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ABSTRACT The rapid assessment of earthquake-stricken regions immediately after a seismic event is
crucial for earthquake relief operations. Since unmanned aerial vehicles (UAVs) can quickly reach the
affected areas and obtain images, they are widely used in the post-earthquake rapid assessment. However,
sensor noise and other unavoidable errors can affect the quality of images acquired by sensors attached
to the UAVs, which can, in turn, reduce the quality of the assessment. We defined a new problem in the
application of multiple UAVs in the rapid assessment of earthquake-stricken regions. The rapid-assessment
task-assignment problem (RATAP) was used to construct the assignment plan for multiple UAVs in a rapid-
assessment task while considering the weights of potential targets, the endurance of the UAVs, and the sensor
errors. The RATAP was formulated as a variant of the team orienteering problem (TOP) called the revisit-
allowed TOP with reward probability (RTOP-RP). We then developed an efficient hybrid particle swarm
optimization with simulated annealing (HPSO-SA) algorithm, which produced a high-quality solution for
the RATAP, and confirmed the effectiveness and rapidity of our algorithm through numerical experiments.
Finally, we conducted a case study based on real-world data from the 2008 Wenchuan earthquake in China
to demonstrate our approach.

INDEX TERMS Post-earthquake, multiple unmanned aerial vehicles, rapid-assessment task-assignment
problem, target-revisit-allowed strategy.

I. INTRODUCTION
In the last decade, the number of earthquakes and the
size of affected populations have grown, according to the
biennial Global Disaster Risk Assessment Report [1]–[5]
released by the United Nations International Strategy for
Disaster Reduction (UNISDR). In 2017, earthquakes caused
the loss of hundreds of billions of dollars and affected
several million people globally [6]. The rapid assessment
of earthquake-stricken regions immediately after a seismic
event is crucial for earthquake relief operations, especially
in remote regions where the existing communication system
may be poor [7]. The rapid assessment operation may start as
soon as possible after the earthquake, and is typically com-
pleted within 72 hours. Some of the main purposes of rapid
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assessment are to assess the damage of the population gath-
ering points (such as schools and hospitals) and to under-
stand the basic needs of disaster victims, including water,
food, non-food items, and shelter. The results of rapid
assessment have been shown to directly affect the alloca-
tion of disaster relief resources and search-and-rescue oper-
ations [8], [9]. High-quality rapid-assessment results have
been found to ensure efficient allocation of resources, ulti-
mately minimizing damage and casualties [10], [11]. In the
last decade, because of their speed, flexibility, and efficiency,
unmanned aerial vehicles (UAVs) have been routinely used
by many rescue agencies for rapid assessment after dis-
asters [12]–[14]. UAV-assisted architecture affords flexible
deployment and low operational costs, especially when tradi-
tional communication systems have been damaged by natural
disasters [15]. In the 2008 Wenchuan M8.0 earthquake in
China [16], [17], the 2009 L’Aquila M7.2 earthquake in
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Italy [18], [19], the 2010 M7.0 earthquake in Haiti [20],
the 2011 M9.0 earthquake and tsunami in East Japan [21],
the 2013 Lushan M7.0 earthquake in China [22], the 2014
Iquique M8.2 earthquake in Chile [23], and the 2016
Kumamoto M7.3 earthquake in Japan [24], UAVs were
used to collect many images of earthquake-stricken regions
through the remote control of professional operators imme-
diately after the disaster. Based on these images, the dam-
age to buildings in earthquake-stricken areas was mapped
and assessed, which provided useful information for rescue
operations.

When performing a rapid assessment after an earthquake,
UAVs have been shown to quickly reach the disaster area and
capture images and videos of multiple potential targets in a
short period of time [25], where potential targets are the task
point targets provided by experts from a relief agency and
based on integrated characteristics and available information
of the targets [26]. For the rapid assessment of multiple point
targets, the paths of multiple UAVs must be coordinated and
optimized to maximize the utility of the UAVs and improve
the quality of their rapid assessment. Operations research
(OR) has been found to help UAVs improve the efficiency and
efficacy of humanitarian aid [27]. Otto et al. [28] reviewed
the literature on civil aircraft optimization methods for UAVs.
Similarly, Trigui et al. [29] applied a traveling salesman prob-
lem (TSP) variant model to solve the multi-UAV emergency-
response problem for multiple potential targets. Multiple
objectives, including total trips, maximum trips, and mission
time, can be optimized using the model. The vehicle routing
problem (VRP) model [30] was used to construct the shortest
assessment routes for a fleet of UAVs to visit all point targets
in an affected area without considering the UAVs’ transport
capacity. Moreover, Huang et al. [31] used a VRP variant
model to solve the path-optimization problem for the rapid
distribution of relief materials. A team orienteering problem
(TOP) variant model proposed by Balcik [32] was used to
construct an assessment plan to cover different point targets in
a balanced way. Site selection and routing decisions of post-
disaster rapid assessment can be solved using the objective
function, which maximizes the minimum coverage ratio of
different characteristic point targets with duration constraints.
Some OR models were also applied to solve the routing-
optimization problem in the rapid-assessment stage, such as
the continuous approximation method [33], which minimized
the total visit time for vehicles accessing all targets, and the
mixed integer programming method [34], which optimized
the time interval between consecutive visits to the same
target.

