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ABSTRACT In this paper, a mixed probability inverse depth estimation method based on probabilistic graph
model is proposed, which can effectively solve the problems of far distance from the camera center and
long data tail in depth estimation. At the same time, not only the accuracy can be improved but also the
robustness of inverse depth estimation can be developed. First, the triangle method was used to find the
depth information and location of a point in space, and the inverse depth information was obtained as the
initial information of inverse depth estimation. Then, the basic matrix in epipolar geometry was obtained by
using the normalized eight-point algorithm, and the pose of a camera was obtained as the initial information
of optimization. Next, the pose of the monocular camera was modeled by a factor graph model, and the
pose estimation was transformed into an unconstrained optimization problem by using the transformation
relationship between Lie group and Lie algebra to obtain the pose of the camera. Finally, the inverse depth
obtained by using the Gauss-uniform mixed probability distribution based on the probability graph model
was used to calculate the recurrence formula by approximate inference, which can facilitate the sequential
processing of multiple images. The depth information was quantitatively measured and compared by using
TUM datasets, and the length of space object was measured by using inverse depth information, thus
the measurement accuracy of this method was indirectly verified. This method is characterized by strong
robustness and high measurement accuracy in the environments with random interferences.

INDEX TERMS Mixed probability distribution model, factor graph, inverse depth estimation, Lie group

and Lie algebra, fundamental matrix, camera pose.

I. INTRODUCTION

With the development of the artificial intelligence technol-
ogy, research on SLAM of monocular vision goes further and
further. One of the important research field is the estimation
of depth information of monocular vision, which is also a
difficult point of monocular vision research. The accuracy of
SLAM location can be guaranteed only if the depth infor-
mation is estimated precisely. In order to effectively solve
the depth estimation problem of monocular vision SLAM,
machine learning method is applied to depth estimation, so a
model of Gauss-Uniform mixture probability distribution is
considered to improve the robustness and accuracy of the
system. In order to solve the data tailing phenomenon in
depth estimation, the concept of inverse depth is introduced
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into estimation. The inverse depth estimation based on
Gauss-Uniform Mixed Probability Distribution can not only
solve the problem of data tailing, but also effectively improve
the measurement accuracy and robustness.

As an important research field in monocular vision, there
are many studies having been conducted on depth estima-
tion. In reference [1], proposed was a method of depth map
calculation based on Bayesian estimation and convex opti-
mization image processing. This method can save memory
and improve computing speed. In reference [2], a real-time
density tracking and mapping method was proposed to esti-
mate detailed texture depth mapping on selected key frames
to generate surface mosaics containing millions of vertices.
Reference [3] proposed a semi-direct monocular vision rang-
ing algorithm, which uses an explicit probability mapping
method to model outliers and to estimate three-dimensional
points, so as to obtain fewer outliers and more reliable points.
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In reference [4], in order to improve the accuracy of camera
estimation of depth and spatial position, different sensors
were used to register a three-dimensional map calculated by
a robot, to improve its accuracy. Reference [5] proposed an
inverse depth parameterization method based on traceless
transformation, which can capture the relationship between
low parallax features and error state variables of unknown
depth information. Reference [6] proposed a fast method to
solve camera depth by using distance flow constraint equation
and sparse geometric features, and applies its depth estima-
tion to visual SLAM. In reference [7], Bayesian estimation
method was applied to depth estimation. The above methods
all are based on the assumption that the depth of a point agrees
with the Gauss distribution, but there are data tailing at the
position of the principle camera, which may cause great errors
in measurement.

In order to solve the problem of data tailing in depth
estimation, the inverse depth method is devised to meet
this currently inevitable requirement. The inverse depth not
only makes the data distribution more reasonable, but also
improves the estimation accuracy. References [8], [9] pro-
posed a monocular vision SLAM based on inverse depth
parameterization, the method of inverse depth parameteriza-
tion which has been introduced in details. The parameteriza-
tion for this method can cope with features in a large depth
range. The features far from the camera, even those located
at infinite distance, still maintain enough representativeness
in the course of motion, with almost no parallax. The inverse
depth of direct parameterization causes a problem of increas-
ing number of parameters, which brings some difficulties to
optimization. In the process of optimization, the constraints
between parameters are not considered. Reference [10] pro-
posed smoothing and mapping (SAM) be applied to inverse
depth parameter estimation, while avoiding overgeneraliza-
tion of parameters. Results with excellent accuracy were
obtained from real data. The semi-direct visual localization
(SDVL) method was applied for inverse depth estimation,
which improves the efficiency of feature matching, and the
anomalous rejection mechanism (ORM) was used to elimi-
nate the dislocation [11]. Although inverse depth’s parametric
estimation improves the accuracy of parameters, the con-
straints between them are usually neglected in order to avoid
over-parameterization.

By the transformation between Lie group and Lie algebra,
the estimation problem can be transformed into an uncon-
strained optimization problem, to simplify the solution of
the problem. References [12]-[14] described how to use Lie
group and Lie algebra to represent rotation and pose in three-
dimensional space, how to transform a constrained rotation
matrix into an unconstrained optimization problem, and how
to derive the Jacobian matrix. The Lie group-Lie algebra
is a mathematical tool to simplify the problem of attitude
derivation, which brings convenient solutions.

