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ABSTRACT The output voltage of a dual LCL inductive power transfer (IPT) system varies with the load and
mutual inductance, which can affect the system performance, e.g., the charging speed of electrical equipment.
This paper proposes a robust controller to maintain constant output voltage against the load and mutual
inductance variations. A p-synthesis method is proposed based on structured singular value to design the dual
LCL IPT closed-loop system. The frequency-domain nominal model of the system is established by using
the generalized state-space averaging (GSSA) method. A standard M-A configuration is generalized through
separating the nominal and uncertain block by upper linear fractional transformation (LFT). The p-controller
is finally obtained by D-K iteration. The robust performance analysis and time-domain performance analysis
are also carried out. The simulation and experimental results verified the effectiveness of the proposed
modeling and controller design, and demonstrated the robust stability and robust performance of the dual
LCL IPT system.

INDEX TERMS Generalized state-space averaging (GSSA), inductive power transfer (IPT), robust control,

p-synthesis.

I. INTRODUCTION

Inductive power transfer (IPT) based on electromagnetic
induction is a popular wireless power transfer technol-
ogy, which has attracted the attention of scholars and
researchers in recent years. It has been widely adopted in
electric vehicles [1]-[2], rail transit [3]-[4], household appli-
ances [5], implantable medical devices [6], wearable mobile
devices [7], etc.

For an IPT system, variation of circuit parameters, such
as load and mutual inductance, are a common phenomenon
due to specific operating conditions of the system, which
will cause random drift of inherent resonant frequency of the
resonant circuit [8], the reduction of the power transmission
capacity and system performances to a certain extent, and
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also affect the stable operation of the system [9]. In order to
solve these aforementioned issues, more and more research
methods such as circuit topology optimization and advanced
control strategies are carried out. One way to reduce the
effects of uncertainties is to use special circuit struc-
tures such as capacitor-inductor-capacitor (CLC) [10],
inductor-capacitor-inductor (LCL) [11] or series-parallel-
series (SPS) [12] compensation topologies, which can pro-
vide constant voltage or current characteristics with a single
parameter change without feedback control and communica-
tion between the primary and secondary sides. Another way
to deal with uncertainties is to adopt control methods. There
are some single-objective control methods without system
modeling including dynamic tuning method [13] and pulse
density modulation self-oscillation tuning frequency tracking
method [14], so as to ensure the operating frequency of
the system is consistent with the resonant frequency of the
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resonant network. However, the above research methods rely
on the resonant compensation topologies, and the adaptabil-
ity, stability as well as robustness of multi-parameter varia-
tion are slightly poor without establishing a more accurate
system mathematical model. Therefore, the system behaviors
(ie, transient and steady-state characteristics) and closed-loop
control design based on system parameter modeling are
widely studied.

A closed-loop digital PI controller based on an approxi-
mate small-signal model for LCL-T structure [15] and a new
adaptive sliding-mode control scheme [16] were designed
to achieve good reference tracking performance of the sys-
tem, but these have poor robustness due to high-order and
nonlinear characteristics of the system. Besides, there exists
difficult to eliminate the negative effects of external inter-
ference and parameters variation. Li, et al proposed a two-
degree-of-freedom Hy, controller for SS-IPT system which
can effectively improve the transient performance on the
basis of guaranteeing the robustness of the voltage stabiliza-
tion [17]. A closed-loop system of the relay structure which
is applied in an EV charging system considering load uncer-
tainty and external disturbance has achieved good tracking of
the reference output voltage and robustness [18]. Hy, opti-
mal approach for CLC-type system considering frequency
variation can achieve robust stability against unstructured
uncertainties and nominal performance requirement, but it
neglects robust performance requirement [19]. Due to the
comprehensive consideration of the above factors, structured
singular value p analysis method has been proposed to test
the robust stability and robust performance (RSRP) of a
system considering structured perturbations, which can avoid
the conservatism of Hy, control design [29]-[32]. In view
of the frequency uncertainties of CLC-type structure [20]
and the coupling coefficient variation in the case of different
position offsets based on SP-type structure [21], p-synthesis
control system is designed to realize RSRP, which is veri-
fied to achieve good performance and is applicable to other
structures.