Analysis of the above literature indicated that when the
number of potential targets was small, or the targets were
relatively concentrated and the UAVs could cover all the
targets, OR models, such as the TSP and VRP, could deter-
mine the task assignment and path planning of the UAVs.
The TOP, which can solve the problem of target selection,
was more efficient when the number of potential targets was
large, or when they were widely distributed. AUAV, however,

cannot access all the potential targets in a certain period of
time. Access to important potential targets can improve the
reward of rapid assessment in a post-earthquake scenario.
The importance of potential targets is generally based on
their characteristics, which include the distance from the
epicenter, the type of building, and the population size. Before
the assessment is performed by a UAV, experts from relief
agencies must determine the importance of every potential
target, which is described in the form of a weight. In an actual
post-earthquake scenario, because the number of UAVs that
can perform assessment tasks will be limited, and each UAV
will be constrained by its endurance capability, we believe
that the TOP model is more suitable for rapid assessment,
as it can optimize the UAV task-assignment problem.

Furthermore, in the implementation of post-disaster rapid
assessment, sensor noise and other unavoidable errors [35]
can affect the credibility of the information collected by
a UAV, which in turn can reduce the effectiveness of the
rapid assessment. Thus, we proposed a target-revisit-allowed
strategy, and the expected reward was used to evaluate the
effectiveness of a rapid-assessment task. The expected reward
of a UAV rapid-assessment task was maximized by selecting
appropriate potential targets and optimizing the visit order
and the number of visits of multiple UAVs to these targets.
The main contributions of this study were as follows:

(1) We introduced and defined the rapid-assessment task-
assignment problem (RATAP). The problem was as follows.
We maximized the expected reward of the rapid-assessment
task-scheme by selecting appropriate potential targets to be
accessed by UAV fleets and then determining the order of
access and the number of visits to each potential target under
the constraints of their endurance capability and the detection
error of sensors carried by the UAVs. The RATAPwas a prac-
tical problem that is faced in the emergency rescue process
in a post-earthquake scenario. In this study, the RATAP was
modeled as a revisit-allowed TOP with reward probability
(RTOP-RP). The model’s objective function maximized the
expected reward, as represented by the effective informa-
tion of a potential target of the rapid-assessment task. The
expected reward was calculated by multiplying the weight of
a potential target by the probability of a successful collection
of valid information about that target.

(2) A new task-assignment strategy called the target-
revisit-allowed strategy was proposed, which considered the
impact of sensor errors on rapid-assessment tasks. We also
suggested a quantitative analysis model to evaluate the
effectiveness of a rapid-assessment task-assignment scheme.
When compared with the revisit-forbidden strategy, the
revisit-allowed strategy was found to improve the effective-
ness of a rapid-assessment task-scheme.

(3) The hybrid particle swarm optimization with simulated
annealing (HPSO-SA) algorithm was specifically designed
for the RATAP. According to the actual needs of the rapid-
assessment task, the algorithm for solving the RTOP-RP
model mainly emphasized rapidity and robustness. There-
fore, we innovatively combined the classical particle swarm
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FIGURE 1. Scenario where a rapid assessment after an earthquake is
required.

optimization (PSO) and simulated annealing (SA) algorithms
by designing an algorithm framework, solution encoding
method, particle updating operation, and disturbance opera-
tion to form the HPSO-SA algorithm which was specifically
designed for solving the RTOP-RP model. The performance
of the algorithm was demonstrated through numerical exper-
iments. Finally, we illustrated how to use our approach in the
real world with a case study based on data from the 2008
Wenchuan earthquake in China. The results showed that
HPSO-SA algorithm could obtain a high-quality, feasible
RATAP solution in a short period of time, which represented
a multi-UAV task-assignment scheme for rapid assessment.

The rest of this paper is organized as follows: In Section II,
an illustrative example of small instances in which it was
possible to obtain optimal solutions was conducted to develop
insights into the RATAP’s characteristics. In Section III,
the multi-UAV rapid-assessment task-assignment problem
is defined, and its mathematical model is given. The
HPSO-SA algorithm is discussed in Section IV, and the com-
putational results of the numerical experiments are presented
in Section V. A case study and the analysis of the Wenchuan
earthquake is presented in Section VI. The summary work
and the future scope of the work are discussed in Section VII.

II. ILLUSTRATIVE EXAMPLE OF RATAP
In this section, we analyze the characteristics of the RATAP
through an illustrative example. Fig. 1 depicts a scenario
when a rapid assessment after an earthquake was required.
The epicenter was located in the center of the earthquake-
stricken region, which included four earthquake-stricken
points. The weights of the points were determined by the
relief experts based on their characteristics, which included
the distance from the epicenter and the population. The
relief organization dispatched two UAVs to access the four
potential targets. The UAVs departed from point zero, com-
pleted the rapid-assessment task, and returned to point
zero. The endurance capacity of each UAV was 30 units,
and the detection-error probability of a UAV-carried sensor
was 20%.