It depends largely on its pose estimation accuracy how
accurate the depth estimation of monocular camera is.
Therefore, pose estimation plays an important role in

72592

depth estimation. In reference [15], a pose map was used
to optimize the camera attitude. This method is widely used
in low dynamic environment, which reduces the computa-
tional load and improves the running speed. Reference [16]
proposed a closed-loop online pose chain method to cope
with pose estimation, which can accurately estimate the depth
of visual odometer and reduce the influence of scale drift
on pose estimation. In reference [17], the factor graph was
applied to the complex pose estimation problem. This method
is applicable for the case of random position interference
in the estimation. Using probability information, unknown
variables can be predicted. An open-square smoothing fil-
tering algorithm was proposed to estimate the pose of the
camera, which decomposes correlation information matrix
or measured Jacobian matrix into square roots, so the cal-
culation speed is faster, and the accuracy is higher [18].
And a new data structure, namely Bayesian tree algorithm,
has been proposed. The method of probability graph was
used to infer pose, and sparse matrix decomposition was
used to improve the speed and accuracy of operation [19].
References [20]-[22] used incremental smoothing and map-
ping to decompose information matrix, which only updates
the actual matrix items, thus improving the efficiency,
and used uncertainty estimation algorithm based on fac-
tor information matrix to improve the real-time information
processing.

Random interference in experimental processes could have
a serious impact on the results. In order to improve the robust-
ness of the estimation, many researches have been done.
In references [23], [24], a pixel-by-pixel probabilistic depth
estimation scheme was proposed. Posterior depth distribu-
tion can be updated with update of each frame. The Gauss-
Uniform mixture probability distribution pattern was adopted
to improve the robustness of the system. The maximum
likelihood estimation method based on non-Uniform mix-
ture parameters with Gauss-Uniform distribution was used
to solve the estimation problem under constraints, and the
existence and consistency of the method were proved [25].
Reference [26] introduced a mixed model of multivariate
Gauss distribution and multivariate Uniform distribution, and
applied it to clustering and classification of models, in which
the validity of the mixed model was shown. In reference [27],
a linear system identification method based on abnormal
robust regular kernel was proposed. Unknown variables were
modeled into Gauss processes, and noise signals were mod-
eled into Laplace random variables, which improves the
robustness of the system.

Many researchers also consider improving the accuracy
and speed of depth estimation from the aspect of hard-
ware. Reference [28] proposed a hardware architecture for
motion depth estimation, which includes a depth conver-
sion and a new optical flow algorithm, i.e., a pixel-parallel/
window-parallel method for computing optical flow based
on correlation function of absolute difference sum.
In reference [29], a reactive obstacle avoidance system was
proposed, which uses online adaptive convolution neural
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network (CNN) to improve the depth estimation of monocular
camera in unfamiliar environment step by step, and uses
motion stereo image as training data. In reference [30],
a system for estimating depth using tilted lens optics was
proposed. The method only obtains the depth of each pixel
from the sharpness ratio of two tilted optical images, and uses
the method of neural network to improve the accuracy.

The main contributions of this paper include: the inverse
depth estimation method was used to solve the problem of
abnormal Gaussian distribution in depth estimation, which
improves the accuracy and stability of the estimation; the
inverse depth estimation problem was modeled by factor
graph model, which facilitates the extension of the inverse
depth estimation method; the transformation relationship
between Lie group and Lie algebra was used to transform
the solution of pose into unconstrained optimization problem,
which simplifies the solution process; the inverse depth esti-
mation method based on the Gauss-Uniform Mixture Proba-
bility Distribution Model was used; the recurrence formula
was derived by approximate inference, which can facili-
tate sequential processing of multiple images, thus not only
improving the accuracy of estimation, but also improving the
robustness of the system.

The organizational structure of this paper is as follows:
Section II will mainly introduce the related definitions and
basic principles of this paper; in Section III will introduce the
use of factor graph model to optimize camera pose, and how
to transform the problem into an unconstrained problem by
using the transformation between Lie group and Lie algebra;
Section IV will introduce the method of estimating inverse
depth based on Gauss-Uniform Mixed Probability Distri-
bution of Probability Graph; Section VI will introduce the
related experiments in indoor and outdoor environments, and
analyze the experiment results; Section ¢6 will summarize the
methods provided in this paper.

Il. BASIC DEFINITIONS AND RELATED PRINCIPLES
A. USING TRIANGLE METHOD TO FIND DEPTH AND
LOCATION INFORMATION OF SPACE POINT
(a) Obtaining the depth information
By observing the angle at the same point in two places,
the distance of the point can be determined.
s1x =KX, sx' =K@RX +1) ()

Lety = K~ !x,y = K~'x/, then the following equation can
be obtained from formula (1):

52y = s1Ry +1 (2)
52y’ Xy =51 xRy +y x1=0 )

Depth information s1 and s, can be obtained by using (2) (3).
(b) Obtaining the spatial location information

“

s;x = PX = K[R|t]1X
sox’ = P'X = K[R'|t'1X
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xXxXPX=0
X xPX=0 )
r le3T _PlT
3T 2T
1Pt —P
;;PBT_P/IT X=A-X=0 (6)
sz/3T _ per

where, P'T is the line of P.

X can be obtained by using the method of non-linear least
squares. Because of influences of noise, it may not strictly
equal to 0. The points x’, % near them should accurately
satisfy the geometric constraints x_’TF x = 0. The minimum
cost function for seeking x/, X is:

L(x,x") = d(x,%)? +d(x, x')? .

¥ Fi=0 @
Under the assumption of Gauss error distribution, x', X is the
maximum likelihood estimation of corresponding points of
the real image. Once x/, X is obtained, the space point X can
be obtained by triangle method.

In general, the first order geometric correction (Sampson
approximation) is usually used to find the ideal point pair
)E’, X; as the measurement point ¥ = (x1, y1, x2, yg)T, the §,
corrected by Sampson is as follows:

s =—JTWIT) e ®)
Among them, error ¢ = x’ T Fx, and Jacobian matrix is:
J = e /ox = [(FTx), (FTx . (P, (Fxn | ©)

where, (Fx); is the partial derivative of the ith variable.

