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ABSTRACT Ridesharing, a shared service that uses the information and knowledgematching, can efficiently
utilize scattered social resources to reduce the demand for vehicles in urban road networks. However, car
ridesharing has the problems of low capacity and high cost, and it cannot satisfy demands for recurring,
long-distance, and low-cost trips. In this paper, we formally define the bus ridesharing problem and propose a
large-scale bus ridesharing service to resolve this problem. In our proposed model, the rider can use an online
bus-hailing service to upload his or her trip demand and wait to be picked up when it gathers enough people.
The provider assigns drivers to riders after integrating the matched ride requests. To maximize ridesharing’s
success rate, we developed both exact algorithms and approximate algorithms to optimize the ride-matching
service. A real-life dataset that contains 65,065-trip instances extracted from 10,585 Shanghai taxis from one
day (Apr 1, 2018) is used to demonstrate that our proposed service can provide higher cost performance and
on-demand bus services for every ride request. Meanwhile, it reduces the number of vehicles used by 92%
and 96% and the amount of oil used by 87% and 92% compared with car ridesharing and no ridesharing,
respectively.

INDEX TERMS Ridesharing, bus pooling, capacitated clustering problem, location-allocation problem.

I. INTRODUCTION
At present, the speed of urban traffic infrastructure construc-
tion cannot keep up with the rapid growth of traffic demand,
especially the traffic jams that occur in cities during rush
hours. The traffic problem is gradually being exposed as
a weakness of the city. In solving urban traffic problems,
ridesharing [1], a shared service that utilizes information
and knowledge matching, can effectively use scattered social
resources to reduce the demand for vehicles in the urban road
network. It is an effective approach to solving the difficulty
of taxi-hailing and ease traffic congestion.

Existing ridesharing systems (e.g., Uber, Lyft, Didi, Ola-
cabs) are only focused on car ridesharing, but they have the
problems of low capacity and high cost and cannot satisfy
demands for recurring, long-distance, and low-cost trips.
Assume that millions of commuters living in a metropolis
go to work from one district to another every weekday. They
have to go back and forth at least once a day and spend a lot of
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time and money on transportation. Taxi ridesharing to work
is convenient and fast, but it is not sustainable for salaried
people because it is uneconomical. By contrast, taking a bus
is economical, but the time to wait and to pick up/drop off
passengers at bus stops is unpredictable, and transfers are a
big problem. Carpooling maybe a compromise option, but it’s
hard to find consistent travel companions.

In this paper, we study the bus ridesharing problem in a
practical setting and design a bus ridesharing service system
to resolve this problem. To facilitate a better comprehension
of our new problem, we start with a demonstration depicted
in Fig. 7. The rider can use an online bus-hailing service to
upload his or her trip demand, and wait to be picked up by
a public bus when it gathers enough people. The provider
assigns drivers to riders after integrating the matched ride
requests. In addition, the driver’s trip must follow the estab-
lished route with its departure, time-window, capacity, and
cost constraints.

To realize this idea, we need to solve the combinatorial
optimization. The work of this study consists of three steps
as follows: firstly, select a search criterion as needed and
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solve the capacitated clustering problem [2] of trip demands.
Secondly, solve the location-allocation problem [3] of the
pickup/delivery point for passengers in each vehicle. Thirdly,
prune by using constraints.

To the best of our knowledge, our work is the first to
consider bus ridesharing for the problems of recurring, long
distance and low-cost trip demands. We place our problem
in a practical setting by exploiting a real city’s road network
and an enormous set of historical taxi trajectory data. The
contributions of this paper are multi-dimensional:
• We propose a bus ridesharing service, formally define
the problem of bus ridesharing, and, according to
the standards of commercial products, develop a bus
ridesharing system based on microservice architecture,
which can be applied in real life.

• We propose three methods to solve the capacitated clus-
tering problem and propose two methods with perfor-
mance guarantees to query the global shortest path on
road networks. Besides we also include a location-based
service to make our results more accurate.

• We define an evaluation benchmark for the bus rideshar-
ing service model and compare the effectiveness and
efficiency of the above-mentioned algorithms of our
proposed system.

• We perform extensive experiments to validate the effec-
tiveness of bus ridesharing as well as the scalability and
efficiency of our proposed bus ridesharing service and
compare the time, price, physical exertion, and cost per-
formance of bus pooling, driving, taxi, taxi ridesharing,
electric-bike sharing, and bike sharing under the same
road conditions.

II. RELATED WORK
In this section, we review previous studies of ridesharing
services, including taxi ridesharing, carpooling, and slugging,
and analyze the differences between them and bus pooling.

A. TAXI RIDESHARING
Taxi ridesharing is a typical ride-share service that accepts
taxi passengers’ real-time ride requests sent from smart-
phones and schedules proper taxis to pick them up via
ridesharing. The focuses of current studies are mainly on real-
time systems and options for different constraints. For the
former, the core is to devise a real-time matching algorithm
that can quickly determine the best vehicle to satisfy incom-
ing service requests, e.g., [4]–[7]. For the latter, the studies
are reflected in the combination optimization by consider-
ing different constraints, such as waiting time, price, route,
scheduling, and payment, e.g., [8]–[11]. In contrast, bus pool-
ing offers an affordable mass service rather than personalized
and efficient services. Hence, we pay more attention to the
effectiveness and scalability of bus pooling.

B. CARPOOLING
Carpooling is an economical ride-share service for passen-
gers who share transportation to the same direction of travel

FIGURE 1. The Bus Ridesharing Service Model.

in a private vehicle with other travel companions. As a col-
laborative model of ridesharing, the hardest part is finding
consistent travel companions in a short time. To address
this issue, the majority of current studies in the field of
carpooling is mainly on requirement mining, e.g., [12]–[15].
Other studies on carpooling focuses on the effectiveness of
ridesharing services, such as minimizing the travel costs
of vehicles, maximizing the ridesharing’s success rate, and
improving riders’ satisfaction, e.g., [16]–[18]. In contrast, bus
pooling is a ride-share service based on demand integration,
and its target population are commuters and people taking
long-distance trips. The trip demand uploaded by riders are
relatively constant and regular.

