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ABSTRACT This paper proposes a novel fuzzy control scheme for flexible air-breathing hypersonic vehicle
(FAHV) non-affine models with amplitude and rate constraints. First, the non-affine dynamics of the FAHV
is decomposed into velocity subsystem and altitude subsystem, then the non-affinemodels of each subsystem
are converted into equivalent pure feedback forms, and the fuzzy approximator is used to estimate the total
uncertainties of each subsystem. Since the input of control system can be limited by the actual actuator, a new
error compensation auxiliary system is proposed to solve the amplitude and rate constraints of the actuator,
and a fuzzy controller with auxiliary systems is designed. The stability of the closed-loop system is proved
by the Lyapunov method. Through simulation verification, the effective performance of the control system
has been proved.

INDEX TERMS Fuzzy approximator, flexible air-breathing hypersonic vehicle (FAHV), non-affine
dynamics, error compensation auxiliary system, amplitude and rate constraints.

I. INTRODUCTION
Flexible air-breathing hypersonic vehicles (FAHVs) are
winged or wingless flight vehicles that fly in near space
and fly at speeds greater than Mach 5 [1], [2]. FAHVs have
the characteristics of wide flying range, fast flying speed
and long flying distance, and because of their special design
of engine/body integration, the fuselages are composed of
flexible composite materials and the aerodynamic shapes are
wave-riders, which make the control modes and dynamic
characteristics of FAHVs very different from those of ordi-
nary flight vehicles. For example, FAHV usually has obvious
elastic vibration problem during flight. Serious elastic vibra-
tion will lead to instrumentation failure and flight vehicle dis-
integration. If the vibration of flexible body is not considered
in the design of the controller, the control system may fail.
At the same time, FAHVs have strong nonlinearity, fast time-
varying, multi-coupling and uncertainties [3], [4].

The associate editor coordinating the review of this manuscript and
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Under the conditions of disturbance and uncertainties,
a stable control system is utterly important. Furthermore,
because FAHV is sensitive to attitude adjustment in high-
speed flight, and in order to save fuels, they should take the
initiative to avoid lateral maneuvers in flight process. There-
fore, it is of great practical significance to research the longi-
tudinal dynamics of FAHV. In recent years, the development
of FAHVs is very rapid. Many advanced control strategies are
applied to the longitudinal dynamics of hypersonic vehicles.

For hypersonic flight vehicles, there are extensive control
theories and methods, such as robust control [5], [6], sliding
mode control [7]–[9], back-stepping control [10] and funnel
control [2], [11]. In recent years, intelligent control meth-
ods [12]–[14] are introduced into the FAHV control system.
In the process of designing control laws for FAHVs, previous
studies mainly focus on affine models and usually ignore
the non-affine dynamics. Gao et al. [15] introduces fuzzy
system into the subsystems of FAHV models, and estimating
unknown functions online, but the algorithm requires that the
unknown functions to be approximated are strictly positive
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and bounded. In view of the uncertainties of system,
[13] and [16] ignore some dynamic characteristics of FAHV,
and design control laws based on strict feedback forms.
However, the FAHVs’ models are non-affine in the control
inputs since the drag force D contains δ2e [17], [18]. In [19],
based on affine models, a robust controller based on dynamic
inverse is designed, and the idea of back-stepping is applied
in the controller. However, the back-steppingmethod requires
numerous virtual control laws, which requires a high amount
of computation. Buet al. [20] proposes a control method
based on non-singular neural network. The RBF neural net-
work is used to approximate each unknown function in the
subsystem, but the forms are cumbersome. Wang et al. [21]
uses fuzzy system to estimate the unknown dynamics online,
and a robust control law with adaptive gains is designed,
which can achieve robust tracking of the reference inputs.

On the other hand, in the process of FAHVs maneuvering
and flying, actuators are generally subject to constraints and
limits. Fuel equivalence ratio is usually limited by the phys-
ical structure and working range of the engine. Especially
when FAHVs are affected by unknown airflows such as gust
and turbulence, the elevators are prone to saturation of ampli-
tude and rate. When the actuators are saturated, the ideal con-
trol laws will be difficult to execute and even lead to control
failure. Dong et al. [22], Dong et al. [23] proposes a reference
switching system to ensure that the control inputs do not reach
the restricted boundary. In [24], the tracking error of FAHV
is modified by an auxiliary system, and the boundedness of
the closed-loop system is proved, but the boundedness of the
tracking error is not explained. An et al [25] implement a
novel anti-windup modification to handle the possible input
saturation, but the effect is not obvious. Luo et al. [26] designs
a control input conversion system that uses saturation func-
tions to transform constrained control problems into uncon-
strained control problems. In [27], a finite-time disturbance
observer is employed to estimate the lumped disturbance,
while an auxiliary system combined with a command pre-
filter is designed to analyze the effect of input saturation
caused by the restrained actuators. Most of the previous stud-
ies focus on amplitude saturation, but the studies hardly deal
with rate saturation. Therefore more researches are needed on
rate saturation.

In view of the shortcomings of the above research, we pro-
pose an adaptive fuzzy controller with non-affine dynamics.
A novel error compensation auxiliary system is proposed for
the amplitude and rate constraints of the control system. First,
the control system is decomposed into velocity subsystem
and altitude subsystem. Based on uniqueness theorem of
implicit function, we design a concise fuzzy controller for
the velocity subsystem. For altitude subsystem, the non-affine
models are transformed into equivalent pure feedback forms,
and a fuzzy approximator is designed to approximate the
unknown uncertainties. The stability of closed-loop system is
proved by Lyapunov method. Finally, the effectiveness of the
control method is verified by simulation analysis. The main
advantages of this paper can be summarized as follows.

1. Compared with previous affine models, the proposed
non-affine models avoid the loss of some key dynamics when
the models are simplified.

2. The control scheme proposed in this paper does
not need to design too many virtual control laws and
define intermediate variables, which avoids the problem of
‘‘differential expansion’’ caused by multiple differentiation
of virtual control laws.

3. Each subsystem contains only one fuzzy approximator,
and introduces norm estimation approach [28], which reduces
the amount of online calculation.

4. Compared with previous research, a new error compen-
sation auxiliary system is proposed for amplitude and rate
constraints problem of the system.

II. PRELIMINARIES
A. UNIQUENESS THEOREM OF IMPLICIT FUNCTION
Lemma 1 [29]: If the implicit function G($ , σ ) ∈ Rm with
σ ∈ Rn satisfies the following conditions:
(1) G($ , σ ) = 0 is continuous in the region D ⊂ Rm×n

with P0($ 0, σ 0) as the interior point;
(2) G($ 0, σ 0) = 0;
(3) (∂G/∂$ )($ , σ ) and (∂G/∂σ )($ , σ ) are continuous in

region D;
(4) (∂G/∂σ )($ 0, σ 0) 6= 0;
In the region D of P0, by G($ , σ ) = 0, it can uniquely

obtain a function σ 0 = g0($ 0) defined on the neighborhood
H ⊂ Rm, and get G($ , g0($ 0)) = 0.
Remark 1: If the implicit function meets above 4 con-

ditions, σ can be expressed as a continuous differentiable
function of $ , i.e., σ 0 = g0($ 0). And then G($ , σ ) can
also be viewed as a continuous differentiable function of $ .
When σ is difficult to obtain and G($ , σ ) is an unknown
function, a fuzzy approximator can be used to approximate
G($ , σ ), and only $ is needed as the input of the fuzzy
system. According to this idea, we design the controller with
non-affine dynamics.