Y=Y+8=Y—-JlTwH e (10)
X1 X
yi| _|»n x'TFx
|| x (FTx")} 4+ (FTx')5 + (Fx)? + (Fx)3
y2 y2
(FTx')
(FTx'), (a1
(Fx)
(Fx)2

According to the above formula, the ideal point x_’, X can be
obtained, and then X can be obtained.

Triangular measurement is mainly obtained by translation.
The triangle method can be used in all cases other than rota-
tion. The larger the translation, the higher the measurement
accuracy will be. There are usually two ways to improve
the accuracy of the triangle method: 1. to improve the extrac-
tion accuracy of feature points, that is, to improve the reso-
lution, which will increase the calculation cost; 2. to increase
the translation distance. With the triangle method, only the
depth and location of a feature point can be measured, but the
relationship between global information and feature points
cannot be obtained.
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B. SOLUTION OF INITIAL POSTURE

The basic matrix F is a transfer mapping from one image
to another through arbitrary plane . Assuming that the two
images are obtained by a camera whose center does not
coincide, both the corresponding points x and x” of the basic
matrix F satisfy: [31]

*TFx=0 (12)

where, F is a 3 x 3 homogeneous matrix with a rank of 2.
Essential matrix E is a special form of fundamental matrix

in normalized image coordinates. The relationship between

fundamental matrix and essential matrix is as follows:

E=KTFK (13)

A matrix is an essential matrix if and only if two of its singular
values are equal and the third is 0.

The steps to solve the pose are as follows:

(a) The basic matrix F is obtained by using the classical
eight-point algorithm, and the essential matrix E is obtained
by formula (13).

(b) The essential matrix E is decomposed by SVD: E =
UDVT | in which D = diag(o1, 02,03) and 01 > o2 > 03.
The essential matrix closest to E under the Frobenius norm is
E = UDVT, where D = diag((o1 + 02)/2, (o1 + 02)/2, 0).
Therefore, the essential matrix E can be simplified to £ =
UY VT, where Y = diag(1,1,0)and U,V € SO(3).

(c) Recovering the pose of the camera from the essential
matrix: Assuming that the first camera is the coordinate
origin, i.e. P = [[]0], according to the essential matrix E
expressed as E = Udiag(1, 1, O)VT, the R and t of the second
camera can be obtained as follows [13]:

T T
R=URY(EHWT, = URs (= u’ 14
2E2) 2ED Y (14)

where, Rz(0) represents the rotation matrix of 6 degree
around Z axis (or X3 axis).

According to the result of the third step, there are four
groups of solutions, but only one group of them has a positive
image depth. Therefore, we choose a test point in the image
and use the four groups to solve the depth of the point. The
group with a positive depth is the final solution.

C. INVERSE DEPTH FILTER

Depth estimation is usually applied to indoor application
scenarios with limited distances. In complex outdoor envi-
ronments, distances are very far or even infinite. In this case,
the assumption of normal distribution is not valid, the nega-
tive region is zero, and the tail may be a little longer. In order
to solve the problem of remote depth estimation, the idea
of inverse depth comes into being. In practical applications,
the inverse depth has better numerical stability.

An inverse depth filter is used to make the inverse depth
estimation converge gradually from an uncertain inverse
depth value to a stable value along with the increase of
measured data, and to estimate the change of the inverse depth
distribution. Usually it comprises epipolar search and block
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matching technology. For a point in an image, its inverse
depth is unknown, and the corresponding spatial points are
distributed in a line segment. From another perspective, the
projection of this line segment is a line of the image plane,
which is an epipolar line. Block matching technology is to
select a w x w block near the matching point and compare
the same size blocks on the epipolar line, which can improve
the resolution to a certain extent. Assuming that the blocks
of matching points are represented by A; and the blocks of
epipolar lines are represented by Bj, there are three evaluation
methods available:

(a) SAD: the sum of absolute values of difference between
two small blocks;

S(A, B)sap = Y _ |AG, j) — B, j)| (15)
iJ
(b) SSD: the sum of squares of differences;

S(A, B)ssp = Y (Al j) — BG. j))? (16)
ij

(c) NCC: Normalized cross correlation, in which the correla-

tion between two small blocks needs to be calculated.

Y AG, j)BG, j)
S(A, B)yce = ——— — (17
\/ZA(z,nz Y B, j)?
ij ij

This paper used the NCC method in evaluation.
Assuming that the inverse depth p of the pixels obeys the
Gauss distribution:

P(p) = N(u, 0?) (18)

The newly observed inverse depth data also obey the Gauss
distribution:

P(p') =N(u', 6" (19)
The original depth information and observed data inte-
grated together still complies with the Gauss distribution.
G/ZM +02M/ ) 020/2
02 +0/2 - 02 _I_U/Z
(20)

P(d)=N(i1, 5%, =

Considering only the geometric uncertainties, the calcula-
tion of 11/, o'? is as follows by using the basic principles and
properties of polar geometry [31].

The inverse depth uncertainty relationship is shown

—_—> — —> —_—> /
in Fig. 1. Supposing CC’ is a, CX isd, C'X is ¢, CX' is d ,
as shown in Fig. 1, the two bottom angles are «, 8 and the
top angle is y. Supposing there is an error of pixel size on
the epipolar line I, which makes 8 become 8’, p become o/,
and y become y/, we can solve for d by triangle method.
Disturbing x, by a pixel will make S produce a change
8pB.Since the focal length of the camera is f, and t is the size
of each pixel, it can be obtained that:

lxt
8B = arctan

21
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a

FIGURE 1. Relation analysis diagram of inverse depth uncertainty.