C. SLUGGING
Slugging is a variation of ride-share commuting and hitchhik-
ing. The slugging problem was proposed in [19]. It assumes
that passenger A abandons her trip and joins B’s trip (i.e., A’s
trip is merged into B’s trip) and considers a vehicle’s capacity
constraint to be two to five passengers. From the procedure,
slugging is very similar to our proposed model if only one
pickup/delivery point is considered in a practical setting. But
in fact, a better pickup/delivery point for passengers in our
proposed model is designed. Rather than Bwaiting for A, it is
more reasonable to pick the location nearest to both A and B.
In addition, we assume a homogeneous fleet of vehicles with
a 30-seat capacity (or even more) because our goal is to solve
the problem of high capacity.

III. MODEL
A. PROBLEM DEFINITION
1) BUS RIDESHARING PROBLEM
Given a homogeneous fleet of drivers, where each driver
is providing ride-share service with an associated capacity
limit, and a ride request from a rider, located at an origin
to go to a destination with a pair of corresponding expected
times. The provider assigns drivers to riders after integrating
the matched ride requests. The rider is prompted to walk
to the driver’s origin, board at the driver’s departure time
in the time-window, alight at the driver’s destination, then
walk from there to the rider’s own destination (Fig. 1). The
objective is to maximize ridesharing’s success rate.

2) ASSUMPTION
(1) The driver can arrive at the pickup point on time.
(2) The driver won’t have breakdowns or traffic accidents en

route.
(3) If the driver arrives at the pickup point earlier than the

upper bound of the time window, he or she needs to wait
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TABLE 1. Notations.

until the upper bound of the time window unless the last
rider be picked up.

(4) The capacity of all drivers canmeet the maximum service
requirements.

(5) Not every ride request is satisfied since this is subject to
the number of riders on a bus.

B. DEFINITIONS
1) RIDE REQUEST
Each ride request r = 〈Orig,Dest, ScheduledTime,
Deadline〉 has an origin Orig and a destination Dest .
ScheduledTime denotes the scheduled time of the service pro-
posed by the rider. Note that it is a unilateral intention rather
than the scheduled departure time ScheduledTime4, which
is determined by the scheduled time of all rides on a bus.
Deadline denotes the latest time of arrival at the destination
that the rider can afford.

2) DRIVER
Each driver d = 〈Capacity,Threshold,EarliestTime,
LatestTime〉 has two static values: Capacity for the num-
ber of seats on a bus and Threshold for the number of
riders that meet the departure threshold. Each driver has
a given time-window when riders are required to arrive;
if they are early, they have to wait and if they are late,
the driver can refuse to pick them up. The lower bound
of the time-window, EarliestTime, denotes the time when
the driver arrives at the pickup point, which is the earliest
start time for the service. The upper bound of the time-
window, LatestTime, denotes the departure time when the
driver leaves the pickup point, which is the latest start time
for the service. At this moment, the driver will leave in any
case.

3) RIDER TRIP
Rtrip = 〈StartTime,PickupTime,AlightingTime,
ArrivalTime〉 denotes rider trip information. StartTime is
the time that the rider leaves the origin. PickupTime,
AlightingTime and ArrivalTime are the times that the rider
arrives at the pickup point, the delivery point and the destina-
tion, i.e.,

StartTime+ T 1
r−trip = PickupTime (1)

AlightingTime+ T 2
r−trip = ArrivalTime (2)

4) DRIVER TRIP
Dtrip = 〈Pickup,Delivery,DepartureTime,
AlightingTime〉 denotes driver trip information. Pickup is the
departure location, and DepartureTime is the time of depar-
ture. Delivery is the terminal location, and AlightingTime is
the time of alighting, i.e.,

DepartureTime+ Td−trip = AlightingTime (3)

C. MATHEMATICAL FORMULATION
The bus ridesharing problem can be stated as follows:

min
∑
i∈R

∑
j∈D

dijxij (4)

subject to:

dij = δ(
−−−−−−−−−→
Origij,Pickupij)+ δ(

−−−−−−−−−−−→
Deliveryij,Destij)

(5)

∀Orig ∈ V o,Dest ∈ V d ,Pickup,Delivery ∈ V ′

(6)∑
j∈D

xij = 1,∀i ∈ R (7)

xij ≤ yj,∀i ∈ R, j ∈ D (8)∑
i∈R

yj ≤ p,∀j ∈ D (9)∑
i∈R

qixij ≤ Qj,∀j ∈ D (10)

xij, yj ∈ {0, 1},∀i ∈ R, j ∈ D (11)

where,
- R is the set of riders.
- D is the set of drivers, with p = |D|.
- dij is passenger mileage.
- qi is the ride request of the rider i.
- Qj is the maximum capacity of driver j.
- xij is 1, if the rider i is assigned to driver j and 0 otherwise.
- yj is 1, if driver j is used and 0 otherwise.

The objective (4) minimizes total passengermileage, hence
increases valid ride requests, with the assurance of maintains
the maximum ridesharing’s success rate (i.e., the percentage
of successful ride requests). Constraint (7) ensures that every
rider is assigned to exactly one driver and constraint (8)
restricts a rider to driver j, denoted by a binary variable yj
equal to one, to be selected only among the riders assigned
to the driver j. Restrictions (9) and (10) ensure that exactly
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FIGURE 2. Primary Search Criteria. (a) OD-pair and time. (b) Routing and time. (c) Keyword/list.

p drivers will be created and that every driver does not exceed
its capacity limit respectively, Constraints (11) specifies the
decision variables.