B. FUZZY APPROXIMATION THEORY
The advantage of fuzzy function is that we can effectively use
fuzzy language and fuzzy logic to approach a given nonlinear
continuous function with arbitrary accuracy [30], [31].
Lemma 2 [31]: Suppose that the real continuous function

F(X) is an arbitrary function defined on compact set �. For
any ε > 0 , the fuzzy system F̂ (X) = θ∗Tξ (X) can be
obtained, and the following condition is guaranteed:

sup
x∈�

∣∣∣F (X)− θ∗Tξ (X)∣∣∣ ≤ ε (1)

C. NONLINEAR TRACKING DIFFERENTIATOR
In order to estimate the uncertainties in the following section,
the tracking differentiator based on improved sigmoid func-
tion (STD) is proposed in [32], and the high order STD is
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formulated as follows.

ς̇1 = ς2

ς̇2 = ς3
...

ς̇n−1 = ςn

ς̇n = Rn
[
sig (ς1 − υ)− sig

( ς2
R

)
− · · · − sig

(
ςn
Rn−1

)]
(2)

where, ς1, ς2, · · · , ςn are state variables, and υ, υ̇, · · · ,
υ(n−1) are the estimations of ς1, ς2, · · · , ςn, υ is the control
input. R is the positive parameter to be designed.

D. ERROR COMPENSATION AUXILIARY SYSTEM
In the process of high-speed flight, the actuators of
FAHV are usually subject to certain constraints. The normal
working modes of Scramjet require a general range of fuel
equivalence ratio 8. Considering the sensitivity of FAHV
to attitude and negative impact of elastic vibration on flight
vehicle, as well as the gust and turbulence will also affect
the performance of the actuators, there are amplitude and rate
constraints of the elevator δe.
Remark 2: In engineering applications, fuel equivalence

ratio 8 can change at a fast rate, therefore, it generally
does not affect the performance of the actuator. So in this
paper, we only consider the rate constraint of elevator angular
deflection δe.
In order to solve the input saturation of 8, the problem is

defined as

8 =


8max, 8max ≤ 8c

8c, 8min ≤ 8c ≤ 8max

8min, 8c ≤ 8min

(3)

A new auxiliary system based on error compensation is
selected as

ϑ̇V = −
2kV
π

atan(lVϑV )+ λV (8−8c) (4)

where 8c is the ideal control law to be designed with ampli-
tude constraint, 8max and 8min are the upper and lower
bounds of 8, respectively. ϑV is the state variable of the
auxiliary system, kV , lV and λV are parameters to be designed,
and kV ∈ R+, lV ∈ R+, λV ∈ R+. The schematic for
amplitude limitation of fuel equivalence ratio 8 is shown
in Figure 1.

The control input constraints of δe are formulated as

ωe =


ωemax, ωemax ≤ δ̇ec

δ̇ec, ωemin ≤ δ̇ec ≤ ωemax

ωemin, δ̇ec ≤ ωemin

(5)

δe =


δemax, δemax ≤ δec

δec, δemin ≤ δec ≤ δemax

δemin, δec ≤ δemin

(6)

δec represents the ideal control law with amplitude con-
straints. The change rate of δec can be expressed as δ̇ec.

FIGURE 1. Schematic for amplitude limitation of 8.

FIGURE 2. Schematic for amplitude and rate limitations of δe.

δemax and δemin are the upper and lower bounds of δe, respec-
tively. ωe represents the change rate of elevator angular
deflection δe.ωemax andωemin are the upper and lower bounds
of ωe. In order to deal with the amplitude and rate saturation,
a high-order auxiliary system is designed by imitating the
auxiliary system (7).
ϑ̇1 = ϑ2

ϑ̇2 = ϑ3

ϑ̇3 = −
2k1
π

atan(l1ϑ1)−
2k2
π

atan(l2ϑ2)−
2k3
π

atan(l3ϑ3)

+λh (δe − δec)

(7)

In the high-order auxiliary system, ϑi (i = 1, 2, 3) repre-
sent the state variables, ki ∈ R+, li ∈ R+ (i = 1, 2, 3), and
λh ∈ R+, they are all parameters to be designed. Considering
that in the actual control system, the executable range of the
actuator is also limited. This executable range is not only a
rate constraint, but also an amplitude constraint during this
period. Limiting the rate of elevator angular deflection is by
affecting the instantaneous amplitude of the input signal in a
unit time. Therefore, rate saturation can also be considered
as an amplitude saturation problem in a very short time. The
schematic for amplitude and rate limitations of δe is shown
in Figure 2. ω represents the simulation step.

III. DESCRIPTION OF FAHV MODEL
In 2007, Bolender and Doman in Air Force Laboratory pro-
posed the First Principal model based on X-43A model
and relevant theories of controller design [33], [34]. Due to
the coupling phenomenon between rigid body and flexible
body in the model, integrated modeling of FAHV is required.
In order to facilitate the controller design, Parker weakens the
coupling phenomenon and inertial coupling of rigid body and
flexible body, obtained simplified model of the longitudinal
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FIGURE 3. Geometry and force map of FAHV.

dynamics of FAHV [33].

V̇ =
T cos (θ − γ )− D

m
− g sin γ (8)

ḣ = V sin γ (9)

γ̇ =
L + T sin (θ − γ )

mV
−

g
V

cos γ (10)

θ̇ = Q (11)

Q̇ =
M + ψ̃1η̈1 + ψ̃2η̈2

Iyy
(12)

δ1η̈1 = −2ζ1ω1η̇1 − ω
2
1η1 + N1 − ψ̃1

M
Iyy
−
ψ̃1ψ̃2η̈2

Iyy
(13)

δ2η̈2 = −2ζ2ω2η̇2 − ω
2
2η2 + N2 − ψ̃2

M
Iyy
−
ψ̃2ψ̃1η̈1

Iyy
(14)

where, 

δ1 = 1+
ψ̃1

Iyy

δ2 = 1+
ψ̃2

Iyy
ψ̃1 =

∫ 0
−Lf

m̂f ξφf (ξ )dξ

ψ̃2 =
∫ La
0 m̂aξφa(ξ )dξ

φf (·) and φa(·) are structural mode shapes [33]. Geometry
and force map of FAHV model is shown in Figure 3.