According to the geometric relation, we can get:

B =Pp+op

Y —ap (22)

According to the sine theorem, the size of d can be
obtained as follows:

sin B’

sin y’

|d'| = llal (23)

Namely, u' = 1/ ||d’| Therefore, o0’ can be estimated as:
o = (1/1dl -1/ [d'])® (24)

When the uncertainty is below a certain threshold, it can
be considered that the inverse depth data has converged.

Target distance: d
Target: A @ @ Target: B

Depth: dca Depth: dcg

Camera center: C

FIGURE 2. Principle of ranging based on camera depth information.

D. RANGING METHOD TO USE DEPTH INFORMATION

Fig. 2 is a schematic diagram for estimating the distance
between two points in an image using the depth information
measured by a monocular camera. Where, 6 is the angle
between the camera center and two target points. Usually,
the direction vector of depth information can be used to find

. _ _dca-dcp
the angle: cos 6 = Tdcalsldesl

Given the depth information dcy4, dcp of the two target
points and the angle # between them and the camera center,
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FIGURE 3. Factor diagram model diagram.

the distance between the two points can be obtained by using
the cosine theorem.

d* = d}, + d%g — 2dcadcp cos 6 (25)

E. STEPS FOR MIXED PROBABILITY INVERSE DEPTH
ESTIMATION BASED ON PROBABILITY

GRAPH MODEL

The detailed implementation steps of the mixed probability
inverse depth estimation method based on the probabilistic
graph model proposed in this paper are as follows:

a. The classical triangle method is used to find the depth
information and position of a point in space, and
the first-order geometric correction method is used to
improve the accuracy of the spatial position, and then
the inverse depth information is obtained as the initial
information of the inverse depth estimation.

b. Using the normalized eight-point algorithm, the basic
matrix in epipolar geometry is obtained, and then the
pose of the camera is obtained as the initial value of
optimization.

c. The pose of monocular camera is modeled by a fac-
tor graph model, and the pose estimation is trans-
formed into an unconstrained optimization problem
by using the transformation relationship between Lie
group and Lie algebra. Then the optimized camera pose
is obtained, which is ready for further inverse depth
estimation.

d. Using the inverse depth of Gauss-Uniform mixture
probability distribution based on probability graph
model and approximate inference, the recurrence for-
mula can be obtained, which can facilitate sequential
processing of multiple images.

e. The depth information is quantitatively measured and
compared by using TUM datasets, and the length of
space object is measured by using inverse depth infor-
mation, thus the measurement accuracy of this method
is indirectly verified.

The above steps are iterative. Generally, the more sequen-

tial images are available, the higher the estimation accuracy
will be.

Ill. OPTIMIZING CAMERA POSTURE USING

FACTOR GRAPH MODEL

Fig. 3 is a schematic diagram of the factor model, in which
each node represents a relevant random variable, where x;
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represents the node about position and attitude of the camera,
[; is the landmark node, o;; is the observation node of the jth
landmark of the i camera, f; is the factor function indicating
the relationship between the position and attitude of the i
camera and the 1st camera. In the figure, the positions of all
cameras are relative positions to that of the first camera. Sup-
pose that the factor function satisfies the following equation

of Gaussian distribution:
L ((h (x) —m>2)
2
27 % 0 20;

(26)

fi()=N (h ) i o,?) —

where, & (x;) is the re-projection of the i camera, W is the
corresponding pixel coordinate, & (x;) — i is the re-projection
error, aiz is the variance of re-projection.

Therefore, the joint probability distribution of all variables
can be written in the form of a product of factors:

Fo)=]]fm 27)

The maximum posteriori probability inference takes the
form of:

Xmax = argmax F (X) = arg max Hfi (x1) (28)
X X .
1
After the logarithm of the upper formula is taken, the max-
imum posteriori probability inference problem can be trans-
formed into the problem of minimizing the sum of nonlinear
least squares.

1
Xmax = arg min 5 Z I () — peill? (29)

Supposing that the coordinates of a point in three-
dimensional space are U; = [X;, Vi, Z:17 and the projection
pixel coordinates are u; = [u;, vi]T, we can calculate the pose
of the camera, R and ¢, using n space points. Supposing that
its Lie algebra is £, we can obtain the relationship between
the position of the pixel and the position of the space point as
follows:

_ X; Xi X;

Ui Yi Yi A Yi

si| vi |[=KIRIN| ) |=KT| ) |=Kexp (") |

1 1 1

! 1 1 1
(30)

Written as a matrix:
simi = K exp (§°) U (3D
Therefore, the re-projection function is:
h(x) = u; = sliK exp (§7) U; (32)
By linearizing the re-projection function, we can get:
hx) =h (x? + Ax,'> —h (x?) +JAx; (33)
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where, J is Jacobian matrix, Ax; = x; — x?, in which, x? is
initial posture.
Therefore, the error function can be expressed as follows:
2
e = h(e) + I Axi =il = WA —bI2
0
b=pi—nh (xi)

Nonlinear minimization problems can be transformed into:

1
Xmax = arg min Xl: IJ Ax; — b? (35)

For the derivation of the upper formula with respect to Ax;,
the normal equation can be obtained as follows:

(JTJ) Axi=JTb (36)

In order to improve the efficiency of the algorithm, the
Levenberg-Marquart (LM) method is used to modify the
normal equation. The LM method allows multiple iterations
to converge, and the step size is controlled in the execution
region. This method is also known as the trust region method.
The revised equation is as follows:

(JTJ + u) Axi=JTh (37)

where, I is the unit matrix of order n, and X is a positive
real number. When A = 0, the method becomes the Gauss-
Newton method; when A is large, Ax; =~ /—{J Tp, it is to
update along the direction of the negative gradient of the error
function.

