant during the entire duration of one
OFDM symbol as well. For IN and background noise simula-
tion, we use the publicly available software [45], which adopt
the GM model with K = 3, pk = {0.9, 0.07, 0.03}, and γk =
{1, 100, 1000}. The choice of the noise model parameters is
such that the impulsive-to-background noise power ratio is up
to 20dB(about 7% in all noise samples) and 30dB(about 3%
in all noise samples). The modulation schemes is 4-QAM.
The signal-to-noise ratio (SNR) is defined as SNR = Ps/Pu,
where Ps and Pu are the power of the transmitted signal and
total noise respectively. Without loss of generality, the pilot
and data symbol power are normalized as one.

A. COMPARISON OF CHANNEL ESTIMATION
PERFORMANCE
In this subsection, we compare the channel estimation per-
formance of our proposed algorithms with the following
algorithms.
• Ideal LS [9]: assumed that the Multipath Intensity Pro-
file (MIP) of channel is known and IN is completely
removed, the least squares(LS) method is used for chan-
nel estimation.

• SBL-LS [18]:assumed that the Multipath Intensity Pro-
file (MIP) of channel is known and IN is mitigated by
SBL only using null tones, the least square(LS) method
is used for channel estimation.

• SBL-JCS: the IN is firstly mitigated by SBL using null
tones and then the algorithm proposed in [34] is used to
estimate the channel.

• JCSwIN: the algorithm proposed in [34] is used to esti-
mate the channel but the IN is not mitigated.

• CS: the `1-norm minimization algorithm [39] is used to
jointly estimate the channel and IN based on (7).

The Mean Square Error (MSE) of channel estimation is

defined asMSE , E
{∥∥∥h− ĥ∥∥∥2

2

}
. Fig. 2 and Fig. 3 show the

MSE of all algorithms versus SNR when the number of pilot
subcarriers is set to 44 and 64 respectively. TheBCRBof JCIS
is also plotted as benchmark. In order to use the conventional
CS-based IN mitigation algorithm, we set the number of null
subcarriers as 50. But it is important to note that our proposed
algorithms need not rely on null subcarriers. It can be seen
that the performance of JCIS is almost not declined with the
reduction of pilot subcarriers but the performance of the Ideal
LS, SBL-JCS, and SBL-LS are degraded obviously. It shows
that the channel estimation methods with joint data detection
need less pilot subcarriers. The JCIS achieves about 15dB
SNRgain over SBL-LS in that the former estimates jointly the
channel, IN, and data symbols but the latter does not. JCSwIN
has the worst performance at lower SNRs because it do not
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FIGURE 2. The MSE of channel estimation versus SNR. The number of
pilot subcarriers is 44. The number of null subcarriers is 50.

FIGURE 3. The MSE of channel estimation versus SNR. The number of
pilot subcarriers is 64. The number of null subcarriers is 50.

remove the IN and treat the IN as background noise, which
shows that those optimal channel estimation algorithms under
AWGN will deteriorate rapidly in the presence of IN.

B. COMPARISON OF IN ESTIMATION PERFORMANCE
In this subsection, the IN estimation performance is
demonstrated. The MSE of IN estimation is defined as

MSE , E
{∥∥∥i− î∥∥∥2

2

}
. The number of pilot subcarriers is set

to 44 and the number of null subcarriers is set to 50 and 100
respectively. Fig. 4 and Fig. 5 show the IN estimation MSE
performance of our proposed algorithms and others versus
SNR. SBL-NULL and SBL-ALL are proposed in [18] which
exploit the null subcarriers and all subcarriers respectively.
The BCRB of JCIS is also plotted as benchmark. It can
be seen that JCIS maintains stable estimation performance
under two circumstance. It manifests that JCIS needs less the
number of null subcarriers by jointly estimating the chan-
nel, IN, and data symbols. As a conventional IN estimation
method only exploiting the null subcarriers, the performance
of SBL-NULL is degraded along with the decrease of the
number of null subcarriers. SBL-ALL demonstrates poor
performance in that it simply views the received signal at

FIGURE 4. The MSE of IN estimation versus SNR. The number of null
subcarriers is 50. The number of pilot subcarriers is 44.

FIGURE 5. The MSE of IN estimation versus SNR. The number of null
subcarriers is 100. The number of pilot subcarriers is 44.