FIGURE 2. Multi-UAV rapid-assessment task-allocation scheme after an
earthquake. (a)Task-allocation scheme 1; (b)Task-allocation scheme 2.

When the above problem was modeled as a TOP with UAV
endurance, the two UAVs could not access all four potential
targets, and each one was only visited once. In all the possible
task-allocation schemes, the two UAVs could only visit three
of the four potential targets. By considering the weights of the
potential targets, we obtained a task-allocation scheme that
maximized the sum of weights, as shown in Fig. 2(a). In the
scheme, UAV1 started at #0, sequentially visited targets 3
and 4, and returned to #0, with a flight distance of 27.52;
UAV2 started at #0, visited target 2, and returned to #0,
for a flight distance of 28.28. The total reward of the task-
assignment scheme was 9. If the detection-error probabil-
ity of the sensor carried by a UAV was considered, then
the expected reward of the task-allocation scheme was 7.2.
The calculation method for the expected reward is described
in Section III.

When the above problem was modeled as a RATAP, each
potential target could be accessed multiple times. For exam-
ple, target 4 could be accessed twice, and the task- allocation
scheme, as shown in Fig. 2(b), was obtained. In this scheme,
UAV1 started at #0, sequentially accessed targets 3 and 4, and
returned to #0, for a flight distance of 27.52. UAV2 started
at #0, accessed targets 2 and 4, and returned to #0, with a total
flight distance of 29.37. The weights of the task-assignment
scheme still added up to 9, but the expected reward was 7.84.
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TABLE 1. Definitions of sets, indices, parameters, and variables.

Based on an analysis of the above cases, and in the case
of limited UAV endurance, the RATAP could not only access
potential targets with higher weights as much as possible, just
like TOP, but it could also make multiple visits to potential
targets to make full use of the sustainability of a UAV. As a
result, the probability of the successful collection of informa-
tion from potential targets increased, and the expected reward
of rapid-assessment tasks was correspondingly maximized.
In the next section, we describe RATAP and specify its math-
ematical model.

III. RAPID-ASSESSMENT TASK-ASSIGNMENT
PROBLEM (RATAP)
In the RATAP, the expected reward of a task-allocation
scheme is not only related to the detection error probability
of the sensor carried by the UAV but also to the weight of
the potential target and the number of times it is accessed.
The locations and weights of all potential targets are known.
Table 1 lists the relevant indices, sets, parameters, and vari-
ables used in this paper.

A. UNMANNED AERIAL VEHICLES
U denotes the set of K UAVs performing rapid-assessment
tasks. Since UAVs owned by same rescue agency are usually

the same, we assumed that all the UAVs are homogeneous,
i.e., the endurance of the UAVs and the detection-error prob-
ability of the sensors carried by the UAVs are the same and
are known. All the UAVs start from the same starting point
and return to the same destination after completing the rapid-
assessment task. By considering the characteristics of the
UAVs performing the rapid-assessment task, we assume that
the UAVs have the ability to avoid obstacles automatically,
could perform rapid-assessment tasks safely, and that the
resulting path deviation from the total flight path length is
very small and can be ignored.

B. POTENTIAL TARGETS
The start and end depots of the UAV are represented by 0
and L + 1, respectively. The set T = {1, 2, . . . , i, . . . ,L}
consists of the L potential targets to be visited in the
earthquake-stricken region. The set of all points is A =
{0, 1, . . . , i, . . . ,L,L + 1}. The weight of a potential target
is represented by wi ∈ {1, 2, . . . , 10}. The greater the weight
is, the more important the target is, and the greater the weight
points from the UAV access point are, the greater its expected
reward is.

The decision variable xkij is used: x
k
ij = 1 if UAV k leaves

target i and flies directly to target j without passing through
any other targets, otherwise xkij = 0 was used. The number
of times yi that the potential target i is visited is calculated as
follows:

yi =
K∑
k=1

L+1∑
j=1

xkij, i ∈ T. (1)

C. TASK EXECUTION TIME OF UAV
The set Hk = {h, . . . , i, . . . , j}; h, i, j ∈ T , k ∈ U , is used to
represent the path of UAV k that performs a rapid-assessment
task. Since all UAVs must start from the starting point and
return to the same destination, Hk omits the number of start
and end points. The travel time between point i and point j is
calculated as follows:

tij =
dij
v

, ∀i, j ∈ A. (2)

where dij is the Euclidean distance between points i and j, and
v represents the flight speed of the UAV. The task execution
time of UAV k is calculated as follows:

tk0(L+1) =
L∑
i=0

L+1∑
j=1

xkij tij. (3)

D. EFFECTIVENESS OF RAPID-ASSESSMENT TASK
In this paper, the expected reward is used to quantita-
tively represent the effectiveness of the multi-UAV rapid-
assessment task, which is related to the weight wi of the
potential target, i, and the detection-error probability, p, of a
sensor carried by a UAV. The expected benefit of multi- UAVs
performing one quick-assessment task on target i is calculated
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FIGURE 3. Trend of total expected return Ri with the number of times
target i was visited yi with a fixed weight wi = 10 and different
detection-error probability p.

as follows:

Ri = wi · (1− p). (4)

As has been reported previously [36], the probability of
successful collection by other UAVs is not dependent on
whether a UAV collects the information from a potential
target. Therefore, the total expected reward after yi visits to
potential target i is calculated as follows:

Ri = wi · (1− pyi ), (5)

where the weight wi of potential target i and detection-error
probability p of the sensor are both known.
Fig. 3 shows the trend as the total expected reward.