For the rigid body state of the FAHV, the state variables are
{V , h, γ, θ,Q}. The flight velocity and flight altitude of the
FAHV are expressed as V and h, respectively; γ represents
the flight-path angle; The pitch angle and pitch rate are rep-
resented by θ andQ, respectively; r represents the distance of
the flight vehicle from the center of the earth; m is the mass
of FAHV; Iyy represents the pitching moment of inertia of the
flight vehicle; The angle of attack is defined as α = θ − γ .
For the flexible state of the FAHV, the flexible state variables
are {η1, η̇1, η2, η̇2}, and they are the first two bending modes
of the fuselage. ζ1 and ζ2 respectively represent the damping
ratio; ω1 and ω2 are natural frequency for flexible modes;
N1 and N2 are generalized forces; ψ̃1 and ψ̃2are the coupling
coefficients of rigid body and flexible body, respectively. The
lift L, the thrust T , the resistance D, the pitching momentM ,
and the generalized forces N1 and N2 of the vehicles are
based on mechanism derivation and curve fitting, and their

expressions are as follows.

T ≈ Cα
3

T α
3
+ Cα

2

T α
2
+ CαT α + C

0
T

D ≈ qS
(
Cα

2

D α
2
+ CαDα + C

δ2e
D δ

2
e + C

δe
D δe + C

0
D

)
L ≈ qS

(
CαL α + C

δe
L δe + C

0
L

)
M ≈ zTT + qSc

[
Cα

2

M ,αα
2
+ CαM ,αα + C

0
M ,α + ceδe

]
N1 ≈ Nα

2

1 α2 + Nα1 α + N
0
1

N2 ≈ Nα
2

2 α2 + Nα2 α + N
δe
2 δe + N

0
2

Cα
3

T = β1 (h, q)8+ β2 (h, q)

Cα
2

T = β3 (h, q)8+ β4 (h, q)

CαT = β5 (h, q)8+ β6 (h, q)

C0
T = β7 (h, q)8+ β8 (h, q)

q =
1
2
ρV 2, ρ = ρ0 exp

(
h0 − h
hs

)
The inputs of control system are fuel equivalence ratio 8

and elevator angular deflection δe. The aerodynamic pressure
of the vehicle is q and the average air density is ρ. The
reference area and the average aerodynamic chord length of
flight vehicle are S and c, respectively. For other parameters
in the expression, the reader can refer to [33].
Remark 3: In the following, since the state variables of

rigid body are measurable, we use five rigid state variables
for the controller design. In reality, the flexible state cannot
be accurately measured, so we take the flexible state as the
system uncertainties and deal it with the fuzzy approximator
in the controller.
Remark 4: Under the assumption that the FAHV model is

unknown, its control objective is to ensure that the velocity V
and altitude h can robustly track the respective reference
inputs by designing appropriate control laws.

IV. CONTROLLER DESIGN
In order to facilitate the design of the control laws, the
FAHV model is decomposed into the velocity subsystem
(such as Eq.(8)) and the altitude subsystem (Eqs.(9)∼(12)),
and the control laws are designed separately.

A. CONTROLLER DESIGN OF VELOCITY SUBSYSTEM
The control objective of the velocity subsystem is to design
a appropriate control law for 8 to achieve robust tracking
of velocity V to its reference input Vref based on non-affine
models of FAHV.

According to the research conclusions of [33] and [34],
the velocity subsystem can be rewritten into a non-affine
form.

V̇ = GV (V ,8) (15)

where GV (V ,8) is a completely unknown nonlinear
function.

Firstly, the following assumption is given to the control
system.
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Assumption 1: For any (V ,8) ∈ �V × R, the following
inequality is established:

∂GV (V ,8)
∂8

> 0 (16)

where, �V is a controllable area.
Remark 5: According to the research data given in [33],

based on the range of FAHV rigid body state, assumption 1 is
valid.

Velocity tracking error is defined as

Ṽ = V − Vref (17)

Taking time derivative along (17)

˙̃V = V̇ − V̇ref (18)

Substituting Eq. (15) into Eq. (18)

˙̃V = V̇ − V̇ref = λV8+ gV (V ,8)− V̇ref (19)

where λV ∈ R+ is the parameter to be designed and
gV (V ,8) = GV (V ,8) − λV8 is a completely unknown
nonlinear function.

The control law of velocity subsystem is designed as

8 = λ−1V (80 −81) (20)

where, 80 = −λV ,1Ṽ − λV ,2
∫ t
0 Ṽdτ + V̇ref, λV ,1 ∈ R

+ and
λV ,2 ∈ R+ are the parameters to be designed. In addition,
the fuzzy control law 81 is designed to offset the influence
of the uncertainty term gV (V ,8).
According to the uniqueness theorem of implicit function

introduced in the previous section, there is 8∗1 ∈ R, which
satisfies

G1(V ,80,8
∗

1) , gV
(
V , λ−1V

(
80 −8

∗

1
))
−8∗1 = 0 (21)

Then we can get the following theorem 1
Theorem 1: Define

λV >
1
2
∂GV (V ,8)

∂8
(22)

Then there are a controllable area �V ⊂ R and a unique
8∗1(V ,80), for any (V ,80) ∈ �V × R, 8∗1(V ,80)
satisfies (23).
Proof: According to the research [29] and [35], if the

following inequality holds, it can get 8∗1 to exist.∣∣∣∣∂gV (V ,8)∂8∗1

∣∣∣∣ < 1 (23)

Combining gV (V ,8) = GV (V ,8) − λV8 and Eqs. (16),
(18), (22), we can get∣∣∣∣∂gV (V ,8)∂8∗1

∣∣∣∣ = ∣∣∣∣ ∂

∂8∗1
[GV (V ,8)− λV8]

∣∣∣∣
=

∣∣∣∣∂ [GV (V ,8)− λV8]∂8

∂8

∂8∗1

∣∣∣∣
=

∣∣∣∣[∂GV (V ,8)∂8
− λV

]
1
λV

∣∣∣∣
=

∣∣∣∣ 1λV ∂GV (V ,8)∂8
− 1

∣∣∣∣ < 1 (24)

So we can get 8∗1 to exist, further we can get

∂

∂8∗1
G1(V ,80,8

∗

1) =
∂

∂8∗1

[
gV
(
V ,8∗

)
−8∗1

]
=

∂

∂8∗

[
GV (V ,8∗)−λV8∗

] ∂8∗
∂8∗1
−1

=

[
∂

∂8∗
GV (V ,8∗)−λV

](
−

1
λV

)
−1

= −
1
λV

∂GV (V ,8∗)
∂8∗

(25)

where8∗ = λ−1V (80−8
∗

1). It can be obtained from Eqs. (16)
and (22) that ∂G1(V ,80,8

∗

1)/(∂8
∗

1) is non-singular, there-
fore, theorem 1 is established.

At the same time, theorem 1 also shows that for any
(V ,80) ∈ �V × R, 80 can be regarded as a function of V
and 80, so that according to 8 = λ

−1
V (80 −81), 8 can also

be regarded as a function of V and 80. Then, gV (V ,8) =
GV (V ,8) − λV8 can also be regarded as a function of V
and 80.

Assuming that the function gV is an unknown func-
tion, the fuzzy system is introduced to approximate the
function gV . The input of the fuzzy system is X1 =

[V ,80]T ∈ R2, the ideal weight coefficient parameter
vector is selected as θ∗1 = [θ∗11, θ

∗

12, · · · , θ
∗

1w1
]T ∈ Rw1 ,

Gauss basis function is selected as membership function,
and the vector of the fuzzy basis function is ξ1(X1) =
[ξ11(X1), ξ12(X1), · · · , ξ1w1 (X1)]T ∈ Rw1 . ε1 ∈ R represents
the approximation error and ε1M ∈ R+ represents the upper
bound of the approximation error.

