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ABSTRACT In this paper, a new vision-based adaptive control algorithm is proposed for the positioning of a
quadrotor aerial robot (QAR)with an onboard pin-hole camera. First, the transformation between the position
tracking error and image projection error is constructed through the spherical projection method, and then the
regulation of the position error is achieved indirectly by stabilizing the image projection error. To overcome
the challenge that the dynamics of QAR is physically underactuated, a backstepping-based approach that
synthesizes the Lipschitz condition and natural saturation of the inverse tangent function is proposed. In the
proposed adaptive controller, an optimized adaptive neural network (NN) means is designed, where only
the square of the NN weight matrix’s maximum singular value, not the weight matrix itself, is estimated.
Moreover, to facilitate practical application, a novel inertial matrix estimator is introduced in the tuning laws,
so that the accurate QAR rotation inertial information is not required. By Lyapunov theory, it is proved that
the image projection error converges to an adjustable region of zero asymptotically. The effectiveness of the
proposed algorithm has been confirmed by the experimental results.

INDEX TERMS Adaptive control, neural networks, underactuation, position tracking, quadrotor aerial
robots, nonlinear systems.

I. INTRODUCTION
Over the last few decades, visual servoing which aims to
control the motion of robots through visual feedback sig-
nals has been an active research topic (such as [1]–[7]).
In general, visual servoing can be classified into two types,
namely, position-based visual servoing (PBVS) [1]–[3] and
image-based visual servoing (IBVS) [4]–[9]. The PBVS
method involves the reconstruction of target pose and robot
motion in a Cartesian space. Hence its control effect depends
heavily on the 3Dmodel accuracy in world-space coordinates
and is relatively sensitive to the camera parameter biases [7].
Meanwhile, the IBVS method, which solves the servoing
problem by directly controlling the position error in the
image plan, is more robust to disturbances and parameter
biases than PBVS. Weiss et al. [5] and Espiau et al. [4] take
visual system as one special sensor, and introduced the image
signal into classical feedback control structures to perform
robot visual servoing. In [6], vision was considered in early
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modeling stage, and a novel vision-based kinematic modeling
was proposed.

In classical IBVS frameworks, the depth information of
each feature point is required to be estimated from visual
signals, which is generally difficult or costly in practical
implementation. To avoid this problem, various solutions
have been proposed. In [10], a depth-independent interac-
tion matrix was proposed to estimate the unknown camera
parameters, and an adaptive control method was presented
to minimize the actual and estimated projection errors of
the feature points. Kai et al. [11] proposed an adaptive esti-
mator to estimate the robot position online and then con-
trolled a nonholonomic mobile robot to perform position
tracking. Wang et al. [12] assumed that the camera param-
eters are not calibrated and use the pseudoinverse of the
depth-independent interaction matrix to map the image errors
onto the joint space of the manipulator.

Note that these studies mainly deal with the visual ser-
voing of fully-actuated systems. However, quadrotor aerial
robot (QAR) is a typical underactuated system, and thus
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may not be effectively handled by these previous approaches.
To cope with the underactuated characteristic of the
aerial robot, earlier researches were concentrated on the
state-feedback strategy, which implies that the position and
orientation information are required to be measured accu-
rately as a prior knowledge for the development of the con-
trollers, as shown in [13]–[19]. Despite tremendous efforts,
the high-accuracy localization of the mobile robots remains
one most challenging problem in robotics.

The visual servoing technique provides an effective frame-
work in controlling the aerial mobile robots to further elim-
inate the requirement for the global position measurement
and improve the localization accuracy, and some pioneering
works have been reported in [20]–[26]. Specifically, Hamel
and Mahony [20] proposed an IBVS algorithm for a class of
underactuated rigid body systems by exploiting the structural
passivity-like property, and the developed closed-loop system
exhibits the robustness to the calibrated errors of the camera
and target. As an extended research, Guenard et al. [24]
further modified the visual error term used in their previous
work [20] to compensate for the poor condition of the image
Jacobian matrix so that the convergence performance of the
closed-loop system is improved. Additional visual control
algorithms similar to the above are shown in [21]–[23]. Sub-
sequently, Carrillo et al. [25] presented a comparison of
three control techniques: nested saturations, backstepping,
and slidingmodes for unmanned aerial vehicles (UAVs) when
using visual feedback. In [26], a vision-based method for
multi-UAV position estimation was presented, and its effec-
tiveness was well validated by experiments. It is noticed,
however, that these developed visual controllers commonly
require explicit inertia information which is often difficult to
obtain. Some inertia identification scenarios have been raised
in [27]–[30]. However, most these methods are established
on a simplified model of underactuated aerial robot [31], and
none of them take the vision systems into account.

In this paper, we propose a vision-based adaptive control
algorithm for positioning control of QAR systems. The main
contributions are summarized as follows:
• Without needing position measurement and suitable
to indoor environment: With the use of spheri-
cal projection, we construct an unnormalized spheri-
cal centroid, and establish its one-to-one relationship
with the position of QAR system (see Theorem 1),
so that the positioning control problem is well trans-
formed into the image tracking control problem. In this
sense, the proposed control algorithm does not need the
accurate position information of quadrotor system, and
hence is applicable to the indoor environment in which
GPS devices generally cannot work well.

• Equipping with an efficient adaptive neural-network
system: The proposed positioning controller contains an
adaptive neural-network system to handle model uncer-
tainties of quadrotor aircraft. Such a system is rather
efficient as it only involves two adaptive parameters, and
thus is computationally attractive.

FIGURE 1. Coordinate frames of QAR with a pin-hole camera.

• Without needing inertial parameters of quadro-
tor aircraft: Most existing control algorithms for
positioning of quadrotor aircraft require a completely
accurate inertial matrix which may not be accessible
for measurement in practice. To overcome this prob-
lem, the Cholesky decomposition method is used to
construct an online estimator which can adaptively
estimate the unknown inertial matrix, and hence our pro-
posed positioning control algorithm is more feasible in
practice.

The rest of this paper are arranged into four sections. Some
preliminaries about the dynamic model of QAR and NNs
are presented in Section II. In Section III, the adaptive IBVS
control algorithm is designed and the corresponding stability
verification is shown. Two simulated experiments are con-
ducted in Section IV. The conclusion is given in Section V.