Ri increased with the number of times target i is visited,
yi, with a fixed weight, wi = 10, but different detection-error
probability, p. This is the most important difference between
the TOP, under which the reward from each accessed target
is fixed, and the RATAP.

E. MATHEMATICAL MODEL
To solve the problem of a multi-UAV rapid-assessment task-
assignment after an earthquake, we design the objective func-
tion in this work to maximize the total expected reward
of the task-assignment scheme. The mathematical model is
formulated with the two decision variables: xkij = 1 if UAV
k leaves target i and flies directly to target j without passing
through any other targets, and xkij = 0 otherwise; yi = the
number of times that potential target i is visited. The model
is as follows:

Max
L∑
i=1

wi
(
1− pyi

)
, (6)

S.t. :
L∑
i=1

xk0 i =
L∑
j=1

xkj(L+1) = 1; ∀k ∈ U, (7)

L∑
h=0

xkhi =
L+1∑
j=1

xkij; ∀i ∈ T, k ∈ U, (8)

L∑
i=0

L+1∑
j=1

tijxkij ≤ Tmax; ∀k ∈ U, (9)

xkij ∈ {0, 1}; ∀i, j ∈ T, k ∈ U. (10)

The objective function (6) is to maximize the expected
reward of the rapid-assessment task-scheme. Constraint (7)
guarantees that any UAV k in the set U must begin at the
starting point and return to the end point. Constraint (8) is
the path connectivity constraint, which requires that for any
UAV k in the set U, the in-degree of target i is equal to
the out-degree. Constraint (9) guarantees that the duration of
the mission performed by any UAV k in the set U is less
than or equal to its maximum endurance. Constraint (10)
involves the values of the binary decision variables: xkij = 1
if UAV k leave target i and flies directly to target j without
passing through any other targets, and xkij = 0 otherwise.

IV. HYBRID PARTICLE SWARM OPTIMIZATION WITH
SIMULATED ANNEALING (HPSO-SA) ALGORITHM
The HPSO-SA algorithm consists of two layers of loops,
that combined the PSO and SA appropriately. The simu-
lated annealing operation is carried out in the external loop,
and the internal loop performs a particle update operation.
The algorithm framework combines the fast convergence
of the PSO [37] and the strong local optimization of the
SA [38]. The pseudocode of the HPSO-SA algorithm is
shown in Table 2.

The algorithm starts with an initial particle swarm and set
an initial temperature. Each particle x records its current posi-
tion, S[x].pos, and the known optimal position, S[x].lbest,
after which time the particle updated its position during the
iteration and gradually approaches the global optimal posi-
tion, S[best].lbest. Then, the simulated annealing operation
is used to optimize S[best].lbest by locally searching for it in
each iteration. If an improvement is made, the global optimal
particle S[best].lbest is updated and returns to the PSO for
the next iteration. A cooling operation is then implemented
according to the established cooling strategy after each itera-
tion is complete until the temperature fell below the predeter-
mined termination temperature. At that point, the algorithm
is terminated, and S[best].lbest is the optimal solution to the
problem. Through multiple rounds of interaction between the
PSO and SA, the algorithm combines the fast convergence
characteristics of the PSO and strong local optimization of
the SA. Table 3 lists the parameters related to the HPSO-SA
algorithm in this paper.

The computational complexity of an algorithm is depen-
dent mainly on its structure and implementation. The
HPSO-SA algorithm mainly consists of an evaluation and
update of PSO particles and an improvement of the best
particle through SA iterations. We let NEx be the num-
ber of external loops and NP be the length of the particle.
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TABLE 2. Pseudocode of the HPSO-SA algorithm.

According to the design of the HPSO-SA algorithm, NEx =⌈
logTEND−logT0

logRT

⌉
. Because the target is allowed to be revisited,

NP = Tmax × L × K in the worst case. Since the algorithm-
related parameters, such as NS , NSA, T0, TEND, RT , and NEx ,
are preset, that is, they do not change with the scale of the
problem, they can be regarded as constants when performing
the algorithm analysis. The complexity of the HPSO-SA
algorithm depends on the steps shown in lines 2, 3, 6, 8,
and 9 in Table 3. The complexity of each step is analyzed
as follows:

(1) The complexity of line 2 is O(NP × NS ) ≈ O(NP).
(2) The complexity of line 3 isO(NP×NS+NS×logNS ) ≈

O(NP).
(3) The complexity of line 6 isO(NEx×NS×NP×logNP) ≈

O(NP × logNP).
(4) The complexity of line 8 is O(NEx × (NP×NS +NS ×

logNS )) ≈ O(NP).
(5) The complexity of line 9 is O(NEx × (NSA × NP ×

logNP)) ≈ O(NP × logNP).
Above all, the complexity of the HPSO-SA algorithm is

O(NP × logNP) ≈ O(L × K × log(L × K )).