D. CONSTRAINTS
1) DEPARTURE CONSTRAINT
The actual departure time is determined by when the last rider
is picked up and the scheduled departure time, i.e.,

DepartureTime = min
{
max(PickupTime)
ScheduledTime4

}
(12)

2) TIME-WINDOW CONSTRAINT
Each rider shall arrive at the pickup point earlier than the
departure time and arrive at the destination no later than the
deadline time, i.e.,

PickupTime ≤ DepartureTime (13)

ArrivalTime ≤ Deadline (14)

3) CAPACITY CONSTRAINT
On the one hand, each driver can only afford a limited trip
demand at any time. On the other hand, in order to reduce
operation cost, the driver needs to exceed the threshold of the
number of riders to provide services, i.e.,

Threshold ≤| d |≤ Capacity (15)

4) COST CONSTRAINT
Each rider has a specific tolerance for passenger mileage. The
maximum passenger mileage per rider must be less than a
given valueMileage, i.e.,

δ(
−−−−−−−−→
Orig,Pickup)+ δ(

−−−−−−−−−→
Delivery,Dest) ≤ Mileage (16)

IV. SOLUTION APPROACH
A. PHASE 1: MATCHING AGENCY
The first step of this study is to solve the matching agency
problem [20]. Matching agencies use ridesharing offers and
requests received from drivers and riders, respectively, to find
suitable ridesharing matches. The primary search criteria
refer to what information is used by the system to form driver-
rider matches. The criteria that can be applied to the bus
ridesharing problem are as follows:

1) PRIMARY SEARCH CRITERIA
a: OD-PAIR AND TIME
OD-pair and time matches a request and an offer by the
trips’ origins, destinations and times. Since each trip has only
one origin and only one destination, each trip is denoted as
a directed line segment that start from the origin and end
at the destination, such as

−→
AB. For example, two directed

line segments are given in Fig. 2(a). Generally, the distance
between OD-pairs is regarded as the search criteria on trip
routes, which is the distance between (ϕi, λi) and (ϕj, λj) plus
the sum of the distance between (ϕ′i, λ

′
i) and (ϕ′j, λ

′
j), i.e.,

ρi,j = δ[
−−−−−−−−−→
(ϕi, λi), (ϕj, λj)]+ δ[

−−−−−−−−−−→
(ϕ′i, λ

′
i), (ϕ

′
j, λ
′
j)] (17)

However, there may be errors in the real world, e.g., if there
is a river or a valley between the two points, even though
they are close together, two routes may be completely
opposite.

b: ROUTING AND TIME
Routing and time matches the route and the time from the
origin to the destination. Essentially, each route is a spatial
trajectory represented by a sequence of timestamped geo-
coordinates [21]. In order to obtain more accurate results,
we calculate the similarity of trajectories to find similar
routes. Many existing studies have focused on defining tra-
jectory similarity measures, such as Dynamic Time Warping
(DTW) [22], Longest Common Sub-Sequence (LCSS) [23],
Edit Distance on Real Sequence (EDR) [24], etc. In this
study, we try to take Dynamic Time Warping as a method
to measuring dissimilarity that calculates an optimal match
between two given time series with certain restrictions and
rules because no noise points exist in this study.

c: DYNAMIC TIME WARPING
Dynamic Time Warping is an algorithm which can mea-
sure the divergence between two sequences with differ-
ent phases and lengths. As depicted in Fig. 2(b), it solves
this discrepancy between intuition and calculated matching
distance by recovering optimal alignments between sam-
ple points in the two sequences. Let Q = {q1, · · · , qn}
and C = {c1, · · · , cm} be the two sequences respectively.
To align them, we construct an n-by-m matrix where the
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(ith, jth) element of the matrix contains the distance d(qi, cj)
between the two points qi and cj. A warping path W =

{w1, · · · ,wK } that starts at (1, 1) element of the matrix and
ends at (m, n), where K ∈ [max(m, n),m + n − 1), with
the least cumulative cost between Q and C from the dis-
tance matrix minimizes the total warping cost is defined as
follow:

DTW (Q,C) = min(

√∑K
k=1Wk

K
) (18)

The cumulative distanceD(i, j) as the distance d(i, j) found
in the current cell and the minimum of the cumulative dis-
tances of the adjacent elements, equation (19) can be used
to derive the distance between Q and C based on dynamic
programming [25]:

D(i, j) = d(qi, cj)+ min

D(i, j− 1)
D(i− 1, j)
D(i− 1, j− 1)

 (19)

d: KEYWORD/LIST
Keyword/list searches a request and an offer by keywords
on predefined lists. In practical applications, shuttle buses
usually travel from one urban landmark to another, such
as a station, park, cinema, square, and so on [Fig. 2(c)].
We put the names of landmarks into keyword lists and
measure the distances between these landmarks as the
criteria.

2) CAPACITATED CLUSTERING
In subsequent work, we cluster the demands with capacity
constraints by using the primary search criteria. Generally,
this particular clustering problem is called a capacitated clus-
tering problem.

3) CAPACITATED CLUSTERING PROBLEM
Given a set of weighted individuals is to be partitioned into
clusters such that, the total weight of the individuals in each
cluster does not exceed a given cluster capacity. The objective
is to find a set of centers that minimises the total scatter of
individuals allocated to these centers [26].

4) CONTRACTION-BASED METHOD
Our contraction-based method starts by initializing P and Q
to contain the first θ and the remaining individuals in R,
respectively (line 3) and initializing the scatter upper bound
UB and the cursor variable cursor to facilitate pruning in
the following enumerations of new candidates (line 5). Then,
we insert an unvisited candidate from Q to P (line 6),
and iteratively examine the scatter of the individuals in P
(line 7-12). The purpose is to measure the dissimilarity
between two individuals in P . We also maintain a set L to
contain the complete list of the sum of the scatter of the
enumerated candidates. After each iteration of P is com-
pleted, the one who has the maximum scatter inP is removed
(line 13). Scan all the candidates stored in Q until all the

Algorithm 1 Contraction-Based Method
Input: Requests : R, Capacity : θ
Output: Clusters : C

1 C ← ∅;
2 whileR 6= ∅ do
3 P ← {r0, . . . , rθ }, Q← {rθ+1, . . . , rk};
4 for i = 0; i <| Q |; i++ do
5 UB← 0, cursor ←−1, L← ∅;
6 P ← P ∪ ri;
7 for j = 0; j <| P |; j++ do
8 for k = 0; k <| P |; k ++ do
9 L[j]+ = ρrj,rk ;
10 if L[j] > UB then
11 UB← L[j];
12 cursor ← j;

13 P ← P rcursor ;

14 Insert P into C;
15 Remove P from R;

16 return C;

candidates have been visited (line 4); submit the rest as a
cluster (line 14) and remove them fromR (line 15). Continue
in this way; stop when all the candidates stored in R have
been clustered (line 2).