Although robust control has been widely used in an IPT
system, it can be found that the current research mainly
focuses on single parameter variation. Multi-parameter vari-
ation is a common phenomenon in IPT systems while due
to the complexity of the system structure. Therefore, taking
into account the control requirements of multi-parameter
variation of the system and the applicability of w con-
trol in non-conservativeness aspects, this paper proposes a
robust p-controller considering the perturbation of load and
mutual inductance to achieve effective control output of the
closed-loop system. This study takes an LCL resonant topol-
ogy as an example, which generates strong resonance and a
high power factor for reducing voltage and current stresses
on the primary power converter [22]. This topology is also
widely used in energy bidirectionally fed power transmission
systems.

The rest of this paper is arranged as follows: Section II
briefly introduces the working principle of dual LCL IPT
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FIGURE 1. Dual LCL type IPT system circuit topology.

system. In Section III, the frequency-domain linear model
and the uncertainties model of load and mutual inductance
parameter perturbation adopted linear fractional transforma-
tion (LFT) are built up. In Section IV, a standard M-A
structure for robust stability is established and the robust
performance is analyzed. The D-K iterative algorithm is
used to design the p-controller. Finally, the simulation and
experimental results in Section V further verify the RSRP of
the closed-loop system based on the p-controller and realize
good robustness.

Il. WORKING PRINCIPLE OF DUAL LCL IPT SYSTEM

The circuit structure diagram of the dual LCL IPT system
is shown in Fig. 1. The whole system can be divided into
the primary side and the secondary side. Regarding the pri-
mary side, the DC voltage Eqc is the system input, which
is obtained by the AC voltage through rectification, voltage
regulation and filtering. The high-frequency inverter network
is composed of two switch pairs (S1, Sa), (S2, S3)), which
outputs high frequency AC energy to the resonant network
(LCL type resonant network, consisting of Ly, Ly and Cp)
through alternately switching. For the secondary side, it is
composed of the LCL type resonant network (consisting of
Lg1, Lg, and Cy), the rectifying network (consisting of four
rectifying diodes), the filtering network (consisting of Cy),
and the load Ry..

For the IPT system, the resonant frequency of the res-
onant network and the switching frequency of the inverter
are kept consistent to ensure the power factor of the reso-
nant network is 1, and the natural resonant frequency wy is
expressed as:

1 1
- VInGp - VI Gy

The root mean square (RMS) value of the output voltage
Uin of the inverter can be expressed as

232
Uin = TEdc (2)

ey

2]

When the whole network is in resonance state, the res-
onance network parameters satisfy the following condition
according to the design requirements of the system.

X, = X1,

3)
XLS2 = Xle

72771



IEEE Access

C. Xia et al.: Robust -Synthesis Control of Dual LCL Type IPT System

According to the principle of electromagnetic induction,
the value of the secondary side induced voltage Uy is
expressed as (4), where M represents the mutual inductance
between the primary and secondary side coils.

Uoe = U)OMIpl )

Based on the principle of power conservation, Reqis the
equivalent input resistance of the rectifier given as (5), where
U, is RMS of the secondary side open circuit voltage, U, is
the load output voltage and Qg is quality factor [23].

U2 Q2 Rr
R — oc =8 5
€q Ug ( )
Ill. MODELING OF DUAL LCL IPT SYSTEM
In order to study the dynamic behavior characteristics of
the system under parameters perturbation, it is necessary to
establish the mathematical model of system for analysis.

A. GENERALIZED STATE SPACE AVERAGING MODEL

The inductor currents and capacitor voltages in the circuit
are selected as state variables, so the state variables of the
dual LCL-type IPT system is x(t) = [ip2, Ucp,ip1,is1» UCs,Is2s
Uc]T, and the zero-order harmonic component is used to
represent the DC component such as Uct. The even harmonic
component of the state variables iy, ucp, ip1, ist, UcCs, is2 With
AC characteristics are approximately zero. The odd harmonic
component represents AC characteristic components. Each
state variable exhibits better sinusoidal characteristics when
the LCL network operates at resonance conditions. Therefore,
the fundamental component can be used to approximate these
time-domain state variables, which are defined as:

ip2 = (ip2), & + (ipo) | e 7!

uc, = (ucp)1 e’ + (”Cp)_l et

ipt = (ip1), & +{ip1)_, e 77"

ist = (is1)1 e/t + (is1) 1 e/t (6)
uCS = (uCS>1 ejwot + (uCS>—1 e_ijI

is2 = (is2)1 €' + (is2) _y €7/

Uc, = (UCf)O

where (-)g and (-); (or (-)_;) respectively denote the
zero-order and first-order Fourier coefficients of the circuit
variables. Furthermore, (-)_; represents the complex conju-
gation of (-);.