The next key problem is to solve Jacobian matrix, J.
Because the rotation matrix has orthogonal and determinant
constraints of 1, when R and t are used as optimization
variables, additional variable constraints will be introduced,
which increases the difficulty of optimization problems.
Therefore, the pose estimation can be transformed into an
unconstrained optimization problem using the transformation
relationship between Lie group and Lie algebra, to conve-
niently solve the optimal problem.

If transformed into the camera coordinate system, the coor-
dinate of the space pointis U’ = [X', Y, Z’ ]T, namely,

U=expE) U =[x,7.2]" (38)

Therefore, the camera projection model can be transformed
into:

fe 0 ¢ X'
Sii = KU/ = 0 fy Cy Y’ (39)
001 VA

By using the third line of the equation to eliminate the
proportional coefficient s;, we can get:

X/
Ui :f:\f? + cx
Vi =fy? + ¢y
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Therefore, the error function is:
!
@=ﬁ;+@—w
/ 41)
e, = fy? +cy— v

Using the chain rule to derive the position and posture,
we can get the result.

de de AU’
— = (42)
966 JU’ 98¢
The first term is the derivative of the error with respect to
the projection point. The derivative of formula (41) can be

obtained as follows:

dey, de, Oey fr 0 X
de | oax' oy 8z |_| Z z?
U | Bev  Bev ey o L _BY
ax’ Yy’ 9z’ 7z z?

43)

The second term is the derivative of the transformed point
on Lie algebra, the transformation of space points is T =
exp (’;‘ A), and T is multiplied by a perturbation quantity
AT = exp (8$A). Assuming that the Lie algebra of the
perturbation term is 6§ = [6p, 8¢]T, the derivation process is
as follows:

3 (TU) Lexp (85")exp (") U —exp (") U
A8 sE—0 5&
SE—0 33
[5¢A Sp][RU—i-t]
, 0 0 1
= lim
860 8¢
[aw (RU+t)+8,o:|
= lim 0
SE—0 o6&
:[(1) —(Rl{)—i—t) ]:[é U0 } 44)

The derivative of U’ about position and posture can be
obtained according to the first three-dimension value groups
namely,

U 100 0 -z Y

=[ftu~]={0 1 0 2z 0 X

99 0 0 1 -¥ X 0
(45)

After multiplying (43) and (45), the derivative of error with
respect to posture can be obtained.

de
98¢
e xx/ XX/y/ XX/Z Xy/
. { % 0 _fZ_/z fz_z —fx _fz_/z fz_/ :|
= 5 LY HY”? 5£X'Y AKX
O 7 7 Kt m T o
(46)
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Through the above method, the optimized pose of the
camera can be obtained, and the preparatory work for the
optimization of inverse depth can be done.

IV. ESTIMATION OF INVERSE DEPTH BASED
ON GAUSS-UNIFORM MIXED PROBABILITY
DISTRIBUTION OF PROBABILITY GRAPH
In inverse depth estimation, the outliers in the data could have
a serious impact on the results [32], [33]. The usual practice is
to neglect the outliers to avoid adverse effects on the results.
If the method of collecting data is unreliable, it is reasonable
to neglect the outliers. However, in the case of reliable data
acquisition, outliers are important data information which
must be considered, otherwise false results will be produced.
A data processing method with good robustness should be
insensitive to the model and precise sampling distribution of
errors. Even if there are some obvious errors in data, they will
not have great impact on the whole conclusion or result. The
Gauss-Uniform mixture model is a robust data processing
method, in which the Gauss distribution corresponds to the
good data sampling part, and the Uniform distribution corre-
sponds to the random interference part. Based on an appropri-
ate allocation proportion, good robustness of the system can
be guaranteed.

Zy
U
Xy P
N

FIGURE 4. Probability diagram of Gauss-Uniform mixed probability
distribution model.

Fig. 4 is the probability diagram of the Gauss-Uniform
mixture probability distribution model [34]. Assume that X =

{x1, -+, xn} is the inverse depth value of sensor observation,
p = {p1, -+, pn} is the real inverse depth value, 7 =
{my, -+, y} is the proportion of good measurement data,

1-mr is the proportion of interference, and the interference
signal obeys the Uniform distribution form, U[omin, Pmax]-
Pmin» Pmax are the minimum inverse depth and the maximum
inverse depth measured by the sensor respectively. A =
{A1,---, AN} is the accuracy of Gauss distribution, where
A= %, in which 7 is the variance of Gauss distribution. Given
the true inverse depth p, the accuracy X of the Gauss distri-
bution, and the proportional coefficient 7 of the correct data,
the probability distribution of the inverse depth measured by

the mixed model is as follows:

POl s Ay ) = TaN (nl s 2y D) + (1 = 1)U ()
47)
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All potential discrete variables are recorded as Z =
{z1k, 22k> -+ » Znk}, In which z; is a binary random vari-
able. Using the expression of "1-of-K", one element is 1,
the rest are 0. Among them, z;; = 1, which means the ith
measurement value is good measurement data, and zjp = 0
which means the i measurement value is interference data.
Therefore, the distribution of potential variables is as follows:

P(Xn|/0n, Ans Tp, an)
= (0N (nl oy 2y D) ((1 = ) U () 50k
= U@n) ™ - [N Gl Ay 4] [ (1 = )5 ]
=C 'p(xn|pna Ans an) 'P(an|7Tn) (48)

where, C = U(x,)'~%* is a constant, p(x,|on, An, 2nk) =
N(xnlpn, A, Lyznk represents conditional probability distribu-
tion of observation variables, p(zu|m,) = 7% (1 — nn)l_z'lk
represents conditional probability distribution of mixing
coefficients.