5) INSERTION-BASED METHOD
The contraction-based method can quickly solve the prob-
lem but will lead to the problem of dissimilarity imbalance
between clusters because it is easy to fall into the trap of local
optima. The candidate may be clustered to the local optimal
first and miss the global optimum later. To resolve this prob-
lem, we further propose an insertion-based method to fix the
problem of ‘‘unfairness’’. It is called insertion-based because
it is similar to insertion sort. In each iteration, the first remain-
ing entry of the input is removed and inserted into the result
in the correct position, thus extending the result. The first
stage of the method is to construct the elite solution. We first
examine themaximum number of clusters k (line 1) and insert
the top-k pair candidates as the elite solutions � into k clus-
ters respectively (line 5) after working out the dissimilarity
measures between all candidates (line 2-4). The rest ofR are
regarded as candidate solutions (line 6-8). The second stage
of the method is insertion, in which we insert an unvisited
candidate into each cluster one by one and calculate the value
added to the average dissimilarity measure of each cluster
(line 9-15). The value added is the standard for evaluating
the correspondence between a candidate and clusters, and
it may be positive or negative. Using the calculation result,
we find the optimal one with the smallest value added and
add a corresponding candidate to the corresponding cluster
(line 16-17). Finally, stop when we reach the maximum
capacity of clusters.
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Algorithm 2 Insertion-Based Method
Input: Requests : R, Capacity : θ
Output: Clusters : C

1 C ← ∅, L← ∅, n←| R |, k ← b n
θ
c;

2 for ri ∈ R do
3 for rj ∈ R do
4 L← ρri,rj ;

5 �← Select top k fromR order by ρ asc;
6 for s ∈ � do
7 C ← C ∪ {s};
8 Remove � from R;
9 while | R |> n− | C | ×θ do
10 for r ∈ R do
11 for c ⊂ C do
12 if | c |< θ then
13 $ ← cweight ;
14 c← c ∪ {r};
15 added ← cweight −$ ;

16 Insert rmin(added) into c4;
17 Remove rmin(added) from R;

18 return C;

6) DYNAMIC GRID-BASED METHOD
Although the insertion-based method solves the problem of
dissimilarity imbalance and calculates the exact solutions,
it is not scalable to k because the number of candidates
grows exponentially with k. Once k is large, the computation
becomes expensive, and the memory cost is unaffordable.
We further propose an approximation algorithm named the
dynamic grid-based method with performance guarantees to
solve the problem. As depicted in Fig. 3 (points and line
denote OD-pair and trip respectively), we divide the space
into n × n cells and use cells as spatial units to filter points,
where n is a parameter. Each cell is uniquely identified by
real numbers [1, · · · , n2] called the identity of the cell, which
are coefficients corresponding to the left vertical line and top
horizontal line of the cell, respectively (line 4-11). To merge
and classify for statistics, the origin and the destination of
each trajectory is put into the corresponding cells determined
by latitude and longitude after the range of each cell has been
calculated (line 12-17). As depicted in Fig. 4, an n2 × n2

matrix is created to store the number of occurrences from
the origins to the destinations of all trajectories (line 18-19).
The aim is to quickly count the number of movements
between cells. Subsequently, let n keep getting smaller
(line 4); the individuals in the cell are regarded as a candidate
solution S once the number of individuals in the cell reaches
the threshold θ (line 21). At the same time, the trip from
cell i to cell j is considered to have gathered enough riders.
Using the trajectory similarity measure, the top-k optimal
candidates are selected from the candidate solutions as a

Algorithm 3 Dynamic Grid-Based Method
Input: Requests : R, Capacity : θ , Zoom : Z ,

GeoInfo : lngmax , lngmin, latmax , latmin
Output: Clusters : C

1 C ← ∅; c← ∅,G ← ∅,M[ ][ ]← ∅;
2 lng = lngmax − lngmin, lat = latmax − latmin;
3 lngbaseline = lngmin, latbaseline = latmin;
4 for Z to 0 do
5 for i← 0 to Z do
6 for j← 0 to Z do
7 Celllng_lower ← lngbaseline +

lng×(i−1)
Z ;

8 Celllng_upper ← lngbaseline +
lng×i
Z ;

9 Celllat_lower ← latbaseline +
lat×(j−1)

Z ;
10 Celllat_upper ← latbaseline +

lat×j
Z ;

11 G ← G ∪ Cell;

12 for r ∈ R do
13 for Cell ∈ G do
14 if rorig ∈ Cell then
15 rkorig← Cellk ;

16 if rdest ∈ Cell then
17 rkdest ← Cellk ;

18 for r ∈ R do
19 M[rkorig][r

k
dest ]+ = 1;

20 for m[i][j] ∈M[ ][ ] do
21 if | m[i][j] |≥ θ then
22 S ← Select all fromRwhere rkorig =

i and rkdest = j;
23 for rx ∈ S do
24 for ry ∈ S do
25 L← L ∪ ρrx ,ry ;

26 c← Select top k fromS order by ρ asc;
27 Insert c into C;
28 Remove c from R;

29 return C;

cluster and removed fromR (line 22-28). Finally, stop when
n equals a given value.

In conclusion, the capacitated clustering problem is solved
by the proposed methods. Consequently, we can provide bus
ridesharing services to these riders.

B. PHASE 2: THE PICKUP/DELIVERY POINT
1) OVERVIEW
The second step of this study is to solve the location-
allocation problem. After capacitated clustering, we prepare
to allocate a location for riders be picked up and dropped
off with the assurance of maintains the minimum cost.
That is, find the pickup/delivery point closest to all the
origins/destinations of each cluster. At present, a plethora
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FIGURE 3. Grid Partition.

