
SPECIAL SECTION ON MOBILE SERVICE COMPUTING WITH INTERNET OF THINGS

Received April 15, 2019, accepted May 3, 2019, date of current version June 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2919736

Federated Learning-Based Computation Offloading
Optimization in Edge Computing-Supported
Internet of Things
JIANJI REN, HAICHAO WANG , TINGTING HOU, SHUAI ZHENG, AND CHAOSHENG TANG
College of Computer Science and Technology (Software College), Henan Polytechnic University, Jiaozuo 454010, China

Corresponding author: Chaosheng Tang (tcs@hpu.edu.cn)

ABSTRACT Recently, smart cities, smart homes, and smart medical systems have challenged the function-
ality and connectivity of the large-scale Internet of Things (IoT) devices. Thus, with the idea of offloading
intensive computing tasks from them to edge nodes (ENs), edge computing emerged to supplement these
limited devices. Benefit from this advantage, IoT devices can save more energy and still maintain the quality
of the services they should provide. However, computational offload decisions involve federation and com-
plex resource management and should be determined in the real-time face to dynamic workloads and radio
environments. Therefore, in this work, we use multiple deep reinforcement learning (DRL) agents deployed
onmultiple edge nodes to indicate the decisions of the IoT devices. On the other hand, with the aim ofmaking
DRL-based decisions feasible and further reducing the transmission costs between the IoT devices and edge
nodes, federated learning (FL) is used to train DRL agents in a distributed fashion. The experimental results
demonstrate the effectiveness of the decision scheme and federated learning in the dynamic IoT system.

INDEX TERMS Federated learning, computation offloading, IoT, edge computing.

I. INTRODUCTION
IoT devices are widely used in industrial control, network
physical system, public safety equipment, environmental
monitoring and other fields. Large-scale IoT devices will
be deployed everywhere in the future to meet the grow-
ing demand for services such as smart cities, smart homes
and smart medical systems. These devices typically require
low latency and power consumption to perform tasks such
as monitoring, sensor data upload, and real-time decision
making.

Typically, these IoT devices are relatively weak and hetero-
geneous, and of course they are unlikely to directly support
the intensive computational costs caused by the above tasks.
However, as an emerging technology, edge computing is
envisioned as a promising architecture for offloading tasks
from IoT devices. On the other hand, edge nodes in edge
computing systems are used as coordinators between them
and are responsible for their communication and even load
balancing.

Therefore, in this work, we use FL to guide the training
of DRL agents for joint allocation of communication and

The associate editor coordinating the review of this manuscript and
approving it for publication was Tie Qiu.

computing resources. Experimental results confirm its effec-
tiveness compared to unrealistic centralized trainingmethods.
The main contributions of this paper include: 1) The combi-
nation of DRL training and FL in the IoT system supported
by edge computing is studied. 2) Joint allocation of commu-
nication and computing resources. 3) Experiments verify the
effectiveness of the FL-based DRL.

The structure of this paper is as follows. We give related
work in Section II. The Section III describes the system
architecture and dynamic systemmodel. The Section IV gives
the problem formulation and the training frame. We provide
simulation experiments and analysis in Section V. Finally,
Section VI concludes our work.

II. RELATED WORK
To reduce the latency of IoT devices, Qiu et al. proposed
EARS, which uses packet priority and expiration dates to
describe the urgency of the packet [14]. Through the analysis
of the arrival process of different data packets, the back
pressure queue model with emergency package is designed,
an event-aware back-pressure scheduling scheme (EABS)
for EIoT is proposed [17]. Qiu et al. proposed a new type
of spider network transmission mechanism for emergency
data in a vehicle-mounted self-organizing network [10].

69194
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-3865-8564


J. Ren et al.: Federated Learning-Based Computation Offloading Optimization

In addition, we should pay special attention to the security
and privacy of IoT devices. A spam authentication scheme
based on Gaussian Mixture Model (SIGMM) was proposed
in [12], which is applied to machine learning recognition of
mobile networks.