II. PRELIMINARIES OF DYNAMIC MODEL AND RADIAL
BASIS FUNCTION NNS
An eye-in-hand setup visually depicted in Fig. 1, in which
a camera is mounted on the body of the QAR to observe a
number of feature points marked on the ground, is considered.
Suppose that the camera used is a pin-hole camera with the
perspective projection, and its optical point is located at the
center of mass of the QAR; thus, the camera frame C is con-
sistent with the body-fixed frame B. In addition, the inertial
reference frame is denoted by I.

A. NOTATIONS
In this section, some notations throughout the literature are
predefined. The notation ‘‘ × " denotes the cross-product
operator, and sk(·) represents the skew-symmetric matrix
with sk(a)b = a × b for a, b ∈ R3 [15]. The representa-
tions λmin(·) and λmax(·) are the maximum eigenvalue and
minimum eigenvalue, respectively. In addition, || · || denotes
the Euclidean norm, and the denotation || · ||F represents the
Frobenius norm of matrix. Given a vector v(t) ∈ R3, we addi-
tionally define tanh(v) = (tanh v1, tanh v2, tanh v3)T ∈ R3.
For the defined error 1v, its time differentiation is writ-
ten as 1v̇, i.e., 1v̇ = d(1v)/dt . The notation ‘‘||’’ is
used to denote ‘‘parallel’’ of two straight lines, e.g., OA||OB
means that the straight line OA is parallel to the straight
line OB.
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R(2) = R =

 cosψ cos θ cosψ sin θ sinφ − sinψ cosφ cosψ sin θ cosφ + sinψ sinφ
sinψ cos θ sinψ sin θ sinφ + cosψ cosφ sinψ sin θ cosφ − cosψ sinφ
− sin θ cos θ sinφ cos θ cosφ

 (1)

B. DYNAMICS
As shown in Fig. 1, I = {Ix , Iy, Iz} denotes the right-hand
inertial frame, and C = {Cx ,Cy,Cz} denotes the right-hand
camera frame which is consistent with QAR body frame.
As argued in [14], [18], [19], [32], there exists a rotation
matrix R(2) ∈ SO3, specifically given in (1), as shown at
the top of this page, which can be used to fulfill the transfor-
mation from Frame C to Frame I, where 2 = (φ, θ, ψ)T is
QAR’s body attitudes vector, whose members are the angle
of roll, pitch, and yaw, respectively.

Let p ∈ R3 denotes the position of QAR’s centroid in the
Frame I; V ∈ I represents the line velocity; and � ∈ C
represents the angular velocity expressed in Frame C. Then
according toNewton’smoving theory, QAR’s dynamicmodel
is 

ṗ = R(2)V
2̇ =M(2)�
Ṙ(2) = R(2)sk(�)
mV̇ = −m�× V+ TCz +mgRT (2)Cz

J�̇ = −�× (J�)+ F

(2)

where m is the mass of QAR; Cz = (0, 0, 1)T ; J ∈ R3×3

denotes the QAR’s constant inertial matrix around its center
of mass; T ∈ R is the exogenous force along z-direction;
F ∈ R3 denotes the rotational torques in Frame C. F and T,
provided by theQARmotors, are regarded as the control input
variables of the adaptive controller in this paper.M(2) is the
transformation matrix of rotation velocity between Frame C
and Frame I [15] given by

M(2) =

 − sin θ 0 1
cos θ sinφ cosφ 0
cos θ cosφ − sinφ 0

−1 .
C. NEURAL NETWORKS APPROXIMATOR
In the intelligent control field, it is well known that the
radial basis function neural network (RBFNN), as one of
the universal approximators, has been frequently adopted to
model the system uncertainties [32]–[38]. Specifically, let
F (x) : X → Rn be the uncertain dynamics defined on a
compact set X ⊆ Rq and given any accuracy level ε, there
exists a RBFNN 9TY(x) such that

F (x) = 9TY(x)+ δ(x), ||δ(x)|| ≤ ε (3)

where δ(X) ∈ Rn is the according approximation error which
is bounded by the prescribed precision ε. In (3), the notation
9 ∈ RN×n represents an idealized weight matrix, andY(x) =
(Y1(x), . . . ,YN (x))T ∈ RN is the Gaussian radial basis
function vector whose ith componentwise Yi(x) commonly

takes the exponential function

Yi(x) = exp
[
−

(x− x0i )
T (x− x0i )

η2i

]
, i = 1, . . . ,N (4)

where x0i = (x0i1, . . . , x
0
iq)

T
∈ Rq and ηi ∈ R are the center

and the width of the receptive field, respectively. Importantly
note that the Gaussian basis function vector satisfies the
following condition

||Y(x)|| ≤
√
N (5)

Next we introduce a basic definition which will be used
later on.
Definition of Semi-Globally UniformlyUltimately Bounded

(SGUUB): The time-varying vector x(t) ∈ Rq is SGUUB if
for any compact set X ⊆ Rq and all x(t0) ∈ X, there exist an
ε > 0 and a time constant T (ε, x(t0)) such that ||x(t)|| < ε

for all t > t0 + T , where t0 is an initial time.
Remark 1: In the adaptive intelligent control field,

it has been popularly assumed, e.g., [31], [33]–[38], that the
approximator inputs always remain in a compact set due
to two reasons. First, the size of such compact set mainly
depends on the distribution of the centers and widths of Gaus-
sian basis functions, and the number of neural network nodes,
which implies that it is completely possible to construct a
RBFNN to hold the approximator inputs. From the control
engineering point of view, the state variables in physical sys-
tems and devices (e.g., the inverted pendulum [38], the active
magnetic bearing [39] and the robot manipulator [10]–[12])
must be bounded due to the hard constraint. Consequently,
such assumption is feasible in practical application although
the result finally obtained is often SGUUB [19] and [36]. •

III. ADAPTIVE VISUAL CONTROL OF UNDERACTUATED
QAR WITH UNKNOWN INERTIA
A. VISION SYSTEM BASED ON SPHERICAL PROJECTION
The image geometry of the QAR vision is of primary concern
in this section. Here, we use a spherical projection method to
build the equivalent transformation between the position error
and the projected image error, as presented visually in Fig. 2.
We use a constant vector S̄i to denote the coordinate of the
ith target point in Frame I, where i = 1, . . . , n and n is the
number of target features. Using the formula (2), one obtains