FIGURE 6. BER versus SNR in uncoded OFDM system. The number of pilot
subcarriers is 44. The number of null subcarriers is 50.

data subcarriers as background noise and cannot carry out the
channel estimation and data detection.

C. THE COMPARISON OF SYSTEM PERFORMANCE FOR
UNCODED AND CODED SYSTEM
In this subsection, the BER performance of all algo-
rithms in uncoded and coded systems are plotted in
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FIGURE 7. BER versus SNR in coded OFDM system. The number of pilot
subcarriers is 44. The number of null subcarriers is 50.

FIGURE 8. System throughput versus SNR. The number of pilot
subcarriers is 44. The number of null subcarriers is 50.

Fig. 6 and Fig. 7 respectively. The number of pilot and null
subcarriers are 44 and 50 respectively. The total number of
transmitted symbols is 104 in uncoded systems. In coded
systems, a rate 1/3 Turbo code is used and the total number of
transmitted frames is 104. For both uncoded and coded sys-
tems, the 4-QAM modulation scheme is adopted. The Ideal
case is also depicted as benchmarks that the channel state
information is perfectly obtained and the impulsive noise is
completely mitigated at the receiver side.

In the uncoded system, JCI achieves 5dB SNR gain over
SBL-JCS, 7dB SNR gain over CS, and 12-15dB SNR gain
over JCSwIN respectively. JCIS obtains additional 2-3dB
gain by using all tones. In the coded system, JCI achieves 2dB
SNRgain over CS and 3 dB SNRgain over JCSwIN at a target
BER of 10−3 respectively. JCIS also obtains additional 3dB
SNR gain over JCI. It is also noted that, in the −10 ∼ −5dB
SNR region, the BER of JCIS declines from 2 × 10−2 to
3×10−5 and the BER of JCI declines from 3×10−2 to about
10−3. Yet the BER of SBL-JCS, CS, and JCSwIN decline
quite slowly.

We also notice that the performance of JCSwIN is the
worst among all algorithms in all experiments. It manifests

FIGURE 9. System throughput versus SNR. The number of pilot
subcarriers is 64. The number of null subcarriers is 50.

FIGURE 10. The MSE performance comparison between JCI and JCIS with
various number of pilot tones.

that the IN will deteriorate rapidly the performance of those
algorithms which are optimal under AWGN.

Subsequently, the system throughput performance of all
algorithms are plotted in Fig. 8 and Fig. 9 respectively.
The throughput of our proposed algorithms is derived in
Appendix B. It can be observed that JCIS and JCI can obtain
higher throughput than the other algorithms. By exploiting all
tones to estimate the channel and impulsive noise, JCIS can
achieve higher throughput performance.

D. COMPARISON BETWEEN JCI AND JCIS
For further comparison, we study the performance of JCI and
JCIS with a different number of pilot tone and null tone in
this subsection. Firstly we compare the performance of JCI
and JCIS as the number of pilot tone is set to 64, 44, and 24
respectively, which are showed in Fig. 10 and Fig. 11 respec-
tively. From Fig.10, we observe that the channel estimation
performance of JCIS is not deteriorated with the reduction
of pilot tones and the performance of JCI is deteriorated
conversely. Fig.11 shows that the BER performance of JCIS
is slightly degraded and that of JCI is degraded significantly.
Next we compare the performance of JCI and JCIS as the
number of null tone is set to 80, 50, and 20 respectively, which
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FIGURE 11. The uncoded BER performance comparison between JCI and
JCIS with various number of pilot tones.

FIGURE 12. The MSE performance comparison between JCI and JCIS with
various number of null tones.

FIGURE 13. The uncoded BER performance comparison between JCI and
JCIS with various number of null tones.

are showed in Fig.12 and Fig.13 respectively. From Fig.12
we observe that the channel estimation performance of JCIS
is not deteriorated with the reduction of null tones and the
performance of JCI is deteriorated conversely. Fig.13 shows
that the BER performance of JCIS is slightly degraded and
that of JCI is degraded significantly. The reason why JCIS
can obtain better and more stable performance than JCI is that
JCIS can utilize all tones of received OFDM symbol for joint
channel, impulsive noise, and symbol estimation.