Other than this, edge computing can also be used to
pre-cache popular content. In HetNets, an effective coop-
erative multi-layer caching framework is proposed, and the
maximum capacity of network infrastructure to offload net-
work traffic locally and support user content requests is
discussed [16]. In addition, advanced device to device (D2D)
communications are available to reduce congestion when
using cellular networks. Wang et al. designed a big data
platform named device-to-device, which effectively pro-
moted the use of wireless network between users to achieve
device-to-device communication, accurately provided con-
tent to users and effectively provided intelligent discharge
for operators [8]. Li et al. considered the social behavior and
preference of mobile users, heterogeneous cache size and the
analysis of the derived system topology [4]. Wang et al. pro-
posed a framework for auxiliary traffic offloading of social
network services (SNS), which offload traffic of social net-
work services to users through opportunity sharing (TNS)
in mobile social networks (MSN), so as to achieve user
sharing [6].

With edge computing, IoT devices can offload their inten-
sive tasks to edge nodes, leveraging the trade-offs between
communication and computing, giving them the potential
for energy savings and performance enhancement. There-
fore, it is very necessary to propose a useful and efficient
scheduling method. In the past, related work proposed to
use convex optimization [3] and game theory [5] to solve the
resource allocation problem in the offloading. However, these
traditional methods require accurate channel state informa-
tion or global information of devices and edge nodes, and
it is impractical to obtain such information from a complex
environment. In addition, computational offloading involves
comprehensive resources for wireless communications, com-
puting, and networking, and these methods are not easily
changed when resource constraints or objective functions
change to address related but different optimization issues.

Wang et al. recommended combining Deep Reinforce-
ment Learning and Federated Learning frameworks with
mobile edge systems to optimize mobile edge computing,
caching and communication [2]. Therefore, deep reinforce-
ment learning is used in [7] to deal with the allocation of
integrated resources in computational offloading tomaximize
the long-term benefits of energy consumption and execution
delays, without the need to know the channel state informa-
tion in advance, only local information is needed. Integrated
resource allocation is achieved without global information.
Particularly, this optimization can solve the following prob-
lems: 1) Uncertain Inputs: due to privacy issues and dynamic
changes in the radio channel, it is difficult to obtain some
key information necessary for model-related optimization.
2) Dynamic Conditions: the entire edge system should be

FIGURE 1. IoT system with edge computing nodes.

considered real-time dynamic workload. 3) Temporal Isola-
tion: not only to optimize the snapshot of the system, but
also to consider the long-term utility of the system. However,
an unnoticed assumption has been made in [7]. Specifically,
IoT device is considered as a very powerful device with the
ability to independently train their own deep reinforcement
learning agents. However, in the near future, IoT devices
may not be as powerful, they may only support computing
of lightweight neural networks at most.

III. SYSTEM ARCHITECTURE
A. STATIC SYSTEM MODEL
In this paper, a system model in IoT environment with edge
nodes is taken for analysis, as shown in Fig.1. The IoT devices
in this model have the capability of energy harvesting, they
can harvest energy units from edge nodes and store them
in their energy queue. Based on this system model, edge
nodes (ENs) providing both communication and computation
offloading for IoT devices, I = {1, . . . , I } is the set of IoT
devices, and E = {1, . . . ,E} is the set of edge nodes (ENs).
One edge node out of E can be chosen by each device to estab-
lish communication and offload intensive computation tasks
with allocated frequency bandwidth W Hz. For quantitative
analysis, time horizon is discretized into time epochs indexed
by i with equivalent duration as ζ (in seconds).
One IoT device is taken as a typical one for illustrate this

model, the device in this model has the following capabilities:
1) energy units from edge nodes can be harvested and stored
in an energy queue with a maximum length lemax for wire-
less transmission and computation; 2) computation tasks for
performing specific services is always be admitted, and these
generated tasks constitute an Independent and Identically
Distributed (I.I.D.) sequence of Bernoulli random variables
with a common parameter γ t ∈ [0, 1]. If a task is generated
during an epoch i, the task arrival indicator for the device at
epoch i is represented as β ti = 1 and otherwise β ti = 0;
3) there is a local task queue with a maximum length l tmax
inside the IoT device, and it can maintain unprocessed and
not successfully processed tasks for later processing in the
manner of First In First Out (FIFO); 4) the device can estab-
lish a connection with the edge node for uploading updates

VOLUME 7, 2019 69195



J. Ren et al.: Federated Learning-Based Computation Offloading Optimization

and offloading computation tasks, downloading model
parameters.