Si = RT (2)(S̄i − p) (6)

where Si = (Xi,Yi,Zi)T ∈ C represents the corresponding
coordinate of the ith target point in Frame C. So its perspec-
tive projection on the image plane is further derived as

spi = (ui, vi, f )T = (fXi/Zi, fYi/Zi, f )T (7)
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FIGURE 2. Equivalent spherical image geometry of a pin-hole camera.

where f is the focal length of the used pin-hole camera, and
(ui, vi, f )T is a perspective projection which is considered to
be measurable using the basic image detection techniques,
i.e., spi is a measurable vector. Subsequently, we project the
target features to the spherical image plane, and the corre-
sponding transformation is

si =
spi
||spi ||

=
1

ri(Si)
Si (8)

where ri(Si) = ||Si||/f ′ is the relative depth with respect to
an unit focal length f ′. Note that once spi is available, then
the above equivalent spherical projection si can be readily
obtained using (8). Moreover, we can further derive the time
differentiation of si as

ṡi=
Ṡiri(Si)− Siṙi(Si)

r2i (Si)

=−�× si −
1

ri(Si)
V+

1
ri(Si)

sTi Vsi

=−�× si −
1

ri(Si)

(
I3 − sisTi

)
V (9)

where I3 ∈ R3×3 denotes an identity matrix. Let
Hi = I3 − sisTi , then (9) can be further formulated as

ṡi = −�× si −
Hi

ri(Si)
V (10)

Then we employ an unnormalized spherical centroid (USC)
to build the relationship between the image projection and the
QAR position, and give its definition as follows

s =
n∑
i=1

si (11)

Through differentiating the USC of all target points with
respect time t , one obtains

ṡ=−�× s−
( n∑

i=1

Hi

r(Si)

)
V

=−�× s−Q(S1, . . . ,Sn)V (12)

Note that Q(S1, . . . ,Sn) is an image Jacobian matrix.
According to the definition of Hi, It is readily seen that
Q(S1, . . . ,Sn) is a symmetric matrix. Furthermore, as is
pointed out in [24], when there are more than two effective
target features (i.e., n ≥ 2),Q(S1, . . . ,Sn) becomes a positive
definite matrix.

Note that the main task of this paper is to control the
QAR moving to the desired position, that means to make
p(t) asymptotically converge to p∗ with the visual feedback.
Due to there is no position information, the transformation
relationship between the image projection error and position
tracking error should be initially established. Then the posi-
tioning task can be fulfilled by controlling the image error’s
convergence to zero. Subsequently, a theorem is provided to
build the one-to-one relationship.
Theorem 1:Assuming that the onboard camera can observe

at least two target features. Let p∗(t) represents the target
location of QAR, and Q∗ denotes the corresponding USC in
Frame I. Then if R(2)s is asymptotically convergent to Q∗,
then the position p(t)→ p∗, and vice versa.

Proof: If the position p of QAR is convergent to the
point p∗, it is clearly obtained from the definition of Q∗ that
R(2)s ∈ I → Q∗. Subsequently, we intensively discuss its
converse, i.e, is there only one position p∗ corresponding to

VOLUME 7, 2019 75021



Y. Lyu et al.: Vision-Based Adaptive Neural Positioning Control of QAR

FIGURE 3. Two possible locations of p∗
a: Non-coplanar (a) and

coplanar (b).

the desired USC Q∗. To respond this problem, the following
two cases should be taken into full consideration.
Case 1: Assume that there exists another position p∗a such

that R(2)s = Q∗, and p∗a is not in the plane constructed
by two features A1, A2, and p∗, see in Fig. 3(a). With this
assumption, one gets OS ‖ OSa. Note that the extension of
the vector OS and the line A1A2 intersect at the point B1 on
the plane 1. In addition, on the plane 2, there must exist a
line, e.g,B1B2 which is parallel withOSa, i.e.,B1B2 ‖ OaSa.
Then a contradiction result is derived as

B1B2 ‖ OB1 (13)

which implies that the position p∗a must be in the
plane constructed by OS and A1A2, i.e., the plane 1 in
Fig. 3(a).
Case 2: According to the discussion of above Case 1,

it is further assumed that there exists a position p∗a which is
coplanar with p∗ such that R(2)s = Q∗, see in Fig. 3(b).
In other words, we obtain the resultOS = OaSa. In addition,
it is noticeable from above Fig. 3(b) that

||OC1|| = ||OC2|| = ||OaD1|| = ||OaD2|| (14)

So it will also be derived a contradiction conclusion that

OaA1 ‖ OA1 and OaA2 ‖ OA2 (15)

Based on the detailed discussion of above two cases, it can be
concluded that the possible point p∗a must coincide with the
desired point p∗, which sufficiently verifies the reasonability
of Theorem 1. �
Remark 2: Note that it was commonly assumed, in most

of the traditional position regulation algorithms for UAVs,
e.g., [13]–[19], that the position information has to be avail-
able for measurement. To relax this rigorous condition, a new
adaptive control algorithm based on above vision system
is raised in this paper. It is observed from the one-by-one
correspondence established above that the regulation of the
position error 1p can be achieved indirectly by stabilizing
visual error so that the realtime position measurement is not
required by the developed adaptive controller. •

B. VISUAL-BASED ADAPTIVE POSITION TRACKING
CONTROL
The main task of this section is to design a new adaptive
controller to guarantee s→ RT (2)Q∗. Then the visual error

criterion is defined as

1s(t) = s− RT (2)Q∗ (16)

By further implementing the time differentiation of the visual
error 1s, it gets

1ṡ(t) = −�×1s−Q(S1, . . . ,Sn)V (17)

Until now, the position tracking control problem has been
transformed into the stabilization problem of the image error
1s. Synthetically analyze above (17) and the earlier (2),
we propose an adaptive controller, and the detailed design
procedure will be discussed in subsequent analysis. First,
we use the translational velocityV to stabilize the image error
1s in (17). Denote the error between the real line velocity V
and the virtual one V∗ by