A. PARTICLE SWARM INITIALIZATION
In the HPSO-SA algorithm, the position of each particle
represents a feasible solution of the RATAP. The indices of

TABLE 3. Parameters related to the HPSO-SA algorithm.

FIGURE 4. An example of particle encoding method of the HPOS-SA
algorithm.

the potential target and the UAV are the two basic units of
the particles, which are integers. The first line of particles is
composed of the indices of the potential targets that are visited
by a UAV, and the second line of particles is the index of
the UAV.

The particle code in Fig. 4 indicates that UAV1 begins at
the starting point, accesses potential target 3, accesses poten-
tial target 4, and returns to the end point. UAV2 begins at the
starting point, accesses potential target 1, accesses potential
target 4, and returns to the end point.

Based on the above encoding rules, the initialization of the
particle swarm is completed using the following five steps:
Step 1: A ‘‘Tmax ellipse’’ is constructed using the starting

and ending points as the two foci of the ellipse and the UAV
endurance Tmax as the length of the major axis [39], [40]. The
indices of potential targets corresponding to the point outside
‘‘Tmax ellipse’’ are deleted from set T to obtain set T’. The
specific implementation is as follows. We calculate the sum
of the distances from each target in the set T to the starting
point and ending point. We find out the indices corresponding
to the potential targets, whose cumulative distance is greater
than Tmax . Then, we delete these indices from the set T to
obtain set T’.
Step 2: The indices of the potential targets in set T’ are

randomly arranged to obtain a task-execution path of UAV k ,
which is represented as Hk .
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FIGURE 5. An example of a particle-update operation.

Step 3: The task execution time of UAV k , tk0(L+1), is
calculated based on Hk . If tk0(L+1) > Tmax, then random
deletion of a target index in Hk is executed and repeated until
a feasible path of UAV k is obtained. If Hk is empty after a
random deletion operation, the algorithm returns to Step 2 to
regenerate Hk .
Step 4: Steps 2 and 3 are repeated based on the number of

UAVs until all UAVs have a feasible task-assignment scheme.
The feasible path of all UAVs is taken as the first line of
particles, and the index of corresponding UAV k is taken as
the second line of particles to obtain an initial particle.
Step 5: The initial particle swarm is obtained by repeating

Steps 2–4 according to the preset particle-swarm size.

B. PARTICLE EVALUATION AND OPTIMAL PARTICLE
UPDATE OPERATION
The particles in the HPSO-SA algorithm have positions but
no velocity vectors. The position of one particle represents
a task-allocation scheme for the rapid assessment of multiple
UAVs. The fitness of particles represents the expected reward
of the task-allocation scheme. Thus, Equation (6) is selected
as the fitness function of the algorithm. A greater particle
fitness corresponds to a higher expected reward of the task-
allocation scheme that the particle represents.

Every time a particle-update operation is completed,
the optimal particle is updated. The process is as fol-
lows. The fitness Fit[x].pos of the current position S[x].pos
of particle x is calculated. If Fit[x].pos is better than
the fitness Fit[x].lbest, which represents the known opti-
mal position S[x].lbest, then S[x].lbestis replaced with
S[x].pos and Fit[x].lbest is replaced with Fit[x].pos. Sim-
ilarly, if Fit[x].pos is better than the global optimal posi-
tion S[best].lbest fitness Fit[best].lbest, then S[best].lbest is
replaced with S[x].pos and Fit[best].lbest is replaced with
Fit[x].pos. If the above conditions are not met, the optimal
particles are not updated.

C. PARTICLE UPDATE OPERATION
The particle-update operation updates the position of par-
ticle x through the recombination of the three particles
S[x].pos, S[x].lbest, and S[best].lbest. There are many types

of recombination operators [41]. We propose a new recombi-
nation operator based on the core idea of extracting a part of
each of the particles of S[x].pos, S[x].lbest, and S[best].lbest.
The new particle is obtained by combining the three parts in
order.

The lengths of S[x].pos, S[x].lbest and S[best].lbest are
denoted as Nx , Nxl and Nbl , respectively. The numbers of
the target indices extracted from these particles are ω · Nx ,
(1− ω) · c1 · r1 · Nxl , and (1− ω) · c2 · r2 · Nbl , respectively.
All the calculation results are rounded up to the next integer,
and the starting position of particle extraction is randomly
generated. Fig. 5 shows an example of a particle-update
operation. Letting ω = 0.5, c1 = 1.8, c2 = 1.6, r1 = 0.6
and r2 = 0.4, then the numbers of target indices extracted
from S[x].pos, S[x].lbest and S[best].lbest can be calculated
as: ω ·Nx = 1, (1−ω) · c1 · r1 ·Nxl = 2 and (1−ω) · c2 · r2 ·
Nbl = 2, respectively. Supposing that the randomly generated
particle extracting position are 1, 3, 2, respectively, then the
recombination process of a new particle is as follows: Starting
from the first position, one bit is extracted from the S[x].pos
particle; from the third position, two bits are extracted from
the S[x].lbest particle; from the second position, two bits are
extracted from the S[best].lbest particle; and a new particle is
recombined. After being reorganized by the indices of UAVs,
S
[
xTemp

]
.pos is obtained.