As for the computation task, a computation task taken from
the task queue can be determined for execution locally on the
IoT device or offloading to an EN for processing. A joint
action (ji, ui) at the beginning of each epoch i should be
made for make a decision on: 1) whether the task should be
processed locally (ji = 0) or offloaded to an EN (ji ∈ E),
noted that (ji ∈ {0}∪E); 2) how many energy units (ui ∈ N+)
stored in the energy queue should be allocated.

ri =
√
ui/(ω · µ) ≤ rcmax , (1)

If the computation task is determined for execution locally
on the IoT device. The computation task should be modeled
as (d, µ), of which d (in bits) andµ represent the transmission
data size required for offloading a task and the needed number
of CPU cycles for processing the task. In this circumstance,
when a computation task is allocated to be processed locally
with permitted energy units ui (if there is any), viz., ji = 0,
the allocated CPU frequency ri for this task can be modeled
with amaximum limitation as above. Hereω is the commonly
adopted effective switched capacitance that depends on the
architecture of chips [1]. Then, the corresponding time con-
sumption for the local task execution is

tmi = µ/ri (2)

If the IoT device decides to associate with an EN, and a
radio link is established for them. The radio channel quality
between them should be considered, since it directly affects
the wireless communication particularly the transmission
rate. The achievable data rate can be calculated as follow,
where A is the power of interference plus noise.

vi = W · log2(1+ sei · f
tr
i /A) (3)

The channel gain between the IoT device and an EN e ∈ E
is denoted as sei during the epoch i, which is assumed static
and independently taken from a finite state space Se. The f tri
is the transmit power with maximum limitation f trmax , which
satisfies

f tri = ui/t tri ≤ f
tr
max (4)

At last, the total time for transmitting the input data d is

t tri = d/vi (5)

Given the association ji ∈ E and the allocated energy units
ui > 0 at an epoch i, the transmitting rate should remain a
constant for achieving theminimum transmission time, which
is preferred in practical according to the proof in [4]. Finally,
the minimum transmission time can be derived by solving
simultaneous equations of (3), (4) and (5) as follow. It should
be noted that the processing delay on the EN is assumed to
be much less compare to the transmission time when the IoT
decides to offload.

log2(1+ s
ji
i · ui · (A · t

tr
i )
−1) = d · (W · t tri )

−1 (6)

B. DYNAMIC SYSTEM MODEL
In the scene that changes in real-time, the energy queue
and task queue that represent the computation resource and
the workload should be particularly focused. We use lui to
represent the energy queue length insider the IoT device at
the beginning of an epoch i, its dynamics can be described
follow. Where βui ∈ N+ is the total number of energy units
received till the end of epoch i.

lui+1 = min{lui − ui + β
u
i , l

u
max} (7)

With the available energy units provided by the energy
queue, the achievable task execution delay, which includes
both communication and computation, is the main concerns.
Besides the processing delay of a task and the transmis-
sion delay, the handover delay is also considered, the task
execution delay can be expressed as follow. The delay of
EN-side execution is ts, which is relatively a small constant
as aforementioned, the handover delay resulting from altering
EN association is oi.

ti =


tmi if ui > 0 and ji = 0
oi + t tri + t

s if ui > 0 and ji ∈ E
0 if ui = 0

(8)

Specifically, the failure contents task processing and
offloading is also taken into consideration. In more detail,
the task execution will be deemed as a failure and thus remain
in the task queue till being successfully executed in two cir-
cumstances, viz., 1) a computation task can not be processed
by the IoT device even until the end of an epoch; 2) the IoT
device decide to offload a task to a specific EN, but it fails
owing to the long time transmission introduced by either not
enough allocated energy units or bad radio channel quality.

l ti+1 = min{l ti − 1{0<ti<ζ } + β
t
i , l

t
max} (9)

The dynamics task queue length can be calculated as above
for convenient expression. Certainly, the new generated tasks
must be dropped, if the task queue is full of awaiting tasks,
which shall be avoided in the ideal case. Then the number of
computation task drop in an epoch i can be described as

ξi = max{l ti − 1{0<ti<ζ } + β
t
i − l

t
max , 0} (10)

However, not every task can be successfully handled in one
epoch ζ , the unwished queuing delay for computation tasks
will be incurred. The length l ti of the task queue inside the IoT
device is treated as the queuing delay εi during the epoch i,
which is