1V =
1
k1

(
V− V∗

)
(18)

where k1 is a scalar factor. Substituting above (18) into (17)
to get

1ṡ = −�×1s−Q(S1, . . . ,Sn)
(
k11V+ V∗

)
(19)

Design the virtual control velocity V∗ as

V∗ = k11s (20)

Thus, we further obtain

1ṡ=−�×1s− k1Q(S1, . . . ,Sn)1V

=−k1Q(S1, . . . ,Sn)1s (21)

Subsequently, it is necessary to stabilize the velocity error1V
so that the image error1s can be convergent to zero. By ana-
lyzing its change rate, and recalling the 4th sub-equation
in (2), it can be derived that

1V̇=
1
k1

(
V̇− V̇∗

)
=−

1
k1

�× V+ gRT (2)Cz +
1
m
TCz −1ṡ

=−�×1V+ gRT (2)Cz +
1
m
TCz

+k1Q(S1, . . . ,Sn)1V+k1Q(S1, . . . ,Sn)1s (22)

Remark 3: It is important to note that above error dynamics
is underactuated since Cz is a unit vector, which implies
that it is physically impossible to directly stabilize it only
using the thrust T ∈ R. From control theory point of view,
such error system can be regarded as an extended case of
the strict-feedback nonlinear system previously investigated
by [39]–[43], etc. For this reason, the backstepping technique
is introduced from these theoretical works to address an
engineering problem, i.e., the underactuation problem. •

Remark 4:Different from the standard strict-feedback non-
linear system, the attitude information of the error system (22)
is wrapped in a rotational matrix R(2), and such coupling
phenomenon takes a challenging difficulty in the develop-
ment of the backstepping-based controller. To overcome it,
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an approach that synthesizes the Lipschitz condition and the
natural saturation property of the inverse tangent function is
proposed and will be discussed hereinafter. •

Note that the translational velocity error system described
in (22) is underactuated so that it is required to exploit the
attitude information to stabilize such error system. Afterward,
a virtual attitude controller is defined as 2∗ = 2 − 12.
Without loss of generality, the desired yaw angle is selected
as2∗3 = 0 in the control design. Then the above (22) is further
analyzed as

1V̇=−�×1V+ g
(
RT (2)− RT (2∗)

)
Cz

+k2

cos θ∗1V1
cosφ∗1V2
1V3

+ k1Q(S1, . . . ,Sn)(1V+1s)

+ g

 − sin θ∗

sinφ∗ cos θ∗

cosφ∗ cos θ∗

+ 1
m

0
0
T

−K21V (23)

where K2 = diag(k2 cos θ∗,k2 cosφ∗,k2) ∈ R3×3, and k2
is a scalar factor. The virtual controllers θ∗ and φ∗ must
be constrained in (−π/2, π/2) due to the natural saturation
constraint of the tangent function, which infers that K2 is a
symmetric positive-definite matrix. And then, the intermedi-
ate controller 2∗ is designed as follows

2∗ = (φ∗, θ∗, ψ∗)T (24)

where ψ∗ = 0, θ∗ = arctan (k1k21V1/g), and φ∗ =
− arctan (k1k21V2/g cos θ∗). In addition, the desired thrust
T ∈ R is subsequently constructed as

T = m
(
− g cosφ∗ cos θ∗ − k21V3

)
(25)

Then (23) can be reformulated as

1V̇ = −�×1V+ g
(
RT (2)− RT (2∗)

)
Cz

−K21V+ k1Q(S1, . . . ,Sn)(1V+1s) (26)

It is noticeable from above (26) that the stability of the
velocity error system1Vmainly depends on the convergence
of the attitude error 12. Once the condition 2 → 2∗ is
satisfied, it can be derived thatRT (2)→ RT (2∗) so that the
convergence of the translational velocity error 1V is further
guaranteed. Subsequently, the main task intensively focused
on is the stabilization of the attitude error system 12. By
differentiating 12 and recalling the second sub-equation
in (2), it obtains

12̇=2̇− 2̇
∗
=M(2)�− 2̇

∗

=M(2)�−
∂2∗

∂1V
1V̇

=

(
M(2)−

∂2∗

∂1V
S(1V)

)
︸ ︷︷ ︸

M̄(2)

�− g
∂2∗

∂1V

[(
RT (2)

−RT (2∗)
)

Cz + k1Q(S1, . . . ,Sn)(1V+1s)

−K21V
]

=M̄(2)(1�+�∗)+41(2,1V,S1, . . . ,Sn) (27)

where 1� = � − �∗ denotes the difference between the
real angular velocity and the virtual one. The partial derivative
∂2∗/∂1V is specified as

∂2∗

∂1V
=


∂φ∗/∂1V1 ∂φ∗/∂1V2 ∂φ∗/∂1V3

∂θ∗/∂1V1 ∂θ∗/∂1V2 ∂θ∗/∂1V3

0 0 0

 (28)

Note that in above (27), the exact value of the image
Jacobian matrix Q(·) is unknown since the relative depth
ri(Si) cannot be available for the realtime measurement
(see in (12)). In other words, the combined nonlinearity
41(2,1V,S1, . . . ,Sn) is also unknown hence it cannot be
cancelled by the virtual angular velocity. To address this
problem, a RBFNN is adopted to approximate the uncertain
combined term 41(2,1V,S1, . . . ,Sn), which is as

41(Z1) = 8T
1 S1(Z1)+ b1(Z1) (29)

where Z1 = (2T ,1TV,S1, . . . ,Sn)T is the neural network
inputs. 81 ∈ RN1×3 is an idealized weight matrix, and
S1(Z1) ∈ RN1 is the Gaussian radial basis function vector
and its componentwise takes the exponential form as can be
seen from the (4). N1 is the number of the hidden neural
network nodes. b1(Z1) is the approximation error which
can sufficiently be reduced less than any given bound b̄1,
i.e., ||b1(Z1)|| ≤ b̄1. In light of the (27), to stabilize the
attitude error, intermediate controller �∗ can be constructed
as

�∗ = M̄−11 (2)
(
− k312−

1

2a21
12Ŵ1 −

¯̂b1 tanh
12

ς1

)
(30)

where a1 and ς1 are two adjustable parameters. Substitut-
ing the developed intermediate controller �∗ into (27), one
obtains