The position S
[
xTemp

]
.pos shown in Fig. 5 of temporary

particle xTemp, which is produced by the update operation
(extract, recombine and reorganize) does not necessarily sat-
isfy the constraints of the RATAP model. Therefore, it is nec-
essary to perform constraint-checks and adjustments on the
particles that do not satisfy the constraints. Path-connectivity
verification and endurance verification on the particles have
to be performed according to Equations (8) and (9), respec-
tively. We refer to particles that do not satisfy Equation (8) as
Violator A types, particles that do not satisfy Equation (9)
as Violator B types, and particles that do not satisfy
Equations (8) and (9) simultaneously as Violator C types. The
S
[
xTemp

]
.pos shown in Fig. 5 is a Violator A type.

In view of the above three types of violation parti-
cles, the following three particle-adjustment strategies are
designed:
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Adjustment Strategy 1: For Violator A, the duplicate
target indices are deleted, as shown in Fig 5.

Adjustment Strategy 2: For Violator B, the indices of the
particles with the lowest weights are deleted sequentially until
the endurance constraints are satisfied.

Adjustment Strategy 3: For Violator C, the duplicate
target indices are deleted first, and then the indices of the
particles with the lowest weights are deleted sequentially until
the endurance constraints are satisfied.

A particle obtained after constraint check and adjustment
is a feasible solution of the RATAP.

D. THE OPERATION OF SIMULATED ANNEALING
In the operation of simulated annealing, a local search
strategy is used to optimize the global optimal particle,
S[best].lbest, which is obtained through a particle update
operation. The most important characteristic of SA is
the probability jump-out, which is called the metropolis
process [42]. Researchers have proven the theory that
SA can converge to the global optimum with a prob-
ability of approximately 1 by controlling the cooling
process [43], [44].

In the RATAP, task-assignment schemes with the same
expected reward may have different access orders of potential
targets. By optimizing the path lengths of the task-allocation
schemes with the same expected reward, the flight distance
of a UAV can be shortened. Thus, more potential targets can
be accessed, and the expected reward of a task-assignment
scheme can be improved. In this paper, the following four
disturbance strategies are designed.

Disturbance Strategy 1: Two-point exchange. Two parti-
cle positions are randomly selected for exchange.

Disturbance Strategy 2: Reverse the order between two
points. Two particle positions are randomly selected and the
particles between them are arranged in reverse order.

Disturbance Strategy 3: Delete a target index. One par-
ticle position is randomly selected, and the target index and
UAV index on it are deleted.

Disturbance Strategy 4: Insert a target index. One parti-
cle position is randomly selected and a new target index is
inserted. If all the target indices are included, the target index
with the largest weight is inserted.

In each round of a simulated annealing operation, one of
the above four disturbance strategies is randomly selected to
generate a new solution. We used the method in Section IV-C
to perform the constraint checks and adjustment on the new
particle, and a new solution that satisfied all the constraints
is obtained. Finally, a new solution is received with a certain
probability using the metropolis criterion.

V. EXPERIMENT AND ANALYSIS
In the experiment described in Section V-A, we use two
sets of benchmark instances of the TOP model for algo-
rithm testing. For the analysis conducted in Section V-B, for
the characteristics of the post-earthquake rapid-assessment
task, we generate 18 simulation cases to demonstrate the

performance of the HPSO-SA algorithm. The optimal param-
eter settings of the algorithm we settled on are described
in Section V-C.

All the experiments are conducted in an environment of
an i5-6500 CPU 3.2-GHz, 8-GB desktop computer and in
MATLAB R2015a. The initial parameters of the HPSO-SA
algorithm are as follows:

(1) For particle swarm size, NS = 50 particles.
(2) For the inertial coefficient ω, which reflects the ten-

dency of particles to maintain their current state, ω = 0.5.
(3) The cognitive factor c1 and social factor c2 reflect

the trends of the approach to the local and global optimum,
respectively; c1 = 1.8 and c2 = 1.6. r1 and r2 are random
numbers between 0 and 1.

(4) For initial temperature T0 = 100, termination temper-
ature TEND = 1, and cooling rate RT = 0.9.

(5) For number of annealing times Nc = 50 times.

A. NUMERICAL EXPERIMENT
In the RATAP problem, if the sensor-detection error prob-
ability is 0, and the potential target is accessed at most
once, it can be converted to a TOP problem. Thus, we select
18 TOP model benchmark instances [39] to test the model
and algorithm proposed in this paper. The dataset is from
https://www.mech.kuleuven.be/en/cib/op. These benchmark
instances include seven groups, and the numbers of vertices,
N , of these groups were 32, 21, 33, 100, 66, 64, and 102.
In all instances of the same group, the position and weight of
the vertices were constant, but the maximum duration, Tmax,
of a UAV was different, and the UAV number, K , increased
from 2 to 4.