εi = l ti − 1{ti>0} (11)

σi = 1{ti>ζ } (12)

But if the execution of a computation task fails, corre-
sponding penalty σi will be given as above. More over, the fee
for occupying the EN shall be paid by the IoT device if it
decides to offload its computation tasks to the EN. Such pay-
ment is product by the time consumed for the EN receiving
and processing the task input data. π ∈ R+ is defined as the

69196 VOLUME 7, 2019



J. Ren et al.: Federated Learning-Based Computation Offloading Optimization

FIGURE 2. Training of computation tasks offloading based on Federated Learning DRL.

price paid per unit of time, the payment expression ϕi can be
written as

ϕi = π · (min{ti, ζ } − oi) · 1{ji∈E} (13)

IV. POLICY TRAINING BASED ON FEDERAL LEARNING
A. PROBLEM FORMULATION
After the system description in Sec.III.A and Sec.III.B,
the optimization problem is be expound in this section. Col-
lecting all essential elements for organizes the network state
Yi of the IoT device.

Yi = (l ti , l
u
i , ji, si) ∈ Y

def
=
{
0, 1, · · · , l tmax

}
×
{
0, 1, · · · , lumax

}
× E × {Ye∈ESe} (14)

The si = (sei : e ∈ E) is the channel gain between the IoT
device and an EN. At the beginning of epoch i. A decision
made by the IoT device on where to process the computation
task and howmany energy resources should be allocated, i.e.,

(ji, ui) ∈ T def
= {{0} ∪ E} ×

{
0, 1, · · · , lumax

}
(15)

A sequence of the above actions should be determined by
an optimal control policy 8 to maximize the expected long-
term utility as

G(Y ,8) = E8

[
lim

M→∞

1
M
·

M∑
i=1

g(Yi,8(Yi)) | Y1=Y

]
(16)

where Yi is the initial network state, and g(·) is the immediate
utility at epoch i defined as the customized combination
operation of task execution delay ti, the task queuing delay εi,
the payment ϕi, the number of task drop ξi and the penalty of
execution failure σi. To be noted, the summarized utility can
be designed for different objection. For instance, if the system
regards the no-failure characteristic as the most important
one, the penalty of execution failure σi can be amplified to
enhance its ratio in the whole utility.

B. REASONS FOR CHOOSING FEDERAL LEARNING
In Sec.III, we take the single IoT device as an example for
interpretation. In this section, we will show the merits of
using FL to coordinate the training process among multi-
ple IoT devices. This kind of problem can deal with well
by DRL techniques, thus we use Double Deep Q Learning
(DDQN) [11], [15] for each IoT device to maximize long-
term utility of its control policy. DRL techniques is efficient
in finding the optimal policy in the dynamic edge system, but
it also demands abundant computation resources. Therefore,
the deployment of DRL agent should be carefully thought
over.

On one hand, it will bring about three disadvantages if the
DRL agent is trained on the EN: 1) it may jeopardize the
privacy, since the uploaded training data might be privacy
sensitive, especially in the scenario of industrial informatics;
2) though the training data can be transformed for privacy
protection, the proxy data received by the EN is less rel-
evant and loose the pertinence for a specific IoT device;
3) massive training data will be always transmitted from IoT
devices to the EN, and consequently burden the wireless
channel.

On the other hand, two deficiencies are still remain if
the DRL agent is trained on the IoT device individually:
1) extra energy wasting will be caused by the standalone
training of separate DRL agents; 2) it will consume long
time or even impossible to train each DRL agent well from
scratch.

Hence, as depicted in Fig.2, taking efficiently trainingDRL
agent in a distributed manner into consideration is a natural
choice. Although it can realize the best performance that
the DRL agent trained in every IoT device or the EN, it is
also practical to adopt distributed DRL training. In addition,
due to the privacy issues in edge computing system and the
networking constrains coupled with the challenge of handling
non-I.I.D data, most of efficient distributed deep learning
techniques [9] are not feasible. For these reasons, FL is intro-
duced in this work for distributively training DRL agents.

VOLUME 7, 2019 69197



J. Ren et al.: Federated Learning-Based Computation Offloading Optimization

C. TRAINING OF TASKS OFFLOADING WITH FEDERAL
LEARNING
In the computation offloading scenario, a control action
should be taken by each IoT according to the dynamic of net-
working state and its own workload. Hence, we proposed to
use the EN for coordinating massive IoT devices covered by
it. IoT devices can be able to maintain a complex DRL agent
with relatively less computation burden by taking advantage
of this scheme.