We introduce the conjugate prior probability distribution of
parameter p, A, 7, in which the mixing coefficient w obeys
the Beta distribution rule, and its distribution function is as
follows:

C(pn + qn) Pn

p(tn) = Beta(mwy|pn, qn) = TooTa) ™ 1A — )t
(49)

where, " is a gamma function, namely, T(x) =
f0+°° t*~le~'dt. According to the important property of
gamma functions: T(x + 1) = xT(x), p, and g, can be
understood as the reasonable value of experimental data and
the number of interference values in the whole experiment
process.

The conjugate prior distributions of mean p and precision
A are introduced as Gauss-Gamma distribution patterns in the
following forms:

ip(pnm) = N(pnlpo. (Worn)™")

p(An) = Gam(dylao, bo) = T(Lo)bgo)tzo_l exp(—boin)

(50)

where, pg, Vg, ag, bg are initial values of Gauss distribution
and Gamma distribution respectively.

According to Bayesian theorem, posterior  likelihood x
prior, the joint probability distribution of all random vari-
ables can be obtained in the form of:

PX,Z,m, p,A)
=pXI|Z, p, VpZ|m)p(U|Z, m)p(p|M)p(M)p(r)  (51)

Assuming a posteriori probability distribution pattern,
pZ,p, A, w|X) = gq(Z,p, A, ), which is variational,
the parameters can be decomposed and estimated by the
variational inference method, namely:

9(Z, p, 1, ) = q(Z)q(p)g(A)q(m) (52)

Firstly considered is the derivation of the updating equation
of factor g(Z). The optimization of probability distribution
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q(Z) is equivalent to the minimizing of KL divergence, that
is, the maximum value of g(Z) appears when KL divergence
equals zero. The logarithm of the optimal factor ¢*(Z) is:

Ing*(Z) = Exp [P(X,Z, 7, p, \)] + constant ~ (53)

where, E; , 5 [ - - ] is the mathematical expectation of prob-
ability distribution of ¢(Z), which is defined on variable
T, P, A

We are only interested in functions on the right side of the
equation, which are related to variable Z. Items unrelated to
the variable Z are integrated into the normalized coefficient,
and introduce all the expressions into the formulas above to
obtain the following formulas:

Ing*(Z)
= E, i llnpX|Z, o, V]+E; [p(Z|7)p(U|Z, )]+ constant

N
1 1 A
=E |;Zznk (—5 ln2n+§1nkn—?n o, — p,,)2+lnyr,1>:|
=1

N
+E |:Z (1 —zw)(UnU (x,)+In (1 — nn))i| ~+constant

n=1
N K
= Z Z Znk 1N wyx +constant (54
n=1 k=1
Wnk
exp (E|= L 27+ L k"( )2 +1n
Xp 2 T 3 n ) Xn—Pn Ty )
= an :1
exp (E[InU (x,) +1In(1 — 7)),
Zk =0

(55)

The probability distribution is normalized, that is, for all
the n values, the sum of all k values is 1. By taking exponents
at both ends, we can get:

NoK o
g @) =TI Tl r¥
"o (56)
I'nk = X
i=1
We call ry,; responsibility which plays an important role
in posterior probability distribution. For discrete probability

distribution ¢*(Z), the following results can be obtained:
E [znk] = 7k (57)

The statistics defining responsibility for observations are as
follows:

N
Ny = Zrnk
n=1
LN
S= o >k (58)
n=1
| N
Sk = — kX2 — X7
k Nk nX_; nkXy k
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The logarithm of the optimal factor ¢*(7) is:

Ing*(m)
= Ez [Inp(Z|m) + Inp()] + constant

N
=E Zznk Inm, 4+ (1 —zw)In(1 — ﬂn)]

Ln=1

+@n— 1) Inm, + (gn — 1) In(1 — ;) + constant

r N
=E (pn—l—Zznk—l) Inm,
L n=1

N
+ (qn + Z (1 —zw) — 1) In(1 — rrn)j| + constant

n=1

(59)
Therefore, the updating equation of Beta distribution

parameters is:

:pn+1 =Pn+ Tnk (60)

Gny1 = qn+ 1 —rpk

The logarithm of the optimal factor g*(p) is:

Ing*(p)
= Ez., [Inp(X|Z, p, M)] + E; [Inp(p|A)] + constant
N
E[A]
= |:Z Fuk Gen — P)* + 00 (p — 90)2] + constant
n=1

(61)

With respect to p squaring, the Gauss distribution
N(plpn, )»;,1) can be obtained, where the mean and variance
are respectively as follows:

voPo + NiXy

vo + Nk (62)
An = (vo + Ni) E[A]

pN =

The logarithm of the optimal factor g*(1) is:

Ing*(»)
= Ez , [InpX|Z, p, 1)1 + E, [Inp(p[A)]
+ In p(A) + constant

N
A
= _EEp [Z Fuk (o — )% +vo (p — Po)z} — boA

n=1

N, 1
+ ( k2+ +ag — 1) In A + constant (63)

Therefore, g(A) is a Gamma distribution pattern, Gam(}|
an, by), with the following parameters:

N +1
ay = ap +
2
1 N
by =bo + 5B, [Zl Fak (on — p)* + v (p — po)z]
n—=

(64)
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The expression of E[A], E[p], E [ p?] is obtained by using
the priori distribution without information. Assuming py =
vg = ag = by = 0 and the standard result E[A] = Z—x of the
mean value of Gamma distribution, we can get:

_ _ Sk 1
Blpl =% E[p’] =% + 5 ED] = o

by = bo + | NeSe + vo (B2 4+ 25— 2p0% + 2
N = Do+ 5 | Nesk + vo | X Ne POXk + 0O
(65)

V. EXPERIMENT

In order to ensure the comparability of the experiment, all
the camera positions and postures were optimized using the
g20 method. The depth filter, inverse depth filter and mixed
probability distribution inverse depth filter were compared
respectively. The inverse depth filter is for the method men-
tioned in Section II.C of this paper.