12̇ = M̄(2)1�− k312+8T
1 S1(Z1)+ b1(Z1)

−
1

2a21
12Ŵ1 −

ˆ̄b1 tanh
12

ς1
(31)

where a1 and ς1 are two positive designed parameters.
In above equation, Ŵ1(t) is an online estimation of the ideal-
ized constant W1 defined as

W1 = N1 ·

(√
λmax(8T

181)
)2

(32)

In fact, it is noticed from above definition that W1 is
proportional to the square of the maximum singular value of
the idealized weight matrix 81.
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Remark 5: Recalling the traditional neural-networks-based
adaptive control algorithms, e.g., [18], [19], [31], [33], [34]
and, the idealized weight matrix 81 was directly estimated
by the corresponding adaptive matrix 8̂1(t) ∈ R3×3.
As the neurons increase, it will lead to a burdensome online
computation which casts a shadow on application. In this
paper, we propose a novel optimized adaptive neural struc-
ture to remove such computation burden. As clearly shown
in (31)–(32), instead of the weight matrix itself, the square
of its maximum singular value is estimated by the adap-
tive tuning law so that only one online parameter is
left, which significantly alleviates the burdensome online
computation. •

In above expression (31), the stabilization of the attitude
error 12 mainly relies on the convergence of the angular
velocity error 1� to zero. Thus, the subsequent task is to
stabilize the angular velocity error1�. First, we give the rate
of change of 1� as follows

1�̇=−J−1�× (J�)+ J−1F− �̇
∗

=J−1F− J−1�× (J�)︸ ︷︷ ︸
421

−
∂�∗

∂Ŵ1

˙̂W1 −
∂�∗

∂ ˆ̄b1

˙̂
b̄1 −

∂�∗

∂1V
1V̇−

∂�∗

∂12
12̇︸ ︷︷ ︸

422

=J−1F+42(Z2) (33)

where42(Z2) = 421+422 is a combined nonlinear function
and Z2 = (1T2,Z T

1 ,
ˆ̄b1, Ŵ1,1

TV)T . Similar to the pro-
cess in (29), a RBFNN is used to approximate the uncertain
function 42(Z2). Thus, we have

42(Z2) = 8T
2 S2(Z2)+ b2(Z2) (34)

In this approximator, ||b2(Z2)|| ≤ b̄2 for a given constant
b̄2. In addition, the notations 82 and S2(Z2) denote the ide-
alized weight matrix and the Gaussian basis function vector,
respectively. Follow the definition of W1 in (32), a constant
proportional to the square of the maximum singular value of
idealized weight matrix 82 is defined as

W2 = N2 ·

(√
λmax(8T

282)
)2

(35)

where N2 is the number of the neural network nodes.
Also, denote its online estimation by Ŵ2(t). Afterward,

by substituting the approximation (34) into (33), one has

1�̇ = J−1F+8T
2 S2(Z2)+ b2(Z2) (36)

From the practical point of view, it is often difficult to explic-
itly measure the inertial matrix J. Also, its inverse J−1 is
not accessible for the control design. Thus, a challenging
problem, i.e, the unknown control gain matrix, appears in
stabilizing above error system 1�. To address such chal-
lenge, a new inertial matrix estimator based on the Cholesky
decomposition is technically designed as in (44). Afterward,

the estimation error is defined as J̃ = J − Ĵ. The desired
control torque F ∈ R3 is subsequently constructed as

F = ĴF̄ (37)

where F̄ is an auxiliary controller which is further specified
as

F̄ = −k41�−
1

2a22
1�Ŵ2ST2 (Z2)S2(Z2)−

ˆ̄b2 tanh
1�

ς2

(38)

where a2 and ς2 are two designed parameters. Subsequently,
we give the following property.
Property 1: The inverse matrix J−1 can be decomposed

into J−1 = L L T , where L is a lower triangular matrix
whose all diagonal elements are strictly positive.

Proof: Note that the inertial matrix J is symmetric
positive-definite (SPD), which infers that its all eigenvalues
are positive. Denote one of them by λi ∈ R+ corresponding
to the eigenvector Xi. Then one gets

JXi = λiXi ⇒ J−1Xi =
1
λi

Xi. (39)

So it is clear that all the eigenvalues of J−1 are also positive.
In addition, note that the following result holds.

(J−1)T = (JT )−1 = J−1. (40)

which implies that the inversion J−1 is a symmetric matrix.
Combined with above two aspects, it can be concluded
that J−1 is a symmetric positive-definite matrix. Using the
Cholesky decomposition of J−1, one finally obtains

J−1 = L L T (41)

where L is a lower triangular matrix, and its inversion is
denoted by L −1. �
Note that the matrix L has an inversion. Afterward, three

auxiliary matrices are denoted by J̄ = JTL , ˆ̄J = ĴTL , and
˜̄J = J̃TL , respectively. With these definitions, the (36) is
further derived as

1�̇ = F̄−L ˜̄JT F̄+8T
2 S2(Z2)+ b2(Z2) (42)

Substituting the proposed adaptive control torque F in (38)
into (42), it gets

1�̇ = −k41�−L ˜̄JT F̄+ b2(Z2)−
ˆ̄b2 tanh

1�

ς2

+8T
2 S2(Z2)−

1

2a22
1�Ŵ2 (43)

where a2 and ς2 are two positive scalars.
Until now, the overall procedure of the adaptive controller

design is almost completed. Subsequently, we further pro-
vide the update laws versus the adaptive parameters in (27)
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and (33) as follows

˙̂W1 =
r1
2a21

1T212− k01Ŵ1

˙̂W2 =
r2
2a22

1T�1�− k02Ŵ2

˙̂
b̄1 = h11T2 tanh

12

ς1
− h10 ˆ̄b1

˙̂
b̄2 = h21T2 tanh

12

ς2
− h20 ˆ̄b2

(44)

where ri, k0i, hi, and h0i(i = 1, 2) are some positive scalars.
The inertial matrix estimator is technically designed as

˙̂J = (d1�F̄T − d0Ĵ)0 (45)

where d and d0 are two positive scalar factors, and000 is a SPD
matrix. In the subsequent analysis, the stability of the aerial
robot system under the control of the proposed controller will
be testified by the strict Lyapunov argument.