Rely on the description of Algorithm 1, FL iteratively
selects a random set of IoT devices to 1) download parameters
of the DRL agent from the EN; 2) use their own data to
perform the training process on the upgraded (downloaded)
model; 3) upload only updated model parameters of the DRL
agent to the EN for model aggregation.

FL enables resource-limited IoT devices to learn a shared
DRL agent without centralizing the training data, which
can be extended to several more particular benefits by
this means in our system. EN-side proxy data is less rel-
evant to the local data in the IoT device. In the envi-
sioned IoT system, various and localized sensing data can
acquired for updating the DRL agent by massive IoT devices.
These data may include the workload of both IoT devices,
the remained energy resources, the channel gain of the radio
channel and ENs and etc.. In generally, FL can leverage
these localized data to make the whole IoT system more
cognitive.

Algorithm 1 Framework of Ensemble Learning for Our
System
1: Initialization:
2: With respect to the global DRL agent in the EN:
3: Initialize the DRL agent with random weights θ0;
4: Initialize the gross training times A0 of all devices;
5: With respect to each IoT device I ∈ I:
6: Initialize the experience replay memoryMI

0;
7: Initialize the local DRL model θ I0 ;
8: Download θ0 from the EN and let θ I0 = θ0;
9: Iteration:
10: For each round t = 1 to T do;
11: St ← { random set of m available IoT devices};
12: For each device I ∈ St in parallel do;
13: Fetch θt from the EN as let θ It = θt ;
14: Sense and update MI

t ;
15: Train the DRL agent locally with θ It onMI ;
16: Upload the trained θ It+1 to the EN;
17: Notify the EN the times AIt of local training;
18: End For
19: With respect to the EN:
20: Receive all model updates;
21: Refresh the statistical At =

∑
I∈SAIt

;
22: Perform model aggregation as:
23: θt+1←

∑
I∈S (A

I
t /At ) · θ

I
t+1;

24: End For

V. EXPERIMENTAL EVALUATION
A. TRAINING PERFORMANCE UNDER FIXED TASKS
PROBABILITY
We investigate an edge systemwith E= 6 ENs and I= 15 IoT
devices to evaluate the capabilities of our proposed method.
According to the quality of the wireless channel, the channel
gain is quantified into 6 levels between the IoT device and the
EN. As for the DRL agent, we use vanilla version of DDQN
with parameter settings: exploration probability 0.001, replay
memory capacity 5000, learning rate 0.005, discount factor
0.9, two full connected layers with 200 neurons activated
by tanh function each layer, replacing the target Q network
every 250 times training and mini batch size 200. Centralized
DRL training is also realized and tested, as a baseline method
for evaluating the effectiveness of our work, i.e.. All sensing
data collected by IoT devices are uploaded to an EN for
subsequent DRL training.

Three IoT devices are randomly solicited for investiga-
tion, the x-axis is training step, their training loss are given
in Fig.3(a)-3(d). The performance of FL-enabled DRL train-
ing and centralized DRL training presented in Fig.3(e)-3(g)
and Fig.3(h), respectively, the x-axis is training period.
In Fig.3, the change in utility during the training process is
represented by solid lines. Details of performance evaluation
can be given as follows despite visible characteristics:

(1) At first it can be seen, the fluctuation range of
FL-based DRL training with respect to utility variation
is bigger than the centralized training. With the training
losses decreasing, the achieved utilities of three randomly
selected IoT devices hold the same level as the one real-
ized by centralized DRL training. This result corroborates
the performance of FL-based DRL training for computation
offloading is approach to the results of centralized DRL
training.

(2) But there are no limitations for the wireless channel in
the centralized DRL training, it assumes that the training data
can be successfully uploaded to the EN without any delay.
However, this is impractical instead, and it in turn manifests
the effectiveness of our work. Particularly, the performance
of our work becomes comparable to the centralized DRL
once the model aggregation of FL has been performed several
times. Therefore, when networking is still the restriction,
FL-based DRL training is more practical at least.