Fuzzy approximator can be expressed as

gV (V ,8) = θ∗T1 ξ1(X1)+ ε1, |ε1| ≤ ε1M (26)

Define ϕV = ||θ∗1||
2, design 81 is

81 = −
1
2
Ṽ ϕ̂V ξT1 (X1)ξ1(X1) (27)

where, ϕ̂V is the estimate of ϕV and its adaptive law is
designed as

˙̂ϕV =
κV

2
Ṽ 2ξT1 (X1)ξ1(X1)− 2ϕ̂V (28)

where κV ∈ R+ is the parameter to be designed.
Introducing the error compensation auxiliary system pro-

posed in previous section.
Improve the velocity tracking error as

zV = Ṽ − ϑV (29)

Taking time derivative along (29) and combine the Eqs. (19)
and (7), we can get

żV =
˙̃V − ϑ̇V

= λV8+gV (V ,8)−V̇ref

−

[
−
2kV
π

atan(lVϑV )+ λV (8−8c)
]

= λV8c + gV (V ,8)− V̇ref +
2kV
π

atan(lVϑV ) (30)
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The ideal control law 8c in the case of input constraint is
redesigned as

8c = λ
−1
V (80 −81) (31)

where80 = −λV ,1zV −λV ,2
∫ t
0 zV dτ+V̇ref−

2kV
π
atan(lVϑV )

and 81 is modified to

81 =
1
2
zV ϕ̂V ξT1 (X1)ξ1(X1) (32)

Then, the adaptive law of ϕ̂V is designed as

˙̂ϕV =
κV

2
z2V ξ

T
1 (X1)ξ1(X1)− 2ϕ̂V (33)

κV ∈ R+ is the parameter to be designed.
Remark 6: [13] and [36] directly adjust the elements of

the weight vector θ online. Compared with [13], the fuzzy
control law adopted in this paper does not need a large number
of recursive processes in the back-stepping control, and the
control law adopts norm estimation approach, which only
need one online learning parameter and greatly reduces the
computational load of the system.

B. CONTROLLER DESIGN OF ALTITUDE SUBSYSTEM
The control objective of the altitude subsystem is to design a
appropriate control law based on the non-affine models for δe
to achieve robust tracking of h to its reference input href.

Define the altitude tracking error as

h̃ = h− href (34)

Through feedback transformation, the control objective
of the altitude subsystem is transformed into γ → γd by
selecting the appropriate feedback control input δe [37].
The reference trajectory of γ is chosen as

γd = arcsin

(
−khh̃+ ḣref

V

)
(35)

where, kh ∈ R+ is the parameter to be designed.
First, give a reasonable assumption for the altitude

subsystem.
Assumption 2: For any (ψ, δe) ∈ �ψ × R, the following

inequality is established.
∂Gh1(ψ1, ψ2)

∂ψ2
> 0

∂Gh3(ψ, δe)
∂δe

> 0
(36)

where �ψ is a controllable area.
Remark 7: According to [30] and FAHV’s ranges of rigid

body state, it can be known that Assumption 2 are valid.
By defining ψ1 = γ , ψ2 = θ and ψ3 = Q, the remaining

part of FAHV altitude subsystem (Eqs.(10)∼(12)) can be
expressed as non-affine forms as follows.

ψ̇1 = Gh1(ψ1, ψ2)
ψ̇2 = ψ3

ψ̇3 = Gh3(ψ, δe)

(37)

where, Gh1(ψ1, ψ2) and Gh3(ψ, δe) are continuous unknown
functions, ψ = [ψ1, ψ2, ψ3]T.
Define χ1 = ψ1 = γ , χ2 = χ̇1 = Gh1(ψ1, ψ2) and

transform Eq. (37). According to Eq. (37), the time derivative
of χ2 is derived as

χ̇2 =
∂Gh1(ψ1, ψ2)

∂ψ1
ψ̇1 +

∂Gh1(ψ1, ψ2)
∂ψ2

ψ̇2

=
∂Gh1(ψ1, ψ2)

∂ψ1
Gh1(ψ1, ψ2)+

∂Gh1(ψ1, ψ2)
∂ψ2

ψ3

, gh1(ψ) (38)

Then, defineχ3 = χ̇2 = gh1(ψ). Applying (37), the time
derivative of χ3 is derived as

χ̇3 =
∂gh1(ψ)
∂ψ1

ψ̇1 +
∂gh1(ψ)
∂ψ2

ψ̇2 +
∂gh1(ψ)
∂ψ3

ψ̇3

=
∂gh1(ψ)
∂ψ1

Gh1(ψ1, ψ2)+
∂gh1(ψ)
∂ψ2

ψ3

+
∂gh1(ψ)
∂ψ3

Gh3(ψ, δe)

, gh2(ψ, δe) (39)

After twomodel transformations, (37) is written as non-affine
pure feedback forms as follows

χ̇1 = χ2

χ̇2 = χ3

χ̇3 = gh2(ψ, δe)

(40)

where gh2(ψ, δe) is a completely unknown nonlinear
function.
Remark 8:According to Eqs. (36)∼(39), it can be obtained.

∂gh2(ψ, δe)
∂δe

=
∂gh1(ψ)
∂ψ3

∂Gh3(ψ, δe)
∂δe

=
∂Gh1(ψ1, ψ2)

∂ψ2

∂Gh3(ψ, δe)
∂δe

> 0 (41)

Remark 9: The forms of Eq. (37) are equivalent to the
forms of Eq. (40). Compared with Eq. (37), Eq. (40) is a pure
feedback model with a non-affine formulation containing
only one unknown function gh2(ψ, δe).
The tracking error and error function of flight-path tracking

error are defined as e and E , respectively.
e = γ − γd = χ1 − γd

E =
(
d
dt
+ }

)3 ∫ t
0 edτ

= ë+ 3}ė+ 3}2e+ }3
∫ t
0 edτ

(42)

where } ∈ R+ is the parameter to be designed. Since (s+})3
is a Hurwitz polynomial. If E is bounded, e is also bounded.

According to (40) and (42), we obtain
ė = χ̇1 − γ̇d = χ2 − γ̇d
ë = χ̇2 − γ̈d = χ3 − γ̈d
e = χ̇3 − γd = λhδe + Fh(ψ, δe)− γd

(43)
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where, Fh(ψ, δe) = −λhδe + gh2(ψ, δe) is a continuously
differentiable nonlinear unknown function and λh ∈ R+ is a
parameter to be designed.

Because χ2 = γ̇ and χ3 = γ̈ are unknown, in order
to obtain the estimations of χ2 and χ3, the fourth-order
STD proposed in the previous section is introduced, and
γ is used as the input signal of the fourth-order STD. Sim-
ilarly, γd is used as the input signal of the fourth-order STD,
and the estimations ˙̂γd, ¨̂γd, and γ̂d of γ̇d, γ̈d and γd are also
obtained.