First, we select 18 benchmark instances with maximum
endurances of Tmax = 20 for the seven types of datasets to test
the performance of the HPSO-SA algorithm. Each instance is
run 10 times under the same experimental conditions.

Table 4 shows the results of the solution of these 18 bench-
mark instances, where RMAX represents the maximum reward
of the 10 runs, CPUAVG represents the average computational
time in seconds of the 10 runs, and RBEST represents the
known optimal solution collected from [45]-[49]. The gap
is calculated by [(RBEST − RMAX ) /RBEST ] × 100%, repre-
senting the relative difference between RMAX and RBEST .
As shown in the experimental results in Table 4, under the
same, Tmax, the HPSO-SA algorithm quickly and efficiently
solves all seven types of TOP model benchmark instances.
Among the 18 selected examples, the proposed algorithm
obtains the optimal solution of 10 instances.

We further experimented with 32 instances of type 2
datasets with N = 21 to test the performance of the
HPSO-SA algorithm. Each instance is run 10 times under
the same experimental conditions. Table 5 shows the results
of the solution of these 32 benchmark instances, where
RMAX represents the maximum reward of the 10 runs,
CPUAVG represents the average computational time in sec-
onds of the 10 runs, and RBEST represents the known opti-
mal solution collected from [45]–[49]. As shown in the
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TABLE 4. Results for the 18 benchmark instances.

experimental results in Table 5, within the same dataset,
the HPSO-SA algorithm quickly and efficiently solves all
the instances. Among the 32 instances of type 2 datasets,
the proposed algorithm obtains the optimal solution of all the
instances.

The above two numerical experiments and the comparison
with the ant colony optimization (ACO) algorithm in refer-
ence [46], demonstrate that although the RTOP-RP model
and the HPSO-SA algorithm in this study were specifically
designed for RATAP, for the small-scale TOP benchmark
instances, the models and algorithms also obtains the optimal
solution in a short period of time.

B. POST-EARTHQUAKE SIMULATION CASES
Since the characteristics of post-earthquake rapid-assessment
tasks differ from the benchmark instances of the TOP,

two types of datasets based on the distribution characteristics
of potential targets after the earthquake are constructed: (1) a
clustered distribution, which is shown in Fig. 6(a), and (2) an
even distribution, which is shown in Fig. 6(b). The numbers
of potential targets, N, of the two types of datasets are 13
and 23, respectively.

For the post-earthquake scenarios simulated through the
above two types of datasets, K homogeneous UAVs are used
to complete the rapid-assessment task. The number, K , of the
UAV used to complete the rapid-assessment task increases
from 2 to 4. Moreover, the values of the maximum safe
endurance, Tmax, of the UAV were 10, 15 and 20 min, the
flight speed is v = 1 km/min, and the probability of a
detection error of the sensor carried by each drone is p = 0.2.
The RATAP model is used to solve the problem, and the
task-allocation scheme is used for rapid assessment after the
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FIGURE 6. Dataset of two kinds of multi-UAV post-earthquake rapid-assessment tasks.

FIGURE 7. Expected reward under different particle inertia parameters and cooling rates.

earthquake is obtained. Each case is run 10 times under the
same experimental conditions.

Table 6 shows the task-allocation schemes of the
HPSO-SA for solving the 18 post-earthquake quick-
assessment-task instances, where RMAX represents the max-
imum reward of the 10 runs, RAVG represents the average
reward of the 10 runs,
RMIN represents the minimum reward of the 10 runs, and

CPUAVG represents the average computational time in sec-
onds of the 10 runs. As shown in Table 6, the stability of the
HPSO-SA algorithm is very strong. The average gap between
RMAX and RAVG is only 2.57%, and between RMAX and RMIN ,

it is only 4.95%.

C. ALGORITHM PARAMETER SETTING
By considering the influence of different parameter con-
figurations on the performance of the heuristic algorithm,
we further test the sensitivity of the algorithm parameters for
the two types of datasets.

First, we consider the C-2-20 instance, as described in
Section V-B. In the solution process of HPSO-SA, different
inertia coefficients ω and cooling rates RT are selected. The
experimental results are shown in Table 7.

Furthermore, when we consider the E-2-20 instance, as
described in Section V-B, in the solution process of the
HPSO-SA algorithm, different inertia coefficients ω and
cooling rates RT are selected. The experimental results are
shown in Table 8. From the above experimental results,
it can be seen that for the C-type and E-type datasets, the
HPSO-SA is generally stable in solving the RATAP, but the
effect is different for different particle inertia parameters ω

and cooling rates RT , as shown in Fig. 7.
When the particle inertia parameter ω is fixed, the gain in

the experiment generally exhibits an upward trend with an
increase in the cooling rate, RT , and the maximum gain is
obtained when the inertia parameter,ω, is 0.5, and the cooling
rate, RT , is 0.94.When the cooling rate, RT , is fixed, the gains
in the experiment generally exhibits an upward trend with
an increase in the inertia parameter, ω. Therefore, during the
RATAP solution, the inertia parameter ω could be set to 0.5,
and the cooling rate RT could be set to 0.94.