B. TRAINING PERFORMANCE UNDER DIFFERENT TASKS
PROBABILITIES
We noticed that different IoT devices have different func-
tions, some require frequent data collection and uploading
frequently, while others do not. Therefore, different IoT
devices may have a different probability of generation tasks
in a period of time. This paper considers the probability of
task generation in IoT devices. In the experiment, the task
generation probability is divided into nine levels (0.1-0.9),
where different numbers represent the rate at which tasks may
be generated in a time period. We compared several factors,

69198 VOLUME 7, 2019



J. Ren et al.: Federated Learning-Based Computation Offloading Optimization

FIGURE 3. Training performance of IoT devices with Federated Learning-based DRL and centralized. (a) Loss of device A. (b) Loss of device B. (c) Loss
of device C. (d) Loss of centralized. (e) Utility of device A. (f) Utility of device B. (g) Utility of device C. (h) Utility of centralized.

FIGURE 4. Training performance under different task probabilities with Federated Learning-based DRL and centralized. (a) Average utility per task
probability. (b) Average queuing delay per task probability. (c) Average task drops per task probability. (d) Average transfer time per task
probability. (e) Average transfer energy per task probability. (f) Average transfer energy percent per task probability.

such as utility, tasks queuing delay, tasks drop, transmis-
sion time, transmission energy and percentage of transmitted
energy.

In Fig.4(a), when the probability of task generation
increases, the average utility of FL and DRL decreases sig-
nificantly, but the average utility of FL is greater than that
of DRL. This proves that FL and DRL can reach simi-
lar levels in different probabilities of task generation. The
detailed training changes in utility and loss in the case where
the probability of task generation is fixed (0.3) are shown
in Fig.3. The utility calculation results are related to the
number of task drops, the task queue delay, the penalty of the
task failure, the offload payment and the calculation duration

(the maximum is the duration of one cycle). Utility is the
weighted summation of these factors and the weights can be
adjusted for the purpose of the experiment.

When the task generation probability is very small
(0.1-0.2), the difference of queuing delay between the two
learning methods is very small, as shown in Fig.4(b). At this
time, the number of tasks in the queue is small, and the delay
processing speed of the task queue is very quickly. However,
as the number of tasks increases, more and more offloading
policies DRL-based always have higher delay than those
FL-based. The impact factor for dropping a task is the length
of the task queue. In our experiment, we treated the task
queue length as a queue delay. Comparative analysis shows

VOLUME 7, 2019 69199



J. Ren et al.: Federated Learning-Based Computation Offloading Optimization

that the increase of task queue delay leads to the increase of
dropped tasks.

The task is dropped because the task queue is full and the
device cannot add a new task to it. The number of waiting
tasks in the task queue is closely related to the probability of
task generation and energy in the energy queue.When the task
generation probability is small (0.1-0.3), the dropped tasks
in both modes are at a low level Fig.4(c). With the increase
of the probability of task generation, the dropped task of the
center-based DRL is higher than that of the FL-based dropped
tasks. When the probability increases, the FL-based training
can decide whether to perform local calculation or offload
the task to an edge node according to various environmental
conditions. If conditions permit, newly arrived tasks can be
executed locally, which reduces the number of dropped tasks.
This will maintain the integrity of the data to some extent.

According to the task generation probability and the trans-
mission time of edge task Fig.4(e), when the task generation
probability is small (0.1-0.3), the transmission time of DRL
and FL is very similar, and the transmission time mainly
depends on the size of task data and the channel strength
during transmission. When the task generation probability
increases (0.4-0.5), the task transmission time of FL-based
learning is close to that of center-based DRL training. When
the task generation probability increases to (0.7-0.9), the task
transmission of FL-based is even higher than DRL. Since the
task transmission time is affected by channel gain (usually
a fixed value within a certain period and a limited space),
transmission power, noise, task queue and energy queue, the
FL-based agent will make decisions based on the current state
information. As the number of tasks increases, FL uploads
new tasks on the EN, while DRL dropsmore tasks. Therefore,
the difference in the number of transmission tasks results in
the difference in transmission time.