FIGURE 4. Grid Origin-Destination Matrix.

of existing studies have calculated the shortest distance
between two locations in a road network. The state-of-the-
art approaches can be classified into two categories: spa-
tial coherence based methods and vertex importance based
approaches [27]. However, the above-mentioned approaches
are both based on a dataset containing an undirected graph
that represents a part of the road network. This is different
from our situation. To bemore universal, we only consider the
trajectory data, but do not consider the road network data-set
within the study area. In this study, we propose two approx-
imate methods to calculate the global shortest path distances
between multiple locations in the road network without the
road network dataset. Then, further than that, we still have
to consider allowed parking locations in the road network for
practical application. For example, urban roads are divided
into expressways, arterial roads, secondary trunk roads and
branch roads by road classification and function division in
China. Among them, only arterial roads, secondary trunk
roads and branch roads can support bus stops such as bus bays
and request stops. Therefore, the following principles should
be met:
1) on an arterial road, secondary trunk road, or branch

road;
2) roadside parking or short-term parking is allowed.

a: THE PICKUP/DELIVERY POINT
Given a subset of points and the range of the spatial query
in a d × d rectangle, if a certain point on an arterial
road, secondary trunk road, or branch road where roadside
parking or short-term parking is allowed connects a sub-
set of points in the rectangle by a set of paths (out of a

Algorithm 4 Random Search
Input: CoordinateSet : L, Zoom : Z , Initial Points : K,

Iteration : N , Computations : V
Output: Coordinate : C

1 G ← ∅, T ← ∅,L← ∅;
2 lngmax ← Listlng_max , lngmin← Listlng_min;
3 latmax ← Listlat_max , latmin← Listlat_min;
4 lng← lngmax − lngmin, lat ← latmax − latmin;
5 lngbaseline← lngmin, latbaseline← latmin;
6 for i← 0 to Z do
7 for j← 0 to Z do
8 Celllng_lower ← lngbaseline +

lng×(i−1)
Z ;

9 Celllng_upper ← lngbaseline +
lng×i
Z ;

10 Celllat_lower ← latbaseline +
lat×(j−1)

Z ;
11 Celllat_upper ← latbaseline +

lat×j
Z ;

12 G ← G ∪ Cell;

13 for Cell ∈ G do
14 T ← T ∪ Terminal(Cell,L,K);

15 G ← Evaluate(T ,G);
16 for i← 0 to N do
17 for Cell ∈ G do
18 L← L ∪ Terminal(Cell,L,V × CellPr );
19 G ← Evaluate(L,G);

20 return Lmin;

Algorithm 5 Terminal(Cell,L,K)

1 for i← 0 to K do
2 tCoordinatelng ← Celllng_lower + RandomSeed ×

(Celllng_upper − Celllng_lower );
tCoordinatelat ← Celllat_lower + RandomSeed ×
(Celllat_upper − Celllat_lower );

3 for Vertex ∈ L do
4 Dist ← Dist + δ(t,Vertex);

5 t ← 〈Cell,Pr,Coordinate,Dist〉;

6 return tmin(Dist);

FIGURE 5. The Pickup/Delivery Point.

given set) with minimum cost, the point is defined as the
pickup/delivery point (Fig. 5). Assume that there are at least
two such points in the rectangle.
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2) RANDOM SEARCH
In the study of location allocation, the potential location of the
pickup/delivery point in the real world is uncertain according
to the Fermat-Torricelli problem. Therefore, we plan to cal-
culate an approximate optimal solution based on the divide
and conquer principle. We divide the space into n × n cells
and use the cells as spatial units to allocate locations. Each
cell is uniquely identified by real numbers [1, · · · , n2] called
the identity of the cell, which are coefficients corresponding
to left vertical line and top horizontal line of the cell, respec-
tively (line 6-12). Subsequently,m random locations are allo-
cated to each cell, and their cost to the origins/destinations of
each cluster is calculated (line 13-14), wherem is a parameter.
Obviously, the bigger the value m, the more accurate the
solution, but the higher the computational cost. To reduce
computational cost, we compute probability by an evaluation
function based on the minimum cost for each cell and put
the probability that each cell has the optimal solution into the
tabu list as a tabu element (line 15). In this way, we allocate
computations to each cell by using the probability (line 18)
and iterative solution and keep the tabu list up to date
(line 19). Finally, stop when we reach N iterations in which
the optimal solution converges and output the current solution
as the optimal solution.

Algorithm 6 Evaluate(L, G)
1 sum← 0;
2 for t ∈ L do
3 sum← sum+ 1

tDist
;

4 for t ∈ L do
5 cellPr ← b 1

tDist×Sum
c;

6 return G;

The evaluation function can be stated as follows:

Pri =
1

dist_minj
1

dist_min1
+ · · · +

1
dist_minj

+ · · · +
1

dist_minn

(20)

subject to:

disti = δ(
−−−−−−−−−−→
Orig,Terminali)xi + δ(

−−−−−−−−−−→
Terminali,Dest)yi

dist_minj = min(dist1, · · · , distm)

xi + yi = 1

xi, yi ∈ {0, 1}

0 < Pri < 1

∀i = 0, 1, · · · ,m

∀j = 0, 1, · · · , n2 − 1

where,

xi =

{
1 if the aim is to allocate the pickup point,
0 otherwise.

yi =

{
1 if the aim is to allocate the delivery point,
0 otherwise.

3) CENTER-BASED SEARCH
Empirically, the pickup/delivery point is the central point of
the point set; even if it is not the central point, it also may
be near the central point. If we start with the neighborhood
search in the central point, it should be accurate and effi-
cient. Consequently, we further propose a center-based search
method. To be precise, a random location is allocated from a
circle centered on the central point with the radius increasing
at a given step size, and stop when a random location is
located on the road network that meets the conditions.