VI. CASE STUDY
To illustrate the application of the above research work in
real-life scenarios, we conducted a case study based on
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TABLE 5. Results for the Type-2 benchmark.

real data from the 2008 Wenchuan earthquake in China.
On May 12, 2008, an earthquake of magnitude 8.0 hit
Wenchuan, China. The epicenter was at 31.0◦N, 103.4◦E, and
the focal depth was 14 km. The earthquake caused nearly

90,000 deaths or disappearances, along with the collapse of
a large number of houses [50]. As the main body participat-
ing in post-disaster relief, the National Earthquake Response
Support Service (NERSS) rushed to the disaster area to
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TABLE 6. Experimental results of 18 post-earthquake rapid-assessment task instances.

conduct a rapid assessment of the disaster. Experts from relief
agencies identified a number of potential targets that needed
to be assessed rapidly based on known information, which
included the latitude and longitude of important buildings
such as schools and hospitals in the affected area. Combined
with characteristics such as distance, population size, and
building features, the weight of these potential targets was
estimated. Thus, 50 potential targets were selected for case
studies, as shown in Fig. 8.

Considering factors such as endurance and sensor speci-
fications, the F-1000 fixed-wing UAV was used to perform
the above post-disaster rapid-assessment task. The cruising
speed of the UAV was 70 km/h. In consideration of the
takeoff and landing, we assumed that the average speed of
the UAV was 60 km/h. The maximum safe endurance of the
UAV was 90 min. Considering the influence of uncertain
factors (e.g., wind) on the endurance of the UAV, we assumed
that the maximum safe endurance used to perform the task
was 80 min. Moreover, a maximum of five UAVs could be
used for the rapid-assessment task.

We used the optimal parameter settings discussed in
Section V-C to model the above rapid-assessment tasks using
the RATAP model and solved them using the HPSO-SA

FIGURE 8. Potential targets of wenchuan earthquake and the location of
the starting point of UAV.

algorithm. We assumed that the number of UAVs, K, used to
complete the rapid-assessment task increased from three to
five. The maximum safe endurance values, Tmax, of the UAV
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TABLE 7. Expected rewards of C-2-20 for different inertia coefficients and
cooling rates.

were set to 60, 70 and 80 min. Nine cases were possible from
the combination of K and Tmax, which were used to name
each case. The results obtained by applying the HPSO-SA
algorithm to solve the example cases are shown in Table 9.
Specifically, Table 9 shows the number of access targets,NVT ,
the number of revisited targets, NRT , the expected benefit, R,
of the rapid-assessment task, the algorithm runtime, CPU,
the total task execution time, TE , of the UAVs performing
rapid-assessment tasks, and the utilization rate, RU , of UAVs’
endurance.

TABLE 8. Expected rewards of E-2-10 for different inertia coefficients and
cooling rates.

Analyzing the results of the case study, we found the
following:

(1) A UAV revisited potential targets with higher weights
as much as possible. In all nine cases, more than 80%
of the potential targets with weights of 10 were revisited.
In particular, in the (5, 80) case, all targets with a weight
of 10 were revisited. The experimental results verified that
the RATAP model proposed in this paper could improve the
effectiveness of a multi-UAV rapid-assessment task after an
earthquake.
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TABLE 9. Results of case examples.

(2) The total task-execution time of the rapid assessment
almost reached the upper limit of the endurance of the UAVs.
In all nine cases, the total task execution time accounted
for more than 99.8% of the UAVs’ total endurance capac-
ity. It was also verified that the RATAP model could maxi-
mize a UAV’s endurance and avoid wasting valuable rescue
resources.

(3) The HPSO-SA algorithm could obtain high-quality
multi-UAV task-allocation schemes in a short period of time.
In all nine cases, the algorithm ran for no more than 12 s.
In time-critical post-disaster relief operations, it is valuable to
obtain a better task-allocation solution quickly than to obtain
an optimal solution.

VII. CONCLUSION AND FUTURE WORK
In this study, a multi-UAV task-allocation method for rapid-
assessment tasks in post-earthquake scenarios was studied.
Based on the constraints of the UAV endurance and detection-
error probability of the sensors carried byUAVs, amulti-UAV
revisit-allowed task-assignment strategy was proposed, and a
problem called the rapid-assessment task-assignment prob-
lem (RATAP) was introduced and defined using the RTOP-
RP model. The optimization objective of the model was to
maximize the expected reward of the rapid-assessment task
scheme, allowing the target to obtain an expected reward
with a certain probability when it was revisited. In this
regard, we also specifically designed the HPSO-SA algo-
rithm which combined the fast convergence characteristics
of the PSO and strong local optimization of the SA to solve
RTOP-RP model. The experimental results showed that the
HPSO-SA could obtain a high-quality task-allocation scheme

in a relatively short period of time. In future research, the
rapid assessment task of area targets that were potential
targets with large areas that could not be regarded as point
targets will be further considered. An area target is suffi-
ciently large that a UAV must fly back and forth within the
area to collect information. After completing the information-
collection task for an area target, a UAV flies to the next area
target. Thus, integrated area-coverage mode optimization and
path optimization between area targets must be considered in
a multi-UAV rapid-assessment task-assignment problems for
area targets.
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