The state variables of the GSSA model is set as follows:

x(0) = [{ip2), - (ucy), - {ip1), - s)1 - {ucy), - Gs2)1 o (Ucg)yl”
(7

According to the circuit topology of the system, with the
GSSA modeling method [24], the generalized differential
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equations are established as follows:

dli 1 1
—<dp;2>l = _L_2 <VCP)] + L_2 (Eqcs (t))l _jw <iP2)1
P P
d<uc ) 1. L. :
dlipt), _ ~La Ll
0 = A <ucp>1 - A (lﬂl)l
M MR
+— uc,), + ==L ist)) — joo (ip1),
dfis1)y  —M Mlé’l j ®)
- = {uc,), — N (ip1);
Ly R
+l%1 (Vesht + pLEI (is1)1 — jo (is1)1
d{uc, r . [ ;
<d(t: >1 = e (is1)1 + I (is2)2 —J&)(MCS>1
di 1 S
= e, + 7 s ), o o)
s s
dlUc), 1 . 1
. 0 _ o (isasgn(t))o — CiRs (Ucty

where A = L,1*Ls1-M*M; s(t) represents the primary side
inverter link switching function, and sgn(t) is the switching
function of the secondary side rectification link, which are
expanded by Fourier series. By circuit analysis, the phase
difference is 7r/2, that is = /2.

—2j
(s = — )
T
-2 . ~
(sgn(), = E(}cos(k@) + sin(k0), k=1,3.5..
0, k=246..
(10)

Decompose the selected state variables to obtain the gen-
eralized state variables of the system.

x(1) = [Re <ip2)1 o Am (ip2)1 s Re (”‘Cp>1 ’Im(”Cp>1 s Re <ipl>1 )
Im(ipt), . Re (is1)1 . Im (is1) . Re (uc,), . Im(uc), .
Re (ig)y . Im (is2) , Re (Ucy)yI" (11)

The GSSA nominal model of the double LCL type system
is obtained:

{X:Ax—l—Bu (12)

y=Cx+ Du

where A, C, D is a constant system matrix, and B is a con-
stant control matrix (Appendix A), y is the output voltage
Ucs. Moreover, Decoupling of state variables and switching
variables (s(t) and sgn(t)) are realized from time domain to
frequency domain. The nonlinear dual LCL-type IPT system
has been successfully approximated to a linear system.

B. UNCERTAINTY MODEL UNDER PARAMETER
PERTURBATION

In the dual LCL type IPT system, the uncertainty of the
load Ry and the mutual inductance M is considered in the
model. The ranges of variation of R;, and M directly affect
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system performance. Mathematically, parameters uncertainty
can be represented as (13) and (14).

1/RL = 1/Ro(1 + préR) 13)
M = Mo(1 + pmdm) (14)

where Ry and My are the nominal design value of load
and mutual inductance respectively. pr and py denote the
range of the parametric uncertainties, and ||dr||cc <1 and
[[dMlloo <1 imply the boundedness of uncertainty. Consider-
ing the requirement of following practical experiment in the
design of this paper, pr = 0.5 represents the change in the
range of =50% of nominal value Ry and py; = 0.3 represents
the change in the range of £30% of nominal value M. The
designed controller does not suffer from input saturation since
the range of parameter variation is relatively small.

Based on the principle of LFT, the reciprocal 1/Ry, for load
can be expressed as 1/R;, = Fy(MR, 6r) shown in Fig. 2
(a). The mutual inductance M can be expressed as M =
Fy(Mm,6Mm) shown in Fig. 2 (b). MR and My can be defined
as the following forms:

Mg = |:_PR 1/R0] My = [0 Moy ] (15)

—pr 1/Ro pm Mo
8z |j By j
Up L JyR Uiy Yim
X MR Ve Xi MM Vi

(a) (b)
FIGURE 2. LFT of uncertain parameters (a) LFT of R ; (b) LFT of M.

yr and ugr are the input and output of Sr. yim and ujm
are the input and output of dy1 respectively. x; represents the
state variables of the system, vp = x;*1/RL, vim = x*M.
Therefore, the relationship between the separated nominal
part and the uncertain part can be expressed as:

|:)’R:| _ [—PR 1/Ro:| |:'4R:|:|:_PRMR+xi/R0:| (16)
VR —pr 1/Ro | | xi —PRUR + Xi/Ro

ym | _ |0 Mo || um |_ Mox; a7
ViM M Mo | | xi pmuim + Mox;i

The uncertain part of the state variable constitutes the
system’s uncertainty matrix A expressed as (18) and the norm
condition ||A[|s <1 is satisfied. The definition of y, and u,
are the input and the output of A respectively.