Algorithm 7 Center-Based Search
Input: CoordinateSet : L, Step Size : step
Output: Coordinates : t

1 P ← Query a central point(L);
2 i← 0;
3 while S == ∅ do
4 t ← Query a random location(P, i × step);
5 S ← Query a set of recommend stops(t);
6 i++;

7 return Smin;

4) THE RECOMMEND STOPS
In practice, the pickup/delivery points allocated by above-
mentioned methods may not allow parking on the map.
Therefore, a location-based service (e.g., Google Maps, Bing
Maps, BaiduMap, Amap) is used to search the recommended
stops near the potential location, whereas this way may return
multiple locations. We continue to pick the optimum by
calculating the shortest path distances.

C. PHASE 3: PRUNING
To satisfy demands of riders, we prune by using constraints
after above-mentioned two steps of this study. The steps are
as follows:
Step1 calculate T 1

r−trip
Step2 using (1), calculate PickupTime.
Step3 using (12), calculate DepartureTime.
Step4 using (13), prune.
Step5 calculate Td−trip.
Step6 using (3), calculate AlightingTime.
Step7 calculate T 2

r−trip.
Step8 using (2), calculate ArrivalTime.
Step9 using (14), prune.
Step10 calculate δ(

−−−−−−−−→
Orig,Pickup) and δ(

−−−−−−−−−→
Delivery,Dest).

Step11 using (15), prune.
Step12 using (16), prune.

V. THE FRAMEWORK
The system design of bus pooling adopts service-oriented
architecture (SOA). Fig. 6 shows the framework of the bus
ridesharing service. The main components include two busi-
ness modules (i.e., matching module and terminal module).
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FIGURE 6. The Framework of the Bus Pooling Service.

The matching module implements the function of efficient
ride-matching and integration of trip demands. The terminal
module implements the function of allocating the optimal
pickup/delivery point for riders.

The rider sends a ride request to the system by using
a smart device; the request is queued and sorted by the
scheduled time, then partitioned by time steps. The system
batches trip demands of requests based on time steps. Firstly,
the matching module analyzes the spatial trajectory of trips
and computes the similarity of spatial trajectories to find
the similar trips. Secondly, the terminal module allocates the
optimal pickup/delivery point for riders by using algorithms
and location-based service (to query the duration and distance
data of the route). The results are pushed to riders and drivers
are notified by a system prompt, and drivers and riders to wait
at the designated location in the timewindow. In addition, any
rider can modify or cancel the service before it is completed.

VI. EXPERIMENTS
A. DESIGNED EXPERIMENTS
Four experiments are designed to evaluate the bus ridesharing
service:

(1) Compare the effectiveness and efficiency of capacitated
clustering algorithms;

(2) Compare the effectiveness and efficiency of location-
allocation algorithms;

(3) Evaluate the effectiveness and scalability of bus pooling;
(4) Evaluate the efficiency of bus pooling. This includes

two parts: (i) compare the time, price, physical exertion,

and cost performance between bus pooling, driving, taxi,
taxi ridesharing, electric-bike sharing, and bike sharing;
(ii) compare total vehicles, total oil consumption, and
total time consumption between bus pooling, driving, and
taxi ridesharing.

B. EXPERIMENTAL SETUP
1) ENVIRONMENT
All computational experiments were performed in a Lenovo
ThinkStation P318 personal computer with Intel Core
i7-7700 CPU that is processor of 3.60GHz, 2400MHz with
8.00G of RAM memory on Microsoft Windows 10 version
1803. The whole implementation were developed in the Java
language and has been complied using the Java SE Runtime
Environment version 1.8.0.

2) DATASET
We conducted experiments using a taxi GPS trajectory
data set. The dataset contains 65,065-trip instances from
10,585 Shanghai taxis from one day (Apr 1, 2018). We take
the records of taxi passengers picked up and dropped off
that were generated by GPS receivers as the trip demand
of riders in a period of time in the whole city. To show an
overview, statistics are classified by time steps, total mileage,
and demand distribution (Fig. 8). Not only that, we conducted
experiments using 100 groups of coordinate sets contain-
ing three coordinates as experimental samples to compare
the effectiveness and efficiency of location-allocation algo-
rithms. The above-mentioned datasets in the experiment are
available at the web page http://dx.doi.org/10.21227/2877-
mk46.

C. EVALUATION METRICS
The proposed solution approach groups the goal into two
subgoals, the capacitated clustering problem (CCP) and the
location-allocation problem (LAP), to solve. Thus, we pro-
pose three metrics to evaluate methods for subgoals.

1) MINIMUM SCATTER
The average of scatter between each cluster n individual
in p clusters for the capacitated clustering problem. This
represents the dissimilarity of ride requests on a bus.

ρ =
2×

∑p
g=1

∑n−1
i=1

∑n
j=i+1 ρij

p× n× (n− 1)
(21)

2) MINIMUM COST
The total of the shortest path distance from each cluster’s
pickup/delivery point in p clusters to corresponding cluster’s
n origins/destinations for the location-allocation problem.
The shortest path distance between any two points is used as
the cost indicator.

d =
p∑

g=1

n∑
i=1

δ[
−−−−−−−−−−→
(ϕi, λi), (ϕ′, λ′)] (22)
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FIGURE 7. A Demonstration of the Bus Ridesharing Service.

FIGURE 8. Dataset Statistics. (a) Time steps. (b) Total mileage. (c) Demand distribution.

3) TRAFFIC IMPEDANCE MODEL
The traffic impedance model reflects various factors that
the traffic users consider when choosing transportation and
their importance. Considering the double standard of time
and price, it is not accurate to evaluate the bus rideshar-
ing service by using the normal traffic impedance model.
Thus, we propose a time-price traffic impedance model as
follows:

Q = α × T + (1− α)× E (23)

where Q is the impedance of the traffic model, T is the time,
E is the price, and α is the preference coefficient.