C. STABILITY ANALYSIS BASED ON LYAPUNOV SYNTHESIS
In this subsection, we first utilize Lyapunov theory to prove
the asymptotic convergence of the visual tracking error 1s,
and then further analyze stability of QAR’s position tracking
error with the adaptive laws list in (20), (24), (25), (30), and
(37), and turning laws in (44) and (45).

A quadratic positive-definite Lyapunov function is consid-
ered as the following form

L =
1
2
1T s1s+

1
2
1TV1V+

1
2
1T212+

1
2
1T�1�

+
1
2d

Tr( ˜̄JT0−1 ˜̄J)+
2∑
i=1

1
2hi
˜̄b2i +

2∑
i=1

1
2ri

W̃2
i (46)

where 0 is a SPD matrix, ri, hi, d ∈ R+, and b̃i = bi − b̂i,
W̃i = Wi − Ŵi, and

˜̄J = J̄ − ˆ̄J. Deriving (46) and
recalling (21), (26), (31) and (43),

L̇=−k11T sQ(S1, . . . ,Sn)1s−1TVK21V

+k11TVQ1V+1T2M̄1�− k31T212

+ 1T28T
1 S1(Z1)−

1

2a21
1T212Ŵ1︸ ︷︷ ︸

C1

−k41T�1�

+ 1T�8T
2 S2(Z2)−

1

2a22
1T�1�Ŵ2︸ ︷︷ ︸

C2

−1T�L ˜̄JT F̄

+ 1T2

(
b1(Z1)−

ˆ̄b1 tanh
12

ς1︸ ︷︷ ︸
C3

)
−

2∑
i=1

1
ri
W̃i
˙̂Wi

+ 1T�

(
b2(Z2)−

ˆ̄b2 tanh
1�

ς2︸ ︷︷ ︸
C4

)
−

1
d
Tr( ˜̄JT0−1

˙̂
J̄)

+ g1TV
(
RT (2)− RT (2∗)

)
Cz︸ ︷︷ ︸

C5

−

2∑
i=1

1
hi
˜̄bi
˙̂
b̄i (47)

In above derivative (47), it is necessary to analyze some com-
plicated terms (i.e., Ci) in closer detail. Using the Young’s
inequality, the Cauchy-Schwarz inequality, and the corre-
sponding preliminaries of the matrix theory, and recalling the
adaptive laws, one has

C1 −
1
r1
W̃1
˙̂W1≤

1

2a21
1T212ST1 (Z1)818

T
1 S1(Z1)

+
1
2
a21 −

1
r1
W̃1
˙̂W1 −

1

2a21
1T212Ŵ1

≤
1

2a21
1T212W̃1 +

1
2
a21 −

1
r1
W̃1
˙̂W1

≤−
k01
2r1

W̃2
1 +

k01
2r1

W2
1 +

1
2
a21 (48)

where k01 is a positive modification parameter. In the
adaptation law ˙̂W1, the introduction of the modified term
k01Ŵ1 is to suppress the drift phenomenon of the adaptive
parameter.

Following the above process again, it is derived that

C2 −
1
r2
W̃2
˙̂W2 ≤ −

k02
2r2

W̃2
2 +

k02
2r2

W2
2 +

1
2
a22 (49)

where k01 and k02 are positive designed parameters.
Furthermore,

C3 −
1
h1
˜̄b1
˙̂
b̄1

≤b̄1

(
||12|| −1T2 tanh

12

ς1

)
+
˜̄b11T2 tanh

12

ς1

−
1
h1
˜̄b1
˙̂
b̄i

≤−
h10
2h1
˜̄b21 +

h10
2h1

b̄21 + 0.8355b̄1ς1 (50)

Similarly, one obtains

C4 −
1
h2
˜̄b2
˙̂
b̄2 ≤ −

h20
2h2
˜̄b22 +

h20
2h2

b̄22 + 0.8355b̄2ς2 (51)

As for the term C5, by using the algebraic operation,
it gets

C5 ≤ g
∣∣∣∣1V

∣∣∣∣ · ∣∣∣∣∣∣∣∣(RT (2)− RT (2∗)
)

Cz

∣∣∣∣∣∣∣∣
≤ gL||12||2 +

1
4

∣∣∣∣1V
∣∣∣∣2 (52)

Importantly, it should be highlighted how to dispose the
term 1T�L ˜̄JT F̄ in equation (47).

1T�L ˜̄JT F̄−
1
d
Tr( ˜̄JT0−1

˙̂
J̄)

=Tr( ˜̄JT F̄1T�L )−
1
d
Tr( ˜̄JT0−1

˙̂
J̄) ≤

d0
d
Tr( ˜̄JT ˆ̄J)
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≤−
d0
2d
||
˜̄J||2F +

d0
2d
||J̄||2F

≤−
d0

2dλmax(0−1)
Tr( ˜̄JT0−1 ˜̄J)+

d0
2d
||J̄||2F (53)

In terms of the detailed derivations of (48)–(53), the time
derivative L̇ in (47) is further formulated as

L̇≤−k1λmin(Q)||1s||2 −
(
λmin(K2)− k1λmax(Q)

−
1
4

)
||1V||2 −

(
k3 − ||M̄||2F − gL

)
||2||2

−
(
k4 −

1
4

)
||�||2 −

2∑
i=1

k0i
2ri

W̃2
i −

2∑
i=1

hi0
2hi
˜̄b2i

−
d0

2dλmax(0−1)
Tr( ˜̄JT0−1 ˜̄J)+

d0
2d
||J̄||2F

+

2∑
i=1

(
k0i
2ri

W2
i +

hi0
2hi

b̄2i +
a2i
2
+ 0.8355b̄iςi

)
(54)

Assuming that there are two constants K and C defined as
follows

K=min
{
2k1λmin(Q), 2

(
λmin(K2)− k1λmax(Q)−

1
4

)
,

2
(
k3 − ||M̄||2F − gL

)
, 2k4 −

1
2
,k0i,hi0,

d0
λmax(0−1)

}
(55)

C=
2∑
i=1

(
k0i
2ri

W2
i +

hi0
2hi

b̄2i +
a2i
2
+ 0.8355b̄iςi

)
+
d0
2d
||J̄||2F

(56)