A = diag{8m, 0r)} (18)

Yp = pertin = [y3M, Y4Ms --» Y10M, YR] (19)
up = pertin = [usm, uam, ..., u1om, Ur1"

Therefore, the uncertainty model of the system can be
transformed into linear dynamic system with perturbation
feedback:

X = Ax + Biup + Bou
yp = C1x + Dyjup + Diou (20)
y = Cox + Da1up + Dyou
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Equation (19), x € R'3 is the generalized state variable; u
is input voltage signal Eq; yis the load output voltage; Thus,
a generalized controlled object G can be obtained as (21) (in
Appendix B).

IV. CLOSED LOOP CONTROL SYSTEM DESIGN

AND PERFORMANCE ANALYSIS

The controller design of the closed-loop system will be car-
ried out based on the above established generalized space
model and system performance requirements will also be
verified in this subsection.

A. n-CONTROLLER DESIGN
In the dual LCL IPT system, a robust feedback p-controller
u(s)= K(s)y(s) is designed based on the diagram of Fig. 3.

G :
| Lld
ref u | Ity y e,
| T \S

D—» W, —>

W

u

FIGURE 3. Feedback control diagram based on p-controller.

In Fig. 3, the output voltage reference value is represented
by ref; d is the external interference; u is the controller output,
y is the system output; K is the p-controller;

G(s) is the transfer function of the controlled object with
parameter perturbation which is G = Fy(Gmgs,A). the sensi-
tivity function S is defined to represent the transfer function
of the closed-loop system from reference input ref to error
signal e when disturbance d is 0, or the transfer function from
disturbance d to output y when reference input ref’is 0, that is:

S(s) = [I + G(s)K(s)] ™" (22)

W, is a weighting function of the sensitivity function S.
W, is a low-pass filter with the same bandwidth as the distur-
bance, which is used to describe the spectrum characteristics
of the disturbance and has low-pass properties. The gain of
S is minimized so as to suppress disturbance with regularly
occurring in the low frequency region. Therefore, the weight-
ing function in the low frequency band should be as large as
possible. Under the premise of satisfying the dynamic quality
requirements of the system without increasing the order of the
controller, it can be selected as follows:

k
Wp(s) = ———— 23
p(®) Jojwp+1 23)
where wp = . > wL, the expected open-loop cut-off

frequency of the system is w.. The bandwidth of low fre-
quency disturbance is wr, so that the closed-loop system can
effectively suppress low frequency disturbance.
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FIGURE 4. Amplitude-frequency response of weighting function.
(a) Wp(s). (b) Wu(s).

Wiis weighting function of the KS. The use of W, can limit
the size of the control amount and prevents the serious satura-
tion phenomenon in the actual process, that is, the excessive
control amount can cause damage to the actuator. W, is used
to describe norm bounds of parameter perturbation at low fre-
quency ranges. Similar design principle is adopted according
to the selection of weighting function in literatures [25]-[26].
W, and W, reflect the performance requirements of differ-
ent frequency bands of the system. So they are selected
as (24) according to the system parameters and the above
design idea.

W, 200 W, = 0.01 24
P=r e =0 (24)

In summary, the amplitude-frequency characteristic of
each weighting function is shown in Fig. 4.

By substituting G into the robust control toolbox of MAT-
LAB with dkit command [27]-[28], the u robust controller of
the dual LCL type IPT system can be calculated.