In order to solve the comparability between different
standards, we finish the linear transformation of data with
min-max normalization. The normalized value is defined
as:

X∗ =
max − x
max − min

(24)

D. EXPERIMENTAL RESULTS
1) CONTRACTION-BASED(CO) VS. INSERTION-BASED(IN)
VS. DYNAMIC GRID-BASED(DG)
In the experiment, we selected 10k, 20k, 30k, 40k, 50k and
60k instances respectively by ascending order of departure
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FIGURE 9. Comparing the Effectiveness and Efficiency of Capacitated Clustering Algorithm. (a) Effectiveness (overview). (b) Effectiveness (detail).
(c) Efficiency.

TABLE 2. Parameters evaluated in the experiments.

time, clustering with θ = 10, 20, 30, and calculated the
minimum scatter of the cluster by using (21).

a: EFFECTIVENESS
As shown in Fig. 9(a), DG is the best, IN is the second-
best, and CO is the worst. CO is a greed-based exact method
that may calculate the optimal solution in a feasible amount
of time, but it is easy to fall into the trap of local optima.
As shown in Fig. 9(b), CO is better than the other algo-
rithms at first, but eventually, it ends up worse. IN is bet-
ter than CO because each individual has the opportunity
to calculate all clusters. DG is an approximation method
based on the divide and conquer principle, which narrows
the potential search scope, neglects the bad solutions, and
improves the accuracy of the solutions. The advantages of DG
could allow it to escape the trap of local optima and finally
achieve the global optimum. In terms of k, when k increases,
the more combinatorial optimizations are available, and the
better the effectiveness. In terms of capacity, the more riders
on a bus, the greater the dissimilarity, and the worse the
compactness.

b: EFFICIENCY
As shown in Fig. 9(c), the efficiency of CO is obviously better
than that of the others. IN is not scalable when k is large.
This is because the number of candidates grows exponentially
with k, resulting in high computational cost and memory
consumption. On the contrary, CO has the simplest steps
and the fewest computations, which results in the shortest
time. DG can achieve a better tradeoff between efficiency and
effectiveness. The computational time of DG is not linearly
dependent on k or the number of grid cells but on the solution.
The earlier the solution appears, the lower the computational
cost. In terms of k, that is as plain as the nose on your face:
when k increases, it means that the workload is larger, and the
computational cost is higher. In terms of capacity, the greater
the capacity, the smaller the number of clusters, and the less
the computational cost.

2) RANDOM SEARCH(RS) VS. CENTER-BASED SEARCH(CS)
In the experiment, the sum of global shortest path distances
is calculated. The smaller the sum, the better. First of all,
we try to figure out the number of iterations in which the
algorithm converges to the local optimal solution. As shown
in Fig. 10(a), RS converges in four iterations, and CS con-
verges in five iterations. Consequently, the experimental eval-
uation score was calculated no less than five iterations. On the
one hand, the effectiveness of RS is obviously better than that
of CS, especially if the distance between the two locations
is larger. Not only that, the effectiveness of RS has better
stability and less fluctuation [Fig. 10(b)]. On the other hand,
RS sacrifices efficiency to improve effectiveness and has a
higher computational cost than CS [Fig. 10(c)]. The advan-
tage of RS is randomized adaptive search, which optimizes
computation through probability. Although both of them are
approximation algorithms, the difference is that RS adopts the
method of random sampling and probability gradual approx-
imation, whereas CS infers the location distribution of the
optimal solution by taking advantage of prior knowledge, and
it gradually approaches the optimal solution from optimal to
inferior.
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FIGURE 10. Comparing the Effectiveness and Efficiency of Location-Allocation Algorithm. (a) Convergence. (b) Effectiveness. (c) Efficiency.

FIGURE 11. Effectiveness and Scalability of Bus Pooling (a) Currently accepted time. (b) Currently accepted price. (c) Currently accepted passenger
mileage.

3) EFFECTIVENESS AND SCALABILITY OF BUS POOLING
Generally, people are sensitive to price, time, and conve-
nience of trip. Therefore, we analyze the effectiveness of
the bus pooling by comparing currently accepted price,
time, and passenger mileage. Further, we evaluate the scal-
ability of the bus pooling by examining how the price,
time, and passenger mileage change as the mileage of
ride requests increases. To distinguish, trips are classi-
fied into four categories by mileage: extra-short (0-5km),
short (5-10km), medium (10-15km), or long (15km or
more).

a: CURRENTLY ACCEPTED TIME
According to a survey conducted by the social survey center
of China Youth Daily, 43.4% of respondents spend half an
hour to an hour commuting every day. More than 90% of
respondents would only accept a maximum commute of less
than two hours. As shown in Fig. 11(a), the time taken for
extra-short, short, medium, and long distances is 34.97 min,
44.43 min, 64.29 min, and 109.53 min, respectively. All types
of commuting time are less than two hours. Meanwhile, it is
convenient for passengers not to transfer and to spend no
time waiting for and picking up/droping off passengers at bus
stops.

b: CURRENTLY ACCEPTED PRICE
As shown in Fig. 11(b), the fare is only ¥6 for 86.72% of
riders. The rest are ¥6 to ¥8 (7.78%), ¥8 to ¥10 (3.28%),
¥10 to ¥12 (0.7%), and more than ¥12 (1.51%).

c: CURRENTLY ACCEPTED PASSENGER MILEAGE
The average passenger mileage is only 1.2 km [Fig. 11(c)].
The changes of passenger mileage were not significant for
extra-short, short, medium, and long distances. If the speed
of walking and cycling are as in Table 3, it only takes
7.2-17 min to reach the destination. We believe that this time
is acceptable to most people.