VI. CONCLUSION
In this paper, we consider the joint sparse channel estimation,
impulsive noise mitigation, and data detection for OFDM
systems. By observing the sparsity of channel and impulsive
noise in the time domain, we construct an expanded sparse
vector to represent the channel and impulsive noise together.
To estimate the augmented vector, JCI algorithm is proposed
which uses only the pilot and null subcarriers. Furthermore
JCIS algorithm is developed to improve the performance of
channel estimation and impulsive noise cancelation, which
apply the data detection simultaneously. We derive the ana-
lytical expression of BCRB for JCIS algorithm as well. The
MSE performance of our proposed scheme outperforms the
conventional methods and is close to the lower bound. More-
over, simulation results show our methods can have a good
BER performance with fewer pilot and null subcarriers and
obtain better spectral efficiency.

APPENDIX A
According the OFDM system model (4), the conditional
probability density p(y|h, i) is expressed as

p(y|h, i)=(πλ)−N exp

(
−
‖y−
√
NXFLh− Fi‖22

λ

)
. (31)

The probability density of h and i are respectively

p(h) = (π)−L |0h|−1 exp
(
−h∗0−1h h

)
(32)

and

p(i) = (π)−N |0i|−1 exp
(
−i∗0−1i i

)
. (33)

The joint probability of y,h, i is p(y,h, i) = p(y|h, i)p(h)p(i).
The Fisher Information Matrix (FIM) JD is expressed as

JD = −Eh,i[∇2
h,i log(p(y|h, i))]

=
1
λ

[
NF∗LX

∗XFL
√
NF∗LX

∗F
√
NF∗XFL F∗F

]
(34)

The priori information matrix JP is expressed as

JP = −Eh,i[∇2
h,i (log(p(h))+ log(p(i)))]

=

[
0−1h

0−1i

]
(35)

The Bayesian Information Matrix(BIM) of variable h, i is
given by

J = JD + JP (36)

=
1
λ

[
NF∗LX

∗XFL
√
NF∗LX

∗F
√
NF∗XFL F∗F

]
+

[
0−1h

0−1i

]
(37)

=
1
λ

[√
NXFL
F

]∗ [√
NXFL F

]
+

[
0h

0i

]−1
(38)

=
8∗8

λ
+ 0−1 (39)

74508 VOLUME 7, 2019



X. Lv et al.: Joint Channel Estimation and Impulsive Noise Mitigation Method for OFDM Systems

We also can utilize the observation model (6) to derive
the BIM. The conditional probability density p(y|w) is
expressed as

p(y|w) = (πλ)−N exp

(
−
‖y−8w‖22

λ

)
. (40)

The probability density of w is

p(w) = (π)−(N+L) |0|−1 exp
(
−w∗0−1w

)
. (41)

Thus the log function of joint probability of y,w has the
following form

log(p(y,w)) = log(p(y|w))+ log(p(w))

= −N log(πλ)− (N + L) log(π )− log(|0|)

−
‖y−8w‖22

λ
− w∗0−1w. (42)

The Bayesian InformationMatrix(BIM) of variablew is given
by

Jw = −Ew[∇2
w log(p(y,w))]

= −Ew

[
∇w

(
8∗(y−8w)

λ
− 0−1w

)]
=
8∗8

λ
+ 0−1 (43)

APPENDIX B
We denote that the signal power in i-th subcarrier as si =
E{|xi|2}. The total noise power in i-th subcarrier is given by

σ 2
i = E{|(Hi − Ĥi)xi|2} + E{|Fi·(i− î)|2} + E{|ni|2} (44)

where Fi· expresses the i-th row of DFT matrix F. Hi and Ĥi
express the perfect channel frequency response coefficients
and its estimation respectively.Fi·(i−î) is the projection of the
residual impulsive noise onto each subcarrier. ni expresses the
background noise component of each subcarrier. (44) means
that the total noise of each subcarrier consists of the interfer-
ence due to channel estimation error, the residual impulsive
noise, and the background noise.

The SNR on the i-th subcarrier can be expressed as

SNR(i) =
|Ĥi|2si
σ 2
i

(45)

The total channel capacity of OFDM system expressed in bit
per symbol is given by [19], [46]

R =
1
N

∑
i∈D

log2

(
1+

SNR(i)
0

)

=
1
N

∑
i∈D

log2

(
1+
|Ĥi|2si
0σ 2

i

)
bit/s/Hz (46)

where 0 denotes the SNR gap which is dependent on coding
gain and targeted bit error rate.
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