B. n-SYNTHESIS: D-K ITERATION METHOD

In order to reflect the effect of the designed p-controller,
the structural singular value (w) is introduced to determine
the robustness under the control of parameters perturbation
system, and a standard M-A structure is used for analysis as
shown in Fig. 5. P (including the nominal object Gmgs, Wp and
W) represents a generalized object. Transfer function matrix
Me R"" is obtained by the lower LFT of Pand K . Apissetof
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uncertainty matrix blocks. The first uncertain block A of the
structural matrix is the uncertainty of the dual LCL-type IPT
system modelling and is assumed ||A||sc < 1(A(S)ERHo1)-
The second block Ag is virtual uncertain blocks that repre-
sents the performance requirement of the system.

Ap= {[ﬁgf’] LA e A ecl*z} (25)

The robust performance comprehensive analysis can be
attributed to finding a stable controller that keeps the
closed-loop system stable with all possible uncertainties
existing in the system possibly. The © synthesis problem can
be attributed to satisfying the following conditions.

|, FLP. K| <1 (26)

For optimal condition

camin [, FLP KO @7)

maplFL(P, K)] can be calculated by selecting a scale
matrix D, so the p-synthesis problem is converted into
inf sup inf [DF P(jw). K(j D—l] 28
KstablizeP wegDeDM L(PGw). K(jw)) (28)
For a given w €R (real number set), the matrix D that
minimizes the maximum singular value of the above equation
may be different. The problem can be described as

inf inf HDFL(P, K)D! H (29)
K stabilizeP DeD o0

For the above problem, D-K iterative algorithm design
flowchart is shown as Fig. 6. The specific design process is
as follows:

(1) Selecting the initial scaling matrix D(s) = I (I is the
identity matrix);

Defining a diagonal transfer function matrix D:

Do D = diag|Dy, ..., Dy, diln, ..., drlyf] - D; € Cri'ri
DiZDi* >0, dj>0

(30)

(2) For a given stable real rational minimum phase

D(s), solve the Hy, optimal design problem and get the
controller K (s);

inf
K stabilizeP

(DFL(P, K)D™! H 31)
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v
Initialization D(s)=I

!

Fixed D(s), solve the K(s)
with Ho method

N )
Fixed K(s), find the optimal
solution and obtain D(s)

Determine if K(s) meets
the requirements

FIGURE 6. Design flowchart of D-K iterative algorithm.

(3) For given K(s), solve optimal question and obtain the
scale matrix D(s);

. —1
52£M[DFL(P, K)D™'] (32)

Select a finite number of frequency points within the spec-
ified frequency range, corresponding to constant matrix D,,,
which may have different values at different frequencies,
solve the optimization problem at each frequency point:

min | Do FL(PGw), K GonD3! | (33)

Thus, it will get stable real rational minimum phase transfer
function matrix D(s) by fitting the curve.

(4) Repeat the above process until the iteration value meets
the performance requirements of the design.

The iteration results are shown in Table 1. It can be seen
from Table 1 that the u value of the closed-loop system is
decreasing and the robustness of the system is increasing
according to the D — K iterative algorithm described in the
previous section. By the end of the last iteration, the iterative
u value gets 0.959, which reaches the preset performance of
the closed-loop system.

TABLE 1. Iteration results.

Tteration Control Order Gamma Achieved Peak mu-Value
1 4 1.334 1.274
2 22 1.111 1.106
3 24 0.961 0.959

C. CONTROL PERFORMANCE ANALYSIS
In the design process, the p-controller is a high-order con-
troller due to the scalar scale matrix D. It is necessary to
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FIGURE 7. Frequency response of high-order and reduced-order
controllers.

perform the reduced-order processing by a certain method
and ensure that the performance of the closed-loop system of
the two controllers is almost the same. The verification can
be performed by the frequency response of the nominal per-
formance, robust stability, robust performance and sensitivity
analysis of the reduced-order controller.

According to the controller reduction principle based on
the Hankel-norm approximation method, the order of the
reduced order controller is 10th order (in Appendix C).
As shown in Fig. 7, the frequency response of the high-order
and reduced-order controllers is almost identical and the
frequency can be close to 10° rad/s.

1) NOMINAL PERFORMANCE ANALYSIS

When analyzing the nominal performance under w control,
the uncertainties affecting the accuracy of the model are
not taken into account. For nominal plant Gpqs, nominal
performance can be represented by transfer function matrix
T4, from external disturbance d to tuned output z = [ep,eu]T
according to Fig. 3. That is:

-1
sl oo = H[WPU + GmasK) }

WoK( + Guask) 1 || =1 OY

‘ 00

The nominal performance frequency response of the
closed-loop system is shown in Fig. 8, it can be seen that
the amplitude-frequency response of the closed-loop transfer
function is less than 1 at any value in the frequency range
[1072,10°] under the u-synthesis control from Fig. 8. This
shows that the p-synthesis control system is not only inter-
nally stable, but also achieves the preset nominal requirement.