4) EFFICIENCY OF BUS POOLING
Different modes of transport were used to complete all trip
demands in the experiment, including bus pooling, driving,
taxi, taxi ridesharing, electric-bike sharing, and bike sharing.
The purpose was to analyze the efficiency of different modes
of transport by comparing time, price, physical exertion, and
cost performance.

a: TIME, PRICE, AND PHYSICAL EXERTION
Table 3 gives all the pricing and speeds of transportation
in the experiment. Notice that i) all speeds is the average
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TABLE 3. Pricing and speeds of transportation in the experiments.

after taking into account traffic jams and road conditions.
ii) the speed of driving is faster than taxi and taxi ridesharing
because it saves time waiting for a ride. iii) using a pre-
booked ride-hailing service saves more time than taking a taxi
in practice. iv) electric-bike sharing cannot satisfy demands
for long distance trip because of the limitation of battery
capacity. In terms of time consumption, bike sharing is the
most time-consuming, followed by bus pooling, electric-bike
sharing, taxi, taxi ridesharing and driving [Fig. 12(a)]. To be
precise, driving, taxi ridesharing, and taxi take 55%, 63%, and
69% of the time of bus pooling respectively in extra-short,
short, medium, and long distances. On the opposite, prices of
taxi, driving, and taxi ridesharing are 4.93 times, 4.49 times,
and 4.15 times that of bus pooling respectively for extra-
short, short, medium and long distances. On price alone, bike
sharing, electric-bike sharing, and bus pooling are cheaper
[Fig. 12(b)]. The numerical result indicates that driving, taxi,
and taxi ridesharing are convenient and fast but cannot sat-
isfy demands for recurring, long-distance, and low-cost trips.
In terms of physical exertion, bike sharing consumes more
strength. On average, bike sharing consumes 9.69 times as
much energy per trip as bus pooling [Fig. 12(c)]. Obviously,
cycling all the way from the origin to the destination is more
tiring.

b: TRAFFIC IMPEDANCE MODEL
It is well known that price and quality are directly propor-
tional. Our purpose is not to request the best transportation but
to find suitable transportation for people with different pref-
erences. Equation (23) shows thatQ ∈ (0, 1) is the evaluation
score, the higher the better. α = 0.25, 0.75, 0.5 indicates that
the passenger is price-sensitive, is time-sensitive, and treats
price and time as equal, respectively. Fig. 12(d) illustrates that
driving and taxi ridesharing are more appropriate for time-
sensitive passengers. Fig. 12(e) illustrates that electric-bike
sharing is best for extra-short, short, and medium distances
and bus pooling is more cost-effective than others for long
distance, when time and price criteria are equal. Fig. 12(f)
illustrates that bus pooling is the best choice for people who
seek long-distance and low-cost trip. In addition, we found

with the increase of distance of ride requests, the cost perfor-
mance of bus pooling increases gradually, whereas electric-
bike sharing is on the contrary. This highlights their respec-
tive advantages. Compared to driving and taxi ridesharing,
the cost performance of taxis remains low.

c: TOTAL VEHICLES(TV), TOTAL OIL CONSUMPTION(TOC),
AND TOTAL TIME CONSUMPTION(TTC)
At last, the social cost and social benefit caused by applying
bus pooling are assessed from vehicles used, oil consumption
and time consumption. The total number of vehicles for
driving and taxi ridesharing is 22.75 times and 14.27 times
that of bus pooling, respectively [Fig. 12(g)]. Assume that
the oil consumption of a bus is 17.1 XL/100KM and a car
9.12 XL/100KM, then the total oil consumption of driving
and taxi ridesharing is 12.84 times and 7.49 times that of
bus pooling respectively [Fig. 12(h)]. To be precise, bus
pooling reduces the number of vehicles used by 92% and
96% and the amount of oil used by 87% and 92% compared
with taxi ridesharing and no-ridesharing, respectively. The
numerical result indicates that bus pooling can make full use
of resources and is very energy-efficient and economical.
On the contrary, driving achieves at most 49% savings of all
passengers’ time [Fig. 12(i)]. In addition, from the trend of the
ratio of bus pooling and driving, the increase of the distance
of rider requests leads to the gradual decline of ridesharings
success rate.

VII. POTENTIAL FUTURE DIRECTION
In this section, we propose the roadmap of bus pooling
research. Generally, a new service needs to undergoes several
stages of evolution, such as basic service, service support,
value-added service and knowledge discovery. In the study
of ridesharing, whether it is car ridesharing or bus rideshar-
ing, ridesharing service is to assume the role of the media.
The core is to optimize a ride-matching problem, that is,
to match the most suitable supplier for the demander and
to match the most suitable demander for the supplier. The
new challenge of bus ridesharing service calls for i) route
(or trip) generation for each bus to perform multiple

74260 VOLUME 7, 2019



K. Liu et al.: Bus Pooling: Large-Scale Bus Ridesharing Service

FIGURE 12. Efficiency of Bus Pooling. (a) Time. (b) Price. (c) Physical exertion. (d) #Q (α = 0 : 25). (e) #Q (α = 0 : 5). (f) #Q (α = 0 : 75). (g) TV that
carry the same number of people. (h) TOC that carry the same number of people. (i) TTC that carry the same number of people.

transports, multiple pickup/delivery points selection, vehi-
cle and crew scheduling, crew rostering, depot location,
emergency processing and decision that can provide support
and guarantee for business management and operations. ii)
demands for response to services (real-time or non-real-time)
and combination optimization of constraints (such as walking
distance, driving time, waiting time, price, route, etc.) that
can provide more diverse services to satisfy the personal
demands of different target markets. iii) route prediction and
mining base on historical data that can discover potentially
knowledge and open up scenarios.

VIII. CONCLUSION
In this paper, we proposed a large-scale bus ridesharing ser-
vice: it allows riders to customise the bus route on demand

and pick up and drop off at any desired location. This
study focused on the ride-matching optimization problem,
which deals with how to find suitable ridesharing matches.
The proposed solution approach groups the goal into two
subgoals, the capacitated clustering problem (CCP) and the
location-allocation problem (LAP), to solve. The former is
the clustering of travel demand. Due to the limited num-
ber of seats on a bus, each cluster has a certain capacity
limit. The latter is to allocate a location for a set of rid-
ers be picked up and dropped off with the assurance of
maintains the minimum cost. The experimental results show
that our proposed service is economical, energy-efficient,
higher in cost performance than driving, taxi, taxi ridesharing,
electric-bike sharing, and bike sharing. It provides decision
support for government authorities to manage urban bus
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planning and commercial operation of public transportation
corporations.
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