The initialization parameters of Beta distribution are
po = 1, go = 1, and the ratio coefficient is 7y = po{)ﬁ o =
0.5. The initialization parameters of Gamma distribution are
ag = 1, bgp = 1. The camera pose obtained by the clas-
sical eight-point method was used as the initial value for
factor diagram optimization. The camera depth information
obtained using the triangle method and the location of the
space obtained using the first order geometric correction
method were used as initial values for Gauss-Uniform mix-

ture probability distribution.

A. QUANTITATIVE CONTRAST EXPERIMENT

OF DEPTH ESTIMATION

In this paper, we used RGB-D Benchmark in TUM datasets
to carry out experiments. The RGB images and their corre-
sponding depth maps are shown in Fig. 5, respectively.

In the experiment, we compared the depth obtained by the
mixed inverse depth estimation method based on probabil-
ity graph with the true value of depth provided by TUM,
and obtained the quantitative comparison results. Thirty
images were selected from TUM datasets, and then the same
30 feature points were extracted from 30 images. The depth
values of corresponding feature points were calculated and
compared with the true values. All relative errors were aver-
aged as the overall error of image depth estimation by this
method.

In this paper, the depth estimation method, the inverse
depth estimation method and the inverse depth estimation
method based on mixed probability model were used to carry
out experiments. The overall errors of the three methods are
shown in TABLE 1, respectively.

From TABLE 1, it can be seen that the accuracy of depth
estimation by inverse depth method is better than that by
depth method, because the assumption of inverse depth makes
the distribution of measurement data more reasonable, and
therefore improves the measurement accuracy. The precision
of mixed probability inverse depth estimation method is better
than that of inverse depth estimation method, because the
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(b)

FIGURE 5. RGB images and depth maps used in experiments. (a) RGB
images used in experiments. (b) Depth image.

TABLE 1. Overall error contrast results.

Depth Inverse Mixed Probability
Method Method Depth Inverse Depth
Method Method
Error 16.71% 13.47% 7.61%

mixed probability distribution improves the robustness of the
system, and can make more reasonable and full use of all
measured data.

In order to verify the applicability of this method to indoor
and outdoor environments, 720P USB camera were used to
carry out experiments, and the focal length of the camera is
3.6mm.In the experiment, the camera calibration results are
as follows: f, = 1500.0,f, = 1510.5, u, = 708.7,u, =
338.7. Thirty groups of photographs of indoor and outdoor
environment were collected for experiment. Using the depth
information of space points, the length of space objects can
be calculated, and then the measurement accuracy of the
estimation method can be obtained. This is also an application
of depth information.

B. ESTIMATION AND CONTRAST TESTING

FOR INDOOR ENVIRONMENTS

In Fig. 6, (a) is the original image of indoor environment, in
which the really measured distance is 0.4m; (b) is the depth
map obtained by depth filter filtering, in which the dis-
tance measured by depth map is 0.27m, which is with the
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0.37m

(d)

FIGURE 6. Contrast chart for indoor environment experiment. (a) Source
image. (b) Depth map error:32.5%. (c) Inverse depth map error:17.5%.
(d) Mixed inverse depth map error:7.5%.

largest error; (c) is the inverse depth image filtered by Gauss
inverse depth filter, in which the outlines of the objects can
be clearly seen and the measured distance is 0.33m, which
is with a small error; (d) is a mixed inverse depth filtering
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inverse depth map that is based on the probability graph,
in which the outlines of the object are clearly visible and
the measured distance is 0.37m, which is with the minimum
error.

By comparing the calculation results of depth filter and the
inverse depth filter, it can be concluded that the calculation
of inverse depth filter is more stable. For the depth filter, it’s
assumed that the depth of the pixels near the measurement
point agrees with the Gauss distribution, but this assumption
will suffer that the pixels close to the center of the camera are
too concentrated, and those far from the center of the camera
are tailed, thus resulting in uneven data distribution and poor
anti-jamming ability. On the contrary, the inverse depth filter
take the reciprocal of the depth information of the pixels
assuming that its reciprocal satisfies the Gauss distribution.
This hypothesis effectively solves the problem of pixel tail-
ing, disperses the pixels near the camera, and makes the dis-
tribution of the depth of the pixel more reasonable. Therefore,
its experimental result is more stable and anti-interference.

As can be seen from the above figure, the filtering effect of
mixed inverse depth filter based on probability graph is better,
more stable and more robust than that of the Gauss inverse
depth filter. In the mixed model, besides assuming the intro-
duction of Gaussian distribution near the measurement point,
random interference is also introduced according to the prior
information of the inverse depth. The optimal mixing coeffi-
cient can be obtained by approximate inference. Reasonable
mixing distribution can not only improve the measurement
accuracy, but also enhance the robustness of the system.

C. ESTIMATION AND CONTRAST TESTING FOR

OUTDOOR ENVIRONMENTS

In Fig. 7, (a) is the original picture of the outdoor environ-
ment, where the really measured distance between the two
points is 1m. (b) is the depth map obtained after filtering of the
depth filter, in which the measured distance is 0.77m and the
error is relatively large. (c) is the inverse depth map obtained
after filtering of the inverse depth filter, in which the measur-
ing distance is 0.8m, of which the accuracy is improved and
the outlines are obvious, compared with the depth method. (d)
is the inverse depth map obtained after filtering of the mixed
inverse depth filter, based on the probability graph, in which
the measured distance is 1.05m, the error is relatively small,
and the outlines are clear.