After obtaining the p-controller, 4 analysis method is used
to test the RSRP of closed-loop system to prove the expected
performance requirements of the closed-loop system under
various uncertainties and external disturbance factors.

2) ROBUST STABILITY ANALYSIS

The frequency response of the robust stability analysis is
shown in Fig. 9. The horizontal axis is the frequency (rad/s)
and the vertical axis is the u value. The closed loop system
with p-controller has robust stability if and only if the con-
dition of sup,epia(M)<1 is satisfied. It can be seen that
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FIGURE 9. Frequency response of robust stability.

the upper and lower bounds of ua(M) are both less than 1.
It meets the design requirement.

3) ROBUST PERFORMANCE ANALYSIS

Closed-loop system not only need to satisfy robust stability,
but also have robust performance under the influence of struc-
tural uncertainty. Fig. 10 shows the ua [FL(P, K)] frequency
response of the robust performance of the closed-loop system.
The horizontal axis is the frequency and the vertical axis
is ua[FL(P, K)] value. It can be seen from the figure that
the value of ua[FL(P, K)] is always less than 1 over the
entire frequency ranges. It satisfies the robust performance.
The largest © value on the waveforms in the figure is 0.528.
So the perturbation range allowed by the closed-loop system
is ||Al] <0.5287".

Robust performance
0.6 A AL,

0.5
0.4~

0.3

Solid Red Linetupper bound
Dashed Blue Line:lower bound

ol nd vl el

1072 10! 109 10! 102 103 104 105 10°

Frequency (rad/s)

0.1

FIGURE 10. Frequency response of robust performance.
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4) SENSITIVITY ANALYSIS
The sensitivity of closed-loop system is an important index to
determine the error of system controller. Under the influence
of various uncertainties and external disturbance, the gain of
S of the system directly reflects the ability of the closed-loop
system to suppress disturbances: the smaller the gain of the
mixed sensitivity function, the stronger the anti-interference
ability of the closed-loop system, and the smaller the control
error of the system output under the influence of external
disturbance.

It can be seen from equation (28) that the condition of
u-synthesis design can ensure the performance requirement
of the closed-loop system. That is

-1
Lotk oo )| = [ats ]l <1 o

WuK(I + GK)™!

In order to effectively suppress the influence of external
disturbances on closed-loop perturbed system, the mixed sen-
sitivity function according to formula (36) should satisfy the
following constraint:

IWpS| ., <1 (36)

This may be checked by computing the sensitivity function
of the closed-loop system and comparing it with the inverse
of the performance weighting function (1/W,). Sensitivity
function with K is shown as Fig. 11.

As can be seen from Fig. 11, the amplitude-frequency
response of the output sensitivity function is always below
frequency response of the inverse performance weighting
function under the p control. In addition, the sensitivity func-
tion gain is always less than 1, which shows that the output
error of the closed-loop system can be well suppressed when
both bounded perturbation and external disturbance exist.
Therefore, the closed-loop system with p-controller has good
anti-interference ability.

1 ‘ ‘ ‘ o

Magnitude/dB

104 102 10° 107 10* 10°
Frequency (rad/s)

FIGURE 11. Sensitivity function with K.

D. ROBUST ANALYSIS OF CLOSED-LOOP

PERTURBATION SYSTEM

For more intuitively describing the dynamic performance
and stability of the closed-loop perturbation system, the time
domain can be used. By setting the reference input and
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FIGURE 12. Transient response of closed loop (a) Reference input change,
(b) Disturbance change.

disturbance input, the motion equation of the closed-loop
perturbation system is solved in the time domain to obtain
the response curve of the system in the time domain. The
transient response of the system at the reference input and
the disturbance input are shown in Fig. 12(a) and Fig. 12(b)
respectively. It can be seen from the figures that the designed
controller can achieve better tracking and anti-interference
effects, which proves the effectiveness of u control.

V. SIMULATION AND EXPERIMENTS
In order to make robust design process more clearer and
more useful for IPT system with dual LCL as well as other
topologies, the design flowchart is given in Fig. 13.
Considering the requirements of the robust controller
of the dual LCL closed-loop system, the selected circuit
parameters are shown in Table 2 according to the circuit
topology.