It is assumed that the sum of the energy transmitted and the
energy used for local processing in IoT devices is constant.
The ratio of the sum of the transmitted energy and the applied
energy (local processing energy, transmitted energy) is the
proportion of the transmitted energy in IoT devices. With the
increase of workload, the transmission energy usage based
on FL and central DRL reached a similar level Fig.4(f), and
these two levels even reached the same level at 0.4, 0.6 and
0.8. However, when the task generation probability is 0.9,
the transfer energy proportion based on the central DRL is
higher than that of FL-based. Through the above analysis,
the number of dropped tasks, the queuing delay and the
transmission energy of DRL-based are higher than that of
FL-based, which proves that the training based on federal
learning is better than that of deep reinforcement learning.

With the increase of the number of tasks, the task exceeds
the processing capacity of the IoT device and the number of
tasks waiting for the IoT device will increase until the waiting
task fills the device task queue. Therefore, when the queue
is full, the new task will be dropped. When the probability
is fixed, the number of tasks generated within a time period
can be regarded as a fixed value. There are more drop tasks

than FL in the centralized DRL, which leads to fewer tasks
in DRL than FL. From the perspective of product services,
complete data can bring better service experience. Perform
the appropriate offload, the lower drop tasks and the short
transmission time prove the advantages of FL.

Of course, there are two problems with FL because of its
advantages. On the one hand, it is not feasible to perform
fast DRL training because it requires at least several effective
model aggregations on the EN. On the other hand, it will
lose the accuracy of the model compared to DRL training,
although it is relatively negligible. Therefore, in future work,
we will study how to rationally arrange model updates and
model aggregation time in order to better weigh these advan-
tages and disadvantages.

VI. CONCLUSIONS
This paper studies the combination of DRL and FL in the IoT
environment that supports edge computing. The effectiveness
of FL-based learning is proved by the experiment of the use
case, viz., computation task offloading. In the future, we will
delve into whether DRL has model compression techniques
and how to arrange FL-based learning training at a finer level.

REFERENCES
[1] T. D. Burd and R. W. Brodersen, ‘‘Processor design for portable sys-

tems,’’ J. VLSI Signal Process. Syst. Signal, Image Video Technol., vol. 13,
nos. 2–3, pp. 203–221, 1996. doi: 10.1007/BF01130406.

[2] X. Wang, Y. Han, and C. Wang, ‘‘In-Edge AI: Intelligentizing mobile edge
computing, caching and communication by federated learning,’’ 2018,
arXiv:1809.07857. [Online]. Available: https://arxiv.org/abs/1809.07857

[3] M. Chen and Y. Hao, ‘‘Task offloading for mobile edge computing in
software defined ultra-dense network,’’ IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018. doi: 10.1109/JSAC.2018.2815360.

[4] X. Li, X. Wang, P.-J. Wan, Z. Han, and V. C. M. Leung, ‘‘Hierarchi-
cal edge caching in device-to-device aided mobile networks: Modeling,
optimization, and design,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 8,
pp. 1768–1785, Aug. 2018.

[5] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans.
Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016. doi: 10.1109/TNET.
2015.2487344.

[6] X. Wang, M. Chen, V. C. M. Leung, Z. Han, and K. Hwang, ‘‘Integrat-
ing social networks with mobile device-to-device services,’’ IEEE Trans.
Services Comput., to be published.

[7] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, ‘‘Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,’’ IEEE Internet Things J., to be published.
doi: 10.1109/JIOT.2018.2876279.

[8] X. Wang, Y. Zhang, V. C. M. Leung, N. Guizani, and T. Jiang,
‘‘D2D big data: Content deliveries over wireless device-to-device sharing
in large-scale mobile networks,’’ IEEE Wireless Commun., vol. 25, no. 1,
pp. 32–38, Feb. 2018.

[9] H. B. McMahan and E. Moore, D. Ramage, S. Hampson, and
B. A. Y. Arcas, ‘‘Communication-Efficient Learning of Deep Networks
from Decentralized Data,’’ in Proc. 20th Int. Conf. Artif. Intell. Statist.
(AISTATS), Fort Lauderdale, FL, USA, vol. 54, 2017, pp. 1–10. [Online].
Available: http://proceedings.mlr.press/v54/mcmahan17a.html

[10] T. Qiu, X.Wang, C. Chen,M. Atiquzzaman, and L. Liu, ‘‘TMED:A spider-
Web-like transmission mechanism for emergency data in vehicular ad hoc
networks,’’ IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8682–8694,
Sep. 2018.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
2015. doi: 10.1038/nature14236.