Therefore, the estimations of the first three derivatives
of e can be expressed as

˙̂e = χ̂2 − ˙̂γd
¨̂e = χ̂3 − ¨̂γd
ê = τhδe + Fh(ψ, δe)− γ̂d

(44)

From (42) and (44), we obtain the estimation of E .

˙̂E = λhδe + Fh(ψ, δe)− γ̂d + 3}¨̂e+ 3}2 ˙̂e+ }3e

Define

δe0 = −τhÊ + γ̂d − 3}¨̂e− 3}2 ˙̂e− }3e

where, τh ∈ R+.
Control law of altitude subsystem is designed as

δe = λ
−1
h (δe0 − δe1) (45)

where δe1 is the fuzzy control law to be designed to counteract
the influence of the uncertain term Fh(ψ, δe).
According to the uniqueness theorem of implicit function

above, there must be a δ∗e1 such that the Eq.(46) holds.

G2(ψ, δe0, δ∗e1)Fh
(
ψ, λ−1h

(
δe0 − δ

∗

e1
))
− δ∗e1 = 0 (46)

Give the following theorem 2
Theorem 2: Define

λh >
1
2
∂gh2(ψ, δe)

∂δe
(47)

There are a controllable area �ψ ⊂ R3 and a unique
δ∗e1(ψ, δe), for any (ψ, δe) ∈ �ψ×R, δ

∗

e1(ψ, δe) satisfies (47).
Proof: According to the research [33] and [34], if the

following inequality holds, it can get δ∗e1 to exist.∣∣∣∣∂Fh (ψ, δe)∂δ∗e1

∣∣∣∣ < 1 (48)

According to Eqs. (41), (45) and (47), the equation (49)
holds. ∣∣∣∣∂Fh (ψ, δe)∂δ∗e1

∣∣∣∣ = ∣∣∣∣∂ [gh2 (ψ, δe)− λhδe]∂δ∗e1

∣∣∣∣
=

∣∣∣∣∂ [gh2 (ψ, δe)− λhδe]∂δe

∂δe

∂δ∗e1

∣∣∣∣
=

∣∣∣∣[∂gh2 (ψ, δe)∂δe
− λh

]
1
λh

∣∣∣∣
=

∣∣∣∣ 1λh ∂gh2 (ψ, δe)∂δe
− 1

∣∣∣∣ < 1 (49)

Therefore, δ∗e1 exists.

Because

∂

∂δ∗e1
G2(ψ, δe0, δ∗e1) =

∂

∂δ∗e1

[
Fh
(
ψ, δ∗e

)
− δ∗e1

]
=

∂

∂δ∗e1

[
gh2(ψ, δ∗e )− λhδ

∗
e
]
− 1

=
∂

∂δ∗e

[
gh2(ψ, δ∗e )− λhδ

∗
e
] ∂δ∗e
∂δ∗e1
− 1

=

[
∂gh2(ψ, δ∗e )

∂δ∗e
− λh

](
−

1
λh

)
− 1

= −
1
λh

∂gh2(ψ, δ∗e )
∂δ∗e

(50)

where, δ∗e = λ−1h (δe0 − δ∗e1). We can see that ∂G2(ψ,
δe0, δ

∗

e1)/(∂δ
∗

e1) is nonsingular, so we can get theorem 3.
According to Theorem 3, we can consider δe as a function

of ψ and δe0, and regard Fh(ψ, δe) as a function of ψ and δe0.
Next, a fuzzy approximator is introduced into the altitude

subsystem to approximate Fh(ψ, δe).
Define the input of the fuzzy system as X2 =

[ψT, δe0]T ∈ R4, the ideal weight coefficient parameter
vector is selected as θ∗2 = [θ∗21, θ

∗

22, · · · , θ
∗

2w2
]T ∈ Rw2 ,

the vector of the fuzzy basis function is ξ2(X2) =

[ξ21(X2), ξ22(X2), · · · , ξ2w2 (X2)]T ∈ Rw2 . ε2 ∈ R represents
the approximation error and ε2M ∈ R+ represents the upper
bound of the approximation error. Fuzzy approximator can be
expressed as

Fh(ψ, δe) = θ∗T2 ξ2(X2)+ ε2, |ε2| ≤ ε2M (51)

Design δe1 as

δe1 =
1
2
Ê ϕ̂hξT2 (X2)ξ2(X2) (52)

where, ϕh = ||θ∗2||
2 and ϕ̂h are the estimated values of ϕh,

and the design adaptive law is

˙̂ϕh =
κh

2
Ê2ξT2 (X2)ξ2(X2)− 2ϕ̂h (53)

where, κh ∈ R+ is the parameter to be designed.
In order to deal with the saturation problem of δe, the high-

order error compensation auxiliary system proposed in (7) is
introduced to correct the flight-path tracking error e and the
error function E .

zγ = e− ϑ1

zE =
(
d
dt
+ }

)3 ∫ t
0 zγ (τ )dτ

(54)

Therefore, if zE is bounded, we can get zγ is bounded.
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The first three derivatives of zγ can be expressed as

żγ = ė− ϑ̇1 = χ2 − γ̇d − ϑ2
z̈γ = χ̇2 − γ̈d − ϑ̇2 = χ3 − γ̈d − ϑ3
zγ = χ̇3 − γd − ϑ̇3 = λhδe + Fh(ψ, δe)− γd

+
2k1
π

atan(l1ϑ1)+
2k2
π

atan(l2ϑ2)

+
2k3
π

atan(l3ϑ3)− λh (δe − δec)

= λhδe + Fh(ψ, δe)− γd +
2k1
π

atan(l1ϑ1)

+
2k2
π

atan(l2ϑ2)+
2k3
π

atan(l3ϑ3)

(55)

Taking time derivative along (54)

żE = zγ + 3}z̈γ + 3}2żγ + }3zγ

= λhδec + Fh(ψ, δe)− γd +
2k1
π

atan(l1ϑ1)

+
2k2
π

atan(l2ϑ2)+
2k3
π

atan(l3ϑ3)

+3}z̈γ + 3}2żγ + }3zγ (56)

Estimating unknown state variables by using fourth-order
STD, the estimations ofχ2 and χ3 are χ̂2 and χ̂3. The
first three derivatives of γd are denoted by ˙̂γd, ¨̂γd and γ̂d,
respectively.

˙̂zγ = ė− ϑ̇1 = χ̂2 − ˙̂γd − ϑ2
¨̂zγ = χ̇2 − γ̈d − ϑ̇2 = χ̂3 − ¨̂γd − ϑ3

ẑγ = λhδec + Fh(ψ, δe)− γ̂d +
2k1
π

atan(l1ϑ1)

+
2k2
π

atan(l2ϑ2)+
2k3
π

atan(l3ϑ3)

(57)

˙̂zE = λhδec + Fh(ψ, δe)− γ̂d +
2k1
π

atan(l1ϑ1)

+
2k2
π

atan(l2ϑ2)+
2k3
π

atan(l3ϑ3)

+3}¨̂zγ + 3}2 ˙̂zγ + }3zγ (58)

In the constrained case, redesign the ideal control lawv δec
as

δec = λ
−1
h (δe0 − δe1) (59)

where,

δe0 = −τhẑE +
...