TABLE 2. Circuit parameters table.

Parameters Values
Input voltage source Eq/V 60
Invert frequency f/kHz 20
Primary coil inductance L,;/uH 111.12
Equivalent resistance Ry ,/Q 0.106
Primary LCL inductance L,,/pH 111.12
Primary resonant capacitance C,/uF 0.52
Secondary coil inductance Ly/pH 111.36
Equivalent resistance Ry /Q 0.102
Secondary LCL inductance Ly/pH 111.36
Secondary resonant capacitance Cy/puF 0.52
Mutual inductance M/pH 49.71
Filter capacitance Cy/uF 47
Load R /Q 20

VOLUME 7, 2019

Select any IPT system

[Topology] [Parametersj

v

Circuit Analysis
Simplified Selection of
equivalent circuit || state variables
GSSA Nominal Model
Fourier series Nonlinear Link
decomposition principle Processing

Parametric Perturbation Model(Generaliazed Plant)

[ Principle of LFT j [ Parameter perturbationj

!

p-controller Design
Weighting Generalized D-K iteration
Functions plant method
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DKIT Control performance Time domain
command analysis performance analysis

p-controller

FIGURE 13. Design flowchart of . control.

A. SIMULATION ANALYSIS

In order to verify the tracking effect of the output voltage
under the p control during the system start-up process,
the simulation time of the system is set to be 0.08s during the
simulation, and the reference output voltage of the system is
set to be 10V at Os and 15V at 0.04s respectively. The output
voltage tracking characteristics of the system are shown
in Fig. 14(a) under the action of the controller. The setting
time is 1.3ms and the overshoot is almost 0% in the start-up
process. 2.1% overshoot and 4.5ms setting time can be found
during the switching. It has good tracking characteristic of
the system.

According to the theoretical analysis, the closed-loop feed-
back system has the characteristic of suppressing external
disturbance. The initial input voltage is 60V at Os and distur-
bance of 20V is added after 0.04s in the simulation process.
The setting time of the waveforms shown in Fig. 14 (b) is
shorter and the overshoot is 6.7%, so the anti-interference
characteristic meets the design requirements.

An important feature of the closed-loop feedback system
based on p-controller is to suppress the perturbation of sys-
tem parameters. Fig. 14(c) analyses the closed-loop system
with load perturbation. When the load changes from 20 € to
10 €2, the system can also quickly track the given reference
voltage with 5% overshoot after 3 ms. The response wave-
form of the mutual inductance change is shown in Fig. 14(d).
It can be seen that there is setting time of 7ms and overshoot
of 10% with changing. Therefore, the control system has
better suppression of parameter perturbation characteristic.
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B. EXPERIMENTAL RESULTS
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of the Hall sensor module (CHV-25P), and the voltage is
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FIGURE 14. Output voltage and primary coil current waveforms.
(a) Tracking response waveform, (b) Input voltage interference,
(c) Load perturbation, (d) Mutual inductance perturbation.
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FIGURE 17. Experimental platform.

is sent to the controller. The Hankel-norm approximation
method is used to reduce the order of the controller to obtain a
10th order controller. In order to obtain better control effect,
the robust controller performs discretization processing and
uses STM32F103 for controller operation and PWM output,
which is converted into the driving signal of the Buck circuit
and provides drive signal for the inverter. The Buck circuit
chopping frequency is 50 kHz, the input voltage is 60 V,
the filter inductance Ly is 1mH, and the output capacitance
Cqis 100 uF.

In the experiment, the buck output voltage is equal to the
output of the pu-controller. Under pulse width modulation,
the turn-on ratio of the switching transistor of the buck circuit
in one cycle is

D=— (37)

Eqc

Through the above analysis, the performance of the
low-order continuous controller is almost similar to that
of the original high-order p-controller. The low-order con-
tinuous w-controller obtained in the previous section IV
needs to be discretized in order to better handle and ensure
real-time regulation of the system in STM32F103. The dis-
cretization method and the sample time step size affect the
accuracy of the discrete controller; the accuracy of the dis-
crete controller can also be reflected by the output response.
In this paper, the equivalent digital controller is obtained
based on Tustin Transformation’s discretization method. This
method can match well in frequency domain between con-
tinuous time and discrete time models. In the process of
discretization, the sampling period of 7 = 1 us is short
enough to ensure certain calculation accuracy. The discrete
controller is

10 10
u(k) = "ai-utk —i)+ Y _ bje(k —j) (38)
i=1 j=0

u(k) represents the control signal corresponding to the
input voltage, and e(k) represents the difference between the
reference voltage and the output voltage. The signal a;, b;

VOLUME 7, 2019

FIGURE 18. Experimental steady state waveforms of load output voltage
Uo, inverter output voltage u;, and primary coil current iy .