69200 VOLUME 7, 2019

http://dx.doi.org/10.1007/BF01130406
http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/JIOT.2018.2876279
http://dx.doi.org/10.1038/nature14236


J. Ren et al.: Federated Learning-Based Computation Offloading Optimization

[12] T. Qiu, H. Wang, K. Li, H. Ning, A. K. Sangaiah, and B. Chen, ‘‘SIGMM:
A novel machine learning algorithm for spammer identification in indus-
trial mobile cloud computing,’’ IEEE Trans. Ind. Informat., vol. 15, no. 4,
pp. 2349–2359, Apr. 2019.

[13] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.
doi: 10.1109/JIOT.2016.2579198.

[14] T. Qiu, K. Zheng, M. Han, C. L. P. Chen, and M. Xu, ‘‘A data-emergency-
aware scheduling scheme for Internet of Things in smart cities,’’ IEEE
Trans. Ind. Informat., vol. 14, no. 5, pp. 2042–2051, May 2018.

[15] H. van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning
with double Q-learning,’’ in Proc. 13th AAAI Conf. Artif. Intell.,
Phoenix, AZ, USA, 2016, pp. 2094–2100. [Online]. Available:
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389

[16] X. Li, X. Wang, K. Li, Z. Han, and V. C. M. Leung, ‘‘Collaborative multi-
tier caching in heterogeneous networks: Modeling, analysis, and design,’’
IEEE Trans. Wireless Commun., vol. 16, no. 10, pp. 6926–6939, Oct. 2017.

[17] T. Qiu, R. Qiao, and D. Wu, ‘‘EABS: An event-aware backpressure
scheduling scheme for emergency Internet of Things,’’ IEEE Trans. Mobile
Comput., vol. 17, no. 1, pp. 72–84, Jan. 2018.

JIANJI REN received the B.S. degree from
the Department of Mathematics, Jinan Univer-
sity, in 2005, and the M.S. and Ph.D. degrees
from the School of Computer Science and Engi-
neering, Dong-A University, in 2007 and 2010,
respectively. He is currently an Associate Profes-
sor with the College of Computer Science and
Technology, Henan Polytechnic University. His
current research interests include mobile content-
centric networks and collaborative caching in edge
computing.

HAICHAO WANG received the B.S. degree in
natural geography and resource environment from
Henan Polytechnic University, Jiaozuo, Henan,
China, in 2018, where he is currently pursuing
the master’s degree in software engineering from
the College of Computer Science and Technology
(Software College). His research interests include
edge computing, edge caching, big data analy-
sis, deep learning, and the Internet of Things
technology.

TINGTING HOU is currently pursuing the B.S.
degree from the College of Computer Science
and Technology, Henan Polytechnic University,
Jiaozuo, Henan, China. Her current research inter-
ests include edge computing, edge caching, deep
learning, big data analysis, and the Internet of
Things technology.

SHUAI ZHENG is currently pursuing the B.S.
degree with the College of Computer Science
and Technology, Henan Polytechnic University,
Jiaozuo, Henan, China. His current research inter-
ests include edge computing, edge caching, deep
learning, big data analysis, and data mining.

CHAOSHENG TANG received the Ph.D. degree
in management science and engineering from
Yanshan University, Qinhuangdao, Hebei, China,
in 2015. His current research interests include
machine learning, complexity theory, multimedia
applications, and online social networks.

VOLUME 7, 2019 69201

http://dx.doi.org/10.1109/JIOT.2016.2579198

	INTRODUCTION
	RELATED WORK
	SYSTEM ARCHITECTURE
	STATIC SYSTEM MODEL
	DYNAMIC SYSTEM MODEL

	POLICY TRAINING BASED ON FEDERAL LEARNING
	PROBLEM FORMULATION
	REASONS FOR CHOOSING FEDERAL LEARNING
	TRAINING OF TASKS OFFLOADING WITH FEDERAL LEARNING

	EXPERIMENTAL EVALUATION
	TRAINING PERFORMANCE UNDER FIXED TASKS PROBABILITY
	TRAINING PERFORMANCE UNDER DIFFERENT TASKS PROBABILITIES

	CONCLUSIONS
	REFERENCES
	Biographies
	JIANJI REN
	HAICHAO WANG
	TINGTING HOU
	SHUAI ZHENG
	CHAOSHENG TANG