γ̂d − 3}¨̂zγ − 3}2 ˙̂zγ − }3zγ

−
2k1
π

atan(l1ϑ15)−
2k2
π

atan(l2ϑ2)

−
2k3
π

atan(l3ϑ3) (60)

δe1 is the fuzzy control law to be designed to offset the
uncertainty term Fh(ψ, δe) in the case of input saturation,
τh ∈ R+ is a parameter to be designed, and δe1 is redesigned
as

δe1 =
1
2
ẑE ϕ̂hξT2 (X2)ξ2(X2) (61)

The adaptive law is redesigned as

˙̂ϕh =
κh

2
ẑ2Eξ

T
2 (X2)ξ2(X2)− 2ϕ̂h (62)

κh ∈ R+ is the parameter to be designed.

V. STABILITY ANALYSIS
A. STABILITY ANALYSIS OF VELOCITY SUBSYSTEM
Theorem 3: Consider the closed-loop velocity subsystem
of FAHV(15), consisting of control law (31), adaptive
law (33), and the amplitude saturation error compensation
auxiliary system (7) under the premise of Theorem 1, then
the closed-loop control system is semiglobally uniformly
ultimately bounded.

Proof: Define estimation error

ϕ̃V = ϕ̂V − ϕV (63)

Substituting Eqs. (26), (31), and (32) into Eq. (32)

żV = 80 −81 + θ
∗T
1 ξ1(X1)+ ε1 − V̇ref +

2kV
π

atan(lVϑV )

= −λV ,1zV − λV ,2

∫ t

0
zV dτ −

1
2
zV ϕ̂1ξT1 (X1)ξ1(X1)

+ θ∗T1 ξ1(X1)+ ε1 (64)

Select the Lyapunov function as

LV =
1
2
z2V +

1
2
λV ,2

(∫ t

0
zV dτ

)2

+
ϕ̃2V

2κV
(65)

Differentiating (65) with respect to time and substitut-
ing (33) and (64) to get

L̇V = zV żV + λV ,2zV

∫ t

0
zV dτ +

ϕ̃V ˙̂ϕV

κV

= zV

[
−λV ,1zV−λV ,2

∫ t

0
zV dτ−

1
2
zV ϕ̂V ξT1 (X1)ξ1(X1)

+θ∗T1 ξ1(X1)+ ε1
]

+λV ,2zV

∫ t

0
zV dτ+

ϕ̃V

κV

[κV
2
z2V ξ

T
1 (X1)ξ1(X1)−2ϕ̂V

]
= −λV ,1z2V −

1
2
z2VϕV ξ

T
1 (X1)ξ1(X1)+ zV θ∗T1 ξ1(X1)

+zV ε1 −
2ϕ̃V ϕ̂V
κV

(66)

Owing to

zV ε1 ≤
z2V
4
+ ε21M

2ϕ̃V ϕ̂V ≥ ϕ̃2V − ϕ
2
V

zV θ∗T1 ξ1(X1) ≤
z2V
2

∥∥∥θ∗T1 ξ1(X1)∥∥∥2 + 1
2

=
z2V
2

∥∥θ∗1∥∥2 ‖ξ1(X1)‖2 + 1
2

=
z2V
2
ϕV ξ

T
1 (X1)ξ1(X1)+

1
2
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Eq. (66) is converted to

L̇V ≤ −
(
λV ,1 −

1
4

)
z2V −

ϕ̃2V

κV
+

1
2
+ ε21M +

ϕ2V

κV
(67)

Define the following compact sets

�zV =

zV
∣∣∣∣∣∣|zV | ≤

√√√√(1
2
+ ε21M +

ϕ2V

κV

)/(
λV ,1 −

1
4

)
�ϕ̃V =

ϕ̃V
∣∣∣∣∣∣|ϕ̃V | ≤

√√√√(1
2
+ ε21M +

ϕ2V

κV

)/(
1
κV

)
Let λV ,1 > 1/4, it is clear that L̇V < 0 will be negative if

zV /∈ �zV or ϕ̃V /∈ �ϕ̃V . Therefore, the closed-loop velocity
subsystem of FAHV is semiglobally uniformly ultimately
bounded. The errors zV and ϕ̃V eventually converge into the
compact sets �zV and �ϕ̃V , respectively, and the semi-global
uniformity is finally bounded. If λV ,1 is large enough and
κV is small enough, then �zV and �ϕ̃V can be arbitrarily
small, then the errors zV and ϕ̃V can be arbitrarily small. The
proof is completed.

In order to further prove the boundedness of tracking
error Ṽ , theorem 4 is given.
Theorem 4: When the actuator of velocity subsystem is

in amplitude saturation, the state variable ϑV of the error
compensation auxiliary system and Ṽ are bounded.
Proof: It can be seen from Theorem 3 that zV and ϕ̃V are

bounded, and since kV · (2/π ) · atan(lVϑV ) < kV is also
bounded, then there must be a constant B8 ∈ R such that
|8−8c| ≤ B8.

Select the Lyapunov function as

WV =
1
2
ϑ2
V (68)

Taking time derivative along (68) and substituting it
into Eq. (7)

ẆV = ϑV ϑ̇V

= −
2kVϑV
π

atan(lVϑV )+ λVϑV (8−8c)

≤ −
2kV |ϑV |
π

atan(lVϑV )+ λV |ϑV |B8

= −

(
2kV
π

atan(lVϑV )− λVB8

)
|ϑV | (69)

According to−π2 <atan(lVϑV ) <
π
2 ,

2
π
atan(lVϑV ) < 1 can

be obtained. Because kV > 0, then kV > 2kV
π
atan(lVϑV ).

As long as appropriate kV , λV and B8 are selected, it can
be guaranteed that kV > 2kV

π
atan(lVϑV ) > λVB8, ẆV < 0

holds. so the closed-loop system is globally uniformly asymp-
totically stable, and ϑV is globally uniformly eventually
bounded. At the same time, because Ṽ = zV + ϑV , then Ṽ is
also bounded, and the proof is completed.