By comparing the results of the above three experiments,
it can be seen that the mixed inverse depth filtering method
based on probability graph is superior to the inverse depth
filtering method, and the inverse depth filtering method is
superior to the depth filtering method. The inverse depth
filtering mainly solves the problem of data tailing, while the
mixed inverse depth filtering mainly solves the problem of
anti-jamming. Generally speaking, the mixed inverse depth
filtering method not only improves the robustness of data, but
also obtains measurement results with less data tailing.

Usually, indoor environments are relatively stable, the light
intensity is stable, and the interference factor is relatively
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0.77m

1.05m

(d)

FIGURE 7. Contrast chart for outdoor environment experiment. (a) Source
image. (b) Depth map error:23%. (c) Inverse depth map error:20%.
(d) Mixed inverse depth map error:5%.

small. Therefore, stable feature extraction and image match-
ing is ensured, and the measurement error is relatively small.
An outdoor environment is changeable, and its intensity of
illumination fluctuates with the position of measurement,
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which results in a large difference in gray value of the same
feature point in different images, and it has a certain ran-
domness which makes it difficult for feature extraction and
image matching. The mixed inverse depth filtering method
based on probability graph can deal with the errors caused
by random interference and improve the robustness of the
measurement. The experimental results show that the mixed
inverse depth filtering method has better measurement results
in both indoor and outdoor environments.

D. EFFECT OF MIXED PROPORTION COEFFICIENT

ON EXPERIMENTAL RESULTS

This experiment mainly adjusted the proportionality coef-
ficient of Gauss-Uniform Mixing Probability Distribution,
while other parameters remained unchanged. The variation
of the measured distance under different experimental envi-
ronments was observed. The experimental results are shown
in TABLE 2.

TABLE 2. Experimental results of mixed proportional coefficient.

Indoor environment Outdoor environment
Proportion | True | Measured | Error | True | Measured | Error
value value value value
25% 0.4m 0.37m 7.5% Im 1.15m 15%
40% 0.4m 0.37m 7.5% Im 1.09m 9%
50% 0.4m 0.37m 7.5% Im 1.05m 5%
60% 0.4m 0.37m 7.5% Im 1.02m 2%
75% 0.4m 0.37m 7.5% Im 0.96m 4%

From TABLE 2, we can see that the change of proportion
coefficient has little effects on the indoor environment experi-
ment. The main reason is that indoor environment is relatively
stable, illumination intensity is constant and random interfer-
ence is relatively small. That is to say, the proportion of the
interference factor in the experiment is quite small. With
the increase of the amount of experiments, the proportion of
the interference factor decrease, and ultimately, their effects
on the experimental results can almost be neglected.

However, the proportion coefficient has a significant effect
on outdoor environmental experiments. With the decrease of
the proportion of the interference factor, the measurement
accuracy first increases, but after reaching 40%, the accu-
racy becomes worse. The main reason is that the outdoor
environment is susceptible to changes of light intensity and
random noises. The influence of interference factors on the
experimental results can’t be ignored. When the proportion
of interference is relatively large, it can seriously affect the
measurement of real data, so the error may be relatively
large. With the reduction of interference, the measurement
accuracy will also be improved. When the interference disap-
pears gradually, the measurement accuracy becomes worse.
The main reason is that when the interference is reduced to
a certain extent, the mixture probability distribution matches
the Gauss probability distribution, and the advantage of the
mixture distribution will disappear, so the accuracy becomes
WOrse.

The experimental results show that when the interference
factor is less than 50%, the measurement accuracy of mixed
probability distribution is relatively high.
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VI. CONCLUSION

Initialization information has a great impact on experimental
results. It is very important to select good initial values for
optimization. In this paper, the position and attitude obtained
using the normalized eight-point method were taken as the
initial values for the factor graph model optimization, and the
inverse depth information obtained using the triangle method
was taken as the initial value for inverse depth information
estimation by Gauss-Uniform Mixed Probability Distribution
Model.

The application range of the depth estimation is limited;
the data near the center of the camera is zero, and the phe-
nomenon of data tailing occurs at distance far away from
the camera, resulting in abnormal Gauss distribution, and
an estimation error relatively large. In order to solve above
problems, this paper proposed a method of inverse depth
distribution based on Gauss, which takes reciprocal of depth
information and assumes that the reciprocal obeys Gauss
distribution. This method can effectively solve the problem of
data tailing and improve the accuracy and stability of depth
estimation.

In this paper, a factor graph model was introduced into
the inverse depth estimation, making the idea of using a
factor graph to represent inverse depth estimation more
clear and resulting in more potential applications of the
method and better accuracy of the estimation. In the pro-
cess of pose optimization, in order to cope with the deriva-
tion of rotation matrix, additional variable constraints were
introduced, which increases the difficulty of optimization.
Thus, the transformation relationship between Lie group and
Lie algebra can be used to transform the pose estimation into
an unconstrained optimization problem, thus facilitating the
solution of the optimal problem.

Aiming to solve the problem that the outliers in data could
seriously affect the results of inverse depth estimation, this
paper proposed an inverse depth estimation method based
on the Gauss-Uniform mixed probability distribution model,
in which the Gauss distribution corresponds to the good data
sampling part and the Uniform distribution corresponds to the
random interference part. The system can be guaranteed to
have a good robustness by appropriate allocation proportion.
By approximate inference, the recurrence formula can be
obtained, which can facilitate sequential processing of mul-
tiple images. This method is insensitive to the model of data
and the distribution of data sampling; even if some errors in
the sampled data are large, no great impacts will be imposed
on the results and the conclusions.

In conclusion, the inverse depth estimation method of
mixed probability distribution, which is based on probability
graph, not only has good robustness, but also has high esti-
mation accuracy.
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