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ABSTRACT Semi-supervised anomaly detection identifies abnormal (testing) observations which are
different from normal (training) observations. In many practical situations, anomalies are poorly insufficient
and not well defined, while the normal data are easily sampled, have a wide variety, and may not be
classified. For this paradigm, we propose a novel end-to-end deep network as an anomaly detector only
trained on normal samples. Our architecture consists of a conditional variational auto-encoder (CVAE),
a feature discriminator (FD), and an adversarially trained WGAN-GP discriminator. The CVAE is designed
as a generator to reconstruct images. It leverages underlying category information and multivariate Gaussian
distributions to regularize the latent space, enabling a smooth and informative manifold. For anomalies
which have a certain similarity to normal data, we perform active negative training by generating potential
outliers from the latent space to limit network generative capability. In order to capture data characteristics,
we maximize the mutual information between the inputs and the latent codes by the FD. It enhances the
relationship between the high-dimensional image space and corresponding encoded vectors. To promote
reconstruction, a structural similarity loss is applied to robustly recover local texture details and the WGAN-
GP discriminator is employed to aid in generating photo-realistic images. We distinguish anomalies by
computing a reconstruction-based anomaly score. Different from recent encoder–decoder or GAN-based
architectures, our approach considers input categories, constructs, and exploits a useful manifold in an
unsupervised manner and has a stronger reconstruction capability. The experimental results demonstrate
that the proposed approach outperforms state-of-the-art methods over several benchmark datasets.

INDEX TERMS Semi-supervised anomaly detection, conditional variational auto-encoder, generative
adversarial networks, informative manifold, structural similarity loss.

I. INTRODUCTION
In many practical applications, such as vision-based indus-
trial fault monitoring [1], [2] and medical image based
disease diagnosis [3]–[5], people would like to detect the
anomalies that don’t belong to any of the known classes so
as to determine if the situation is within normal. In these
cases, pictures of normal categories are available. However,
the anomalies can’t be well defined or sampled because they
occur irregularly and also show great diversification. This is
a typical semi-supervised anomaly detection task in the field
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of computer vision, which task only takes advantage of the
normal observations for training. It attracts great interest of
researchers and is closely similar to novelty detection [6],
one-class classification [7], outlier detection [8] and irregu-
larity detection [9] studies.

There has been a considerable volume of works proposing
many different anomaly detection methods for videos and
images, some of which are summarized in the overviews
like [10]–[13]. Common popular approaches can be classi-
fied as self-representation learning [14]–[17] and statistical
modeling [18]–[21]. Recently, the performance of anomaly
detection is greatly improved by applying deep adversarial
training process [3], [9], [22]–[25].

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

88903

https://orcid.org/0000-0002-5125-4882
https://orcid.org/0000-0002-7870-8733


J. Bian et al.: Novel and Efficient CVAE-GAN-Based Approach With Informative Manifold

Self-representation learning is a powerful tool for anomaly
detection, of which the feature representation and the data
reconstruction are the two important components. The feature
representation learns unique features of normal categories
and rejects anomilies which don’t conform to these fea-
tures. Low level features such as gradient features [26], [27],
mixtures of textures [28] and improved PCA [29] have been
widely used in the last dozen years. High level features
from deep networks, like auto-encoders [30], pre-trained
networks [31] and PCAnet [32], [33], have achieved more
excellent successes. Besides, due to lacking of sparse repre-
sentations, anomalies can be distinguished by sparsity which
is learned from the normal classes. For example, [34] and [17]
utilize the sparse model for the detection of abnormal events
and videos. And [15] detects anomalies in a union of sub-
spaces. In addition, the data reconstruction method of self-
representation learning can decide whether a sample belongs
to normal classes or not by a reconstruction error of deep
neural networks. Typically, the error is based on an encoder-
decoder network and is minimized by training on normal
samples [35], [36].

Statistical modeling learns the data distributions from
normal samples, which distributions are usually expressed
by parameters. Classical [37] and [38] are distance-based
anomaly detection approach. Anomalies are identified by
measuring their distances to the neighboring samples.
LOF [39], a work also based on distance measurement, uti-
lizes the k-nearest neighbors to estimate the local density.
The CoP [40] identifies an anomaly which has a low mutual
coherence with the rest of the data points. In [41], an anomaly
measure of a sample is obtained by distances between its
projection and the projected single point of training samples
in each class.

In recent years, advances in Generative Adversarial
Networks (GANs) [42] have opened new possibilities for
semi-supervised anomaly detection. GANs can model com-
plicated and high-dimensional distributions, especially the
images [24], through a min-max game process. The learn-
ing models can successfully generate data with outstand-
ing performance [42], [43]. Schlegl et al. [3] propose an
AnoGAN which uses the similar convolutional structure of
the DCGAN [24], to