Then inequality (54) can be further formulated as

L̇(t) ≤ −KL(t)+ C (57)

And thus the solution of inequality (57) can be obtained as
follows

L(t) ≤
(
L(t0)−

C
K

)
exp

(
−K(t − t0)

)
+

C
K

(58)

where t > t0 and t0 is the initial time. Therefore, base on the
Lyapunov theory, we know that the visual tracking error 1s
is asymptotically convergent and its asymptotic performance
is derived as

lim
t→∞
||1s(t)|| ≤

√
2C
K

(59)

Furthermore, it is clear that all the signals in the
closed-loop system remain SGUUB. Invoking the Theorem 1,
we can now draw the conclusion that, with the proposed adap-
tive controller, the QAR’s position tracking error can be made
arbitrarily small through appropriate design parameters.
Remark 6: Note, from (59) and (55), that the norm of

the visual tracking error 1s(t) converges ultimately to an

adjustable bound
√

2C
K which may be reduced to some extent

by increasing the design parameters ki, k0i, and hi0 for i =
1, . . . , 4. So, in practical implementation, we first choose
a set of proper design parameters ki, k0i, and hi0 and then

increase them until the visual tracking error 1s(t) meets the
desired accuracy requirement. •

Remark 7: The positioning control algorithm proposed in
this paper is a robust adaptive approach which can accommo-
date external disturbances effectively in the sense that when
disturbances appear, the closed-loop signal boundedness can
be ensured, and when disturbances vanish, a desired tracking
performance can be recovered. In other words, if disturbances
appear after implementing the proposed control algorithm,
the stability of the quadrotor system can be maintained but
both the transient and steady-state tracking performances
will be affected to some extent. When disturbances vanish,
a desired tracking performance can be recovered automati-
cally. On the other hand, before implementing the controller,
wemay predict the range of potential disturbances and choose
a set of reasonable design parameters. With such a choice,
the desired transient and steady-state tracking performances
can also be ensured even when in the presence of external
disturbances, provided that the appeared disturbances do not
go beyond the predicted range. •

Remark 8: Many important nonlinear control techniques
such as backstepping, neural networks and adaptive control
are used in the study. They are rather useful for the posi-
tioning control design of quadrotor systems. For instances,
the quadrotor system is indeed an underactuated control
system and hence we need the backstepping technique for
its control design; neural networks and adaptive control are
able to handle the model uncertainties of quadrotor systems.
More nonlinear control techniques which are useful for the
extension of this research can be found in [44]–[50]. •

IV. PERFORMANCE RESULTS
We have implemented the proposed adaptive neural visual
control algorithm in a QAR at the intelligent control and
robot laboratory of Guangdong University of Technology, see
in Fig. 4. Subsequently, some results are collected to evaluate
the positioning control performance.

A. MECHANICAL SETUP AND COMMUNICATION
STRUCTURE
To practically assess the tracking control performance of the
adaptive controller, we have developed an hardware system
of the underactuated QAR as shown in Fig.4. In this flight
platform, the desired thrust T and the control torque F are
physically generated by the rotor speeds Wi(i = 1, . . . , 4)
of four brushless direct current (BLDC) motors, and their
inherent relation is specified as

T = −ft
∑4

i=1
W 2
i

F =
[
dft (W 2

2 −W 2
4 ), dft (W

2
1 −W 2

3 ),

fd
∑4

i=1
(−1)i+1W 2

i

]T (60)

where d represents the distance from the center of the robot
to the axis of the rotor. ft and fd are two positive scalars
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FIGURE 4. Hardware system of the QAR.

FIGURE 5. Visualization of the rotor speed control of BLDC motors.

denoting by the thrust factor and drag factor, respectively. It is
observed from (60) that once the desired control (T,FT ) is
determined, the required rotor speeds of the BLDC motors
can be calculated accordingly. Thus, it is necessary to further
take into account the speed tracking control of the motors.
In the developed mechanical setup, the types of four BLDC
motors are all selected as the Sunnysky X2212 whose maxi-
mum speed nearly approaches to 5000rpm and, at this time,
it can provide 680N force to the aerial robot under the
power 102W. The power used for the actuation of these four
BLDC motors is provided by the lithium-polymer battery
which has the capacity of 2200mAh. To achieve speed track-
ing control, an electronic speed controller (ESC) Platinum
30A Pro is mounted on the QAR to connect the BLDC
motors with the onboard control unit (OCU) Arduino MEGA
ATmega 2560. Also, the realtime output speed feeds back to
the OCU by using LM393-based speed measurement mod-
ule as a specific sensor. Subsequently, a standard motor
speed proportion-integration (PI) control algorithm is inte-
grated in the OCU so that the rotor speed vector W =

[W1,W2,W3,W4]T are fast convergent to the desired values
Wd ∈ R4 which are computed from (60). A visualization
about the motor speed control is presented in Fig. 5.

It is observed from (60) that the desired rotor speed
Wd can be determined once the thrust and control torque
are designed. In this experiment, the desired thrust T and
control torque F are obtained from the adaptive controller.

FIGURE 6. Block diagram of the ground work station and QAR.

Subsequently, we focus on the construction of the control
forces in mechanical setup. First, a camera is embedded in
the QAR to observe the target featuresmarked on groundwith
the rate of 20FPS and, at the same time, the images are sent to
the ground station computer with an ESP8266 WiFi module.
Afterward, a machine-vision algorithm is run in the ground
computer to extract the feature points from the background
of the images and calculate the pixel coordinate with respect
to the calibrated frame. Thus, the USC s(t) can be computed
according to (8) and (11). In addition, the Raspberry Pi OCU
integrates an inertial measurement unit (IMU) so that the atti-
tude and velocities can be measured accordingly. The QAR
is equipped a global position system (GSP) Ublox NEO-6M
for a rough estimation of the position. Lastly, these collected
sensor data are transmitted from the OCU to the ground
computer via a WiFi module. After collecting the realtime
sensor data from the QAR and computing the spherical cen-
troid, the proposed adaptive visual control algorithm is imple-
mented in ground station computer, and then the intermediate
controllers V∗, 2∗ and �∗ are numerically computed so that
the desired control forces T and F are finally constructed.
Subsequently, these control points are re-transmitted to the
OCU for achieving the rotors speed tracking control of four
BLDC motors in QAR. The persistent cooperation between
the ground station computer and the onboard controller under
the designed algorithms guarantees the asymptotic conver-
gence of the aerial robot to the desired position. The block
diagram of control flow between ground work station and
QAR is shown in Fig. 6.