(@

(b)

FIGURE 19. Experimental waveforms of load output voltage Uy, inverter
output voltage u;, and primary coil current irp- (a) Tracking response,
(b) Input voltage disturbance.

are respectively.

[a1, ...a10]
= [-0.8362, —0.2315, 0.8815, —0.3187, —0.1415,
—0.7934, 0.6637, 0.06339, —0.6294, 0.3385] 39

[bo, ...b10]
= [3.241, —0.6377, —1.231,3.42,0.7312, —0.1805,
—3.114, 1.1, 1.144, —2.934, 3.005¢ — 31] 40)
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FIGURE 20. Experimental waveforms of load output voltage Up and
primary coil current il-P' (a) load perturbation, (b) Mutual inductance
perturbation(49.71 x H— 22.25uH), (c) Mutual inductance and load
changes(20<, 49.71x H— 102,34.80,. H).

In order to verify the tracking output effect of the system at
the start-up time, the output voltage is set to be 10 V and the
output voltage Uy and the waveform of the primary current
iLp in the steady state is tested as shown in Fig. 18. The
system can reach steady state. The output voltage waveform
of primary inverter and the current waveform of primary coil
have a phase difference of 90° after the steady state, which
is in consistent with the characteristics of the LCL network

72780

under the action of the controller. The primary coil current is
a sinusoidal waveform with a lower distortion.

In order to verify the tracking effect of the controller,
the system output is set from 10 V to 15 V. It can be seen from
the Fig. 19(a) that the response time is 11ms, the response
waveform has almost no overshoot and good tracking refer-
ence output voltage.

In the dual LCL type IPT system, the input voltage
is disturbed by fluctuation of the power grid. The ini-
tial input voltage is set to 60V and input voltage interfer-
ence of 10V is added at some point. The system response
waveform is shown in Fig. 19(b). It can be seen that i,
remains unchanged. The output voltage reaches a steady state
after a short dynamic process and achieves anti-interference
effect.

In order to verify the robust control effect of the control
method under the perturbation of load and mutual induc-
tance, the expected output voltage is set to be 10V with
load changing from 20 €2 to 102 in the first switching and
changing from 10 € to 20 €2 in the second switching. The
experimental waveform of the load perturbation is shown
in Fig. 20(a). During the load variation process, the out-
put voltage enters the steady state after the less adjustment
process. There is the overshoot of 22% and it costs about
20ms in the process of load switching. The current wave-
form of primary coil still has good sinusoidal characteristics.
The experimental waveforms of the the mutual inductance
perturbation are shown in Fig. 20(b). It can be seen from
the figure that it has smaller overshoot of 20%, setting time
of 25ms and the output voltage quickly reaches the desired
set value under the action of the u-controller when the system
receives the perturbation of the mutual inductance parameter.
Fig. 20(c) is output waveforms with two parameters chang-
ing in the system. When the parameters change, the output
voltage is overshoot of 18% and can reach the set value
quickly. The designed controller has better control effect.
It can be seen that the closed-loop system has better robust-
ness and the effect of suppressing parameters perturbation
under p control.

VI. CONCLUSION

Ap-synthesis robust control for the dual LCL IPT system
of the closed-loop system with the uncertainty of load and
mutual inductance parameters is proposed and developed
in this paper. The linearized nominal frequency domain
model and uncertainty model of double LCL topology are
established based on the GSSA method and LFT principle.
A p-controller is designed by using D-K iterative method,
and the control performance and transient performance of
the system are both analyzed in this work. Experimental
results show that the closed-loop system can quickly and
accurately track the reference voltage, effectively suppress
the influence of external disturbance and parameters per-
turbation and obtain output robustness. u-synthesis control
is characterized by the ability to obtain RSRP of system
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