B. STABILITY ANALYSIS OF ALTITUDE SUBSYSTEM
Theorem 5: Consider the closed-loop altitude subsystem
of FAHV (40), consisting of control law (59), adaptive
law (62), STD (2) and the amplitude and rate saturation
error compensation auxiliary system (7) under the premise of
Theorem 2, then the closed-loop control system is semiglob-
ally uniformly ultimately bounded.
Proof: Define estimation error

ϕ̃h = ϕ̂h − ϕh (70)

The estimation errors of STD for χ2, χ3, γ̇d, γ̈d and γd are
defined as 

χ̃2 = χ̂2 − χ2

χ̃3 = χ̂3 − χ3
˜̇γd = ˙̂γd − γ̇d
˜̈γd = ¨̂γd − γ̈d

γ̃d = γ̂d − γd

(71)

Substituting Eq. (51), Eqs. (59)∼(62) into Eq. (58)

˙̂zE = δe0 − δe1 + θ∗T2 ξ2(X2)+ε2 − γ̂d +
2k1
π

atan(l1ϑ1)

+
2k2
π

atan(l2ϑ2)+
2k3
π

atan(l3ϑ3)+3}¨̂zγ+3}2 ˙̂zγ+}3zγ

=−τhẑE −
1
2
ẑE ϕ̂hξT2 (X2)ξ2(X2)+θ∗T2 ξ2(X2)+ε2 (72)

Select the Lyapunov function as

Lh =
ẑ2E
2
+
ϕ̃2h

2κh
(73)

Taking time derivative along (73) and substituting (62)
and (72) to get

L̇h

= ẑE ˙̂zE +
ϕ̃h ˙̂ϕh

κh
=
ϕ̃h

κh

[κh
2
ẑ2Eξ

T
2 (X2)ξ2(X2)− 2ϕ̂h

]
+ẑE

[
−τhẑE−

1
2
ẑE ϕ̂hξT2 (X2)ξ2(X2)+θ∗T2 ξ2(X2)+ε2

]
= −τhẑ2E−

1
2
ẑ2Eϕhξ

T
2 (X2)ξ2(X2)+ẑEθ∗T2 ξ2(X2)

+ε2ẑE−
2ϕ̃hϕ̂h
κh

(74)

Owing to

2ϕ̃hϕ̂h
κh
≥
ϕ̃2h

κh
−
ϕ2h

κh
, ẑEε2 ≤

∣∣ẑEε2∣∣ ≤ ẑ2E
4
+ ε22M

ẑEθ∗T2 ξ2(X2) ≤
ẑ2E
2

∥∥∥θ∗T2 ξ2(X2)
∥∥∥2 + 1

2

=
ẑ2E
2

∥∥θ∗2∥∥2 ∥∥ξ2(X2)
∥∥2 + 1

2

=
ẑ2E
2
ϕhξ

T
2 (X2)ξ2(X2)+

1
2

Eq. (74) can be transformed into

L̇h ≤ −
(
τh −

1
4

)
ẑ2E −

ϕ̃2h

κh
+

1
2
+ ε22M +

ϕ2h

κh
(75)
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Define the following compact sets

�ẑE =

ẑE
∣∣∣∣∣∣∣∣ẑE ∣∣ ≤

√√√√(1
2
+ ε22M +

ϕ2h

κh

)/(
τh −

1
4

)
�ϕ̃2 =

ϕ̃h
∣∣∣∣∣∣|ϕ̃h| ≤

√√√√(1
2
+ ε22M +

ϕ2h

κh

)/(
1
κh

)
Let τh > 1/4, if ẑE /∈ �ẑE or ϕ̃h /∈ �ϕ̃h , then L̇h < 0.

Therefore, the closed-loop control system is semiglobally
uniformly ultimately bounded. Further, these error signals ẑE
and ϕ̃h are semiglobally uniformly ultimately bounded and
can be invariant to the following sets �ẑE and �ϕ̃h . The
radiuses of �ẑE and �ϕ̃h can be made arbitrarily small by
choosing τh that is large enough and κh that is small enough,
and the tracking errors ẑE and ϕ̃h can also be arbitrarily small.
Theorem 5 can be proved.

From Eqs. (54)∼(58), we can get

ẑE = ¨̂zγ + 3}˙̂zγ + 3}2zγ + }3
∫ t

0
zγ dτ

= zE +
(
χ̃3 − ˜̈γd

)
+ 3}(χ̃2 − ˜̇γd)−

∫ t

0
(γ̃d)dτ

= zE + χ̃3 − 2( ˜̈γd)+ 3}(χ̃2 − ˜̇γd) (76)

Considering the properties of STD proposed above, there
are bounded constants χ̃2M , χ̃3M , ˜̇γdM , ˜̈γdM and γ̃dM such that
|χ̃2| ≤ χ̃2M , |χ̃3| ≤ χ̃3M , | ˜̇γd| ≤ ˜̇γdM , | ˜̈γd| ≤ ˜̈γdM , |γ̃d | ≤
γ̃dM , then

|zE | =
∣∣∣ẑE − [χ̃3 − 2( ˜̈γd )+ 3}(χ̃2 − ˜̇γd )

]∣∣∣
≤
∣∣ẑE ∣∣+ χ̃3M + 2( ˜̈γdM )+ 3}(χ̃2M − ˜̇γdM ) (77)

Therefore, zE and zγ are also bounded.
Theorem 6: When the actuator of altitude subsystem is in

amplitude and rate saturation, the state variables ϑ1, ϑ2, ϑ3 of
the error compensation auxiliary system and e are bounded.
Proof: Since ẑE , zE , zγ and ϕ̃h are both bounded, the bound-

edness of the polynomial −3}¨̂zγ − 3}2 ˙̂zγ − }3zγ is proved
below. According to Eqs. (54)∼(58), we can get

−3}¨̂zγ − 3}2 ˙̂zγ − }3zγ
= −3}

(
z̈γ + χ̃3 − ˜̈γd

)
− 3}2

(
żγ + χ̃2 − ˜̇γd

)
− }3zγ

≤ −3}z̈γ − 3}2żγ − }3zγ + 3}
(
χ̃3M + ˜̈γdM

)
+3}2

(
χ̃2M + ˜̇γdM

)
(78)

Since the characteristic roots −}/2 ± (
√
3}/6)j of the

polynomial −3}¨̂zγ − 3}2 ˙̂zγ − }3zγ have negative real part,
the polynomial is Hurwitz and must be bounded.

Owing to∣∣∣∣−2k1
π

atan(l1ϑ1)−
2k2
π

atan(l2ϑ2)−
2k3
π

atan(l3ϑ3)

∣∣∣∣
<k1+k2 + k3 (79)

Then there must be a constant Bδe ∈ R such that
|δe − δec| ≤ Bδe .

FIGURE 4. Structure of the control system.

FIGURE 5. Schematic diagram of ‘‘algebraic loops’’.

FIGURE 6. Velocity tracking performance.

FIGURE 7. Velocity tracking error.

There must be ϑi ≥ 0 (i = 1, 2, 3) in the neighborhood
defined near the equilibrium point (0, 0, tan[λhπ (δe − δec)/
2k3]/l3). Choose the Lyapunov function as

Wh=k2

∫ ϑ1

0

2
π
atan(l1τ1)dτ1+k2

∫ ϑ2

ϑ1

2
π
atan(l2τ2)dτ2+

ϑ2
3

2
(80)
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TABLE 1. Initial trim conditions.

TABLE 2. Membership functions of variables.

FIGURE 8. Altitude tracking performance.

Taking time derivative along (80)

Ẇh =
2k2
π

atan(l1ϑ1)ϑ̇1

+

(
2k2
π

atan(l2ϑ2)ϑ̇2−
2k2
π

atan(l1ϑ1)ϑ̇1

)
+ϑ3ϑ̇3

FIGURE 9. Altitude tracking error.

FIGURE 10. The responses of flight-path angle, pitch angle and pitch rate.

FIGURE 11. The flexible state of η1.