B. CONTROL IMPLEMENTATION AND PERFORMANCE
RESULTS
At the beginning of the flight test, we use joystick to control
the aerial robot such that its onboard camera can observe the
marked target features. At this moment, the airplane mode is
switched to the autonomous flight which is driven implicitly
by the proposed adaptive visual control algorithm. In this
experiment, the switched moment is recorded as an initial
actuation time t0. In addition, the QAR mass is m = 0.78kg
and the initial value of inertial matrix is assumed to be an
identity matrix. We assume that all target features are always
in the view field of the onboard pin-hole camera. The focal
length is f = 10mm. To obtain the image projection of target
points to the desired position, we give a general formula as

Q∗ =
n∑
i=1

(
S̄i − p∗

)
||S̄i − p∗||

(61)
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FIGURE 7. Position tracking path on physical image plane.

FIGURE 8. Position tracking path on spherical projective image plane.

where n represents the number of the total target features, S̄i is
the coordinate of ith target point in Frame I, which is defined
in (6).
Control Using Two Features: In the first implementa-

tion, two feature points will be used to develop the pro-
posed control method. The two target points’ coordinates
are S̄1 = (3m, 3m, 0m)T and S̄2 = (−3m, 3m, 0m)T ,
respectively. The desired position’s coordinate is chosen as
p∗ = (0m, 3m,−3m)T , which is 3m above the midpoint
between the two target points. Through (61), one obtains the
desired centroid as Q∗ = (0, 0,

√
2)T . In addition, we set the

initial position of QAR as p(t0) = (0.4m,−0.4m,−2m)T .
The initial values of QAR’s velocity V, attitude 2, and
angular velocity � are set as zero. In addition, to con-
struct the proposed adaptive controller, we set the corre-
sponding coefficient as k1 = 6, k2 = 2, k3 = 10, and
k4 = 0.9. The control results of position tracking are shown
in Fig. 7-10, and a further analysis is provided hereinafter.
Discussion: 1) As shown in Fig. 9, the position error 1p

asymptotically goes to zero after about 15s, that verifies the
validity of the proposed adaptive controller. Moreover, it is
notable that both of the projective image error1s and1p are
asymptotically convergent to zero. Such result demonstrates
the reasonability of Theorem 1.

2)Note that the roll angleφ and the pitch angle θ are always
remained within (−0.5rad, 0.5rad), which indicates that no
singular phenomena occurs over the entire flying process of
the aerial robot. Such result further validates the practical
feasibility of the proposed adaptive controller.

FIGURE 9. Positioning control result.

3)When the QAR hovers in the desired position p∗ which
is in fact an equilibrium point, the thrust satisfy the condition
T = mg as can be seen from the profile of the thrust
in Fig. 10.
Control Using Four Features: To further testify the posi-

tioning behavior of the closed-loop system under the control
of the proposed adaptive controller, a simulation with the four
target features is implemented in the same dynamic model.
Specifically, the target features’ coordinates in Frame I are
given as S̄1 = (3m, 3m, 0m)T , S̄2 = (−3m, 3m, 0m)T ,
S̄3 = (−3m,−3m, 0m)T and S̄4 = (3m,−3m, 0m)T . The
desired position of the aerial robot is

p∗ =

 0
0
−3
√
2

m. (62)

Subsequently, adopting the calculation formula (61) of the
centroid, it obtains

Q∗ = (0, 0, 2
√
2)T (63)

Thus, an adaptive controller with the same parameters as
those in the above simulation is constructed, and applied to
the same QAR. In Fig. 11, the realtime perspective projection
of four target features on physical image plane are depicted,
whereas their equivalent spherical projections on image plane
are shown in Fig. 12.

In light of the performance results shown in Fig. 13, it is
clear that the image projection error 1s almost approaches
zero after about 20s. Accordingly, the position tracking error
1p also converges to zero from now on. In addition, it is
noted that all the physical variables including the position,
translation velocity, attitude, and angular velocity remain
bounded for any time. Compared with the evolution of the
attitude using two target features, the attitude using four target
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FIGURE 10. Profiles of physical variables (i.e, the translational velocity V,
the attitude 2, the angular velocity �, the thrust T, and the torque F).

FIGURE 11. Perspective projection of the four features on physical image
plane.

features varies smaller so that the singular phenomenon can
be avoided more possibly. Note that the position of the QAR
finally locates at the desire position which can be regarded as

FIGURE 12. Spherical projection of the four features on equivalent image
plane.

FIGURE 13. Positioning control results and profiles of physical variables.

an equilibrium point. At this time, the thrust should be equal
to the gravity of the aerial robot, i.e, T = mg. According to
the profile of the thrust, it is clear that such condition is well
satisfied by the proposed adaptive controller.
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V. CONCLUSION
QARs are widely used in various applications due to their
special advantages, such as simple mechanical structure, easy
maintenance and excellent maneuvering. For the underactua-
tion, QAR visual servoing remains a challenging topic in the
robotics field. In this paper, we present an adaptive controller
to fulfill the visual position tracking control for a QAR.
The transformation relationship between the position track-
ing error and image projection error is constructed to elimi-
nate the requirement of position information. In the adaptive
controller, a backstepping-based method that synthesizes the
Lipschitz condition and the natural saturation property of the
inverse tangent function is designed to deal with the under-
actuation feature of QAR. Moreover, an optimized adaptive
NNmechanism is proposed to reduce the computation burden
in the online estimation of the weight matrix. In addition,
the corresponding stability analysis is performed using Lya-
punov theory. Lastly, two simulated results are presented to
illustrate the validity and control performance of our pro-
posedmethod. Note that the Round-Robin protocol [51], [52]
and stochastic communication protocol [53], [54] are useful
in circumventing the data collisions caused by limited com-
munication resources. Based on such an observation and the
research of this paper, it is possible to extend our proposed
control method to the teleoperation application of QAR in
our future study.
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