=
2k2
π

atan(l2ϑ2)ϑ3+ϑ3

[
−
2k1
π

atan(l1ϑ1)−
2k2
π

× atan(l2ϑ2)−
2k3
π

atan(l3ϑ3)+λh (δe−δec)
]

≤ −
2k1
π

atan(l1ϑ1)ϑ3 −
2k3
π

atan(l3ϑ3)ϑ3 + λhBδe |ϑ3|

≤ −
2k3
π

atan(l3ϑ3)ϑ3 + λhBδe |ϑ3|

≤ −

(
2k3
π

atan(l3ϑ3)− λhBδe

)
|ϑ3| (81)

If the auxiliary system parameter k3 satisfies k3 ≥

k3 |2/π · atan(l3ϑ3)| ≥ Bδe , then Ẇh ≤ 0. At this point,
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FIGURE 12. The flexible state of η2.

FIGURE 13. The control input 8.

FIGURE 14. The control input δe.

the state variables ϑ1, ϑ2, and ϑ3 are bounded, and the closed-
loop system is globally asymptotically stable. And because
e = zγ + ϑ1, e is also bounded.

The design procedure of velocity and altitude controllers
is completed. The structure of the control system is presented
in Figure 4.
Remark 10:Unlike previous control method, the controller

proposed in this paper is designed based on the non-affine
models of FAHV, so it has better reliability and practicability.
Remark 11: If the input vectors of fuzzy approximators

are X1 = [V ,8]T and X2 = [ψT, δe]T, then 81 and
δe1 are both inputs and outputs of fuzzy approximators,

FIGURE 15. The control input ωe of the proposed controller.

FIGURE 16. Velocity tracking performance.

FIGURE 17. Velocity tracking error.

which will produce ‘‘algebraic loops’’ and seriously affect
the calculation speed of system. Therefore, in order to avoid
algebraic loops, the input vectors in this paper are
X1 = [V ,80]T andX2 = [ψT, δe0]T, respectively. As shown
in Figure 5.

VI. SIMULATION VERIFICATION
In order to verify the effectiveness of the proposed new
control scheme and error compensation auxiliary systems,
taking FAHV longitudinal model as the control object to
track the reference velocity and reference altitude. The initial
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FIGURE 18. Altitude tracking performance.

FIGURE 19. Altitude tracking error.

FIGURE 20. The responses of flight-path angle, pitch angle and pitch rate.

trim conditions of FAHV, calculated by employing the Trim
Function of MATLAB, are listed in Table 1. The reference
velocity input and reference altitude input are given by the
second-order reference model, in which the damping ratio
is 0.9 and the natural frequency is 0.1 rad/s, the simulation
step ω is 0.01s.

The design parameters of the controller are λV = 0.9,
λV ,1 = 0.3, λV ,2 = 0.8, kh = 2, λh = 0.9, τh = 50,
} = 7, respectively. The design parameter of STD isR= 0.05.
The design parameters of the adaptive laws are κV= 0.05 and
κh= 0.05. The fuzzy approximator choose the Gauss basis
function as the membership function, and the fuzzy sets of

FIGURE 21. The flexible state of η1.

FIGURE 22. The flexible state of η2.

FIGURE 23. The control input 8.

each variable to 100. In the velocity subsystem, the input of
fuzzy approximator is X1 = [V ,80]T, The fuzzy centers
iV and i80 of each fuzzy set of V and 80 are uniformly
distributed in [2500m, 2800m] and [0,2], respectively. In the
altitude subsystem, the input vector is X2 = [γ, θ,Q, δe0]T,
The fuzzy centers iγ , iθ , iQ and iδe0 of each fuzzy set of
γ, θ,Q and δe0 are uniformly distributed in [−1.1◦,+1.1◦],
[0◦, 11.5◦], [−5.7 ◦/s,+5.7 ◦/s] and [−23◦,+23◦], respec-
tively. The membership functions of each variable are given
in Table 2. The design parameters of the auxiliary system are
kV = 1, k1 = 1, k2 = 1, k3 = 1, lV = 7, l1 = 7, l2 = 7,

73614 VOLUME 7, 2019



X. Li, G. Li: Novel Fuzzy Approximation Control Scheme for Flexible Air-Breathing Hypersonic Vehicles

FIGURE 24. The control input δe.

FIGURE 25. The control input ωe of the proposed controller with auxiliary
system.

FIGURE 26. The control input ωe of the controller in [26].

l3 = 7. The simulation is carried out under the following two
scenarios.
Scenario 1: Firstly, do not limit the executable range of

control inputs 8 and δe. The method proposed in this paper
is compared with the novel back-stepping control method
in [38]. It is assumed that the aerodynamic coefficient of the
FAHV model has a perturbation of ±40%, and the perturba-
tion is C = C0[1+ 0.4 sin(0.1π t)] , where C0 represents the
nominal value and C stands for the simulation value. After
the running time exceeds 50 s, the perturbation C is added.

As can be seen from Figures 6-9, velocity and altitude
tracking error converge to zero faster when using the pro-
posed controller than by employing the strategy of [38], and
the tracking error of the proposed scheme is significantly
smaller than [38], especially the altitude tracking error. It can
be seen from Figures 10-12 that the control performance of
attitude angles and flexible states of the proposed method
is better than the method adopted in [38]. It can be seen
from Figure13-14 that the amplitude of control input of the
method proposed in this paper is smaller than the method
proposed in [38]. Figure 15 shows that the rate of δe varies
rapidly when the auxiliary system is not adopted. In the
next section of the simulation, we consider employing the
auxiliary system proposed in this paper to solve the amplitude
and rate saturation of the control input.
Scenario 2: We assume that actuators are constrained as

8 ∈ [0.05, 1.1], δe ∈ [−17◦, 17◦], ωe ∈ [−50◦/s, 50◦/s].
The method with the auxiliary system proposed in this paper
is compared with the method proposed in [26]. After the
running time exceeds 50 s, the added perturbation C is the
same as scenario 1.

As can be seen from Figures 16-22, the proposed control
scheme can still provide stable tracking of velocity and alti-
tude commands in the presence of control input constraints
and parametric uncertainties. And the tracking error is signif-
icantly smaller than [26]. The control performance of attitude
angle and flexible states is better than [26]. Figures 23-26
shows that the simulation performance of proposed control
scheme is better than the controller in [26] under stricter con-
straints and the proposed method can provide stable tracking
with rate saturation of δe. Since the adopted method in [26]
does not take rate saturation into account, it is likely to lead
to control failure.

VII. CONCLUSION
A fuzzy-approximation-based nonlinear tracking control
approach is presented for non-affine models of FAHV with-
out many virtual control laws. It avoids the loss of some
key dynamics when the models are simplified. Since there
is no virtual control law and intermediate variable, the prob-
lem of excessive calculation caused by multiple differenti-
ation is avoided. Norm estimation approach is introduced
into the fuzzy approximator to improve the efficiency of
weight updating. A novel error compensation auxiliary sys-
tem with multiple constraints is designed to solve the ampli-
tude and rate saturation of the actuator. In the presence of
parametric uncertainties, external disturbances and control
input constraints, robust tracking of reference trajectories can
be achieved by the proposed control strategy with auxiliary
systems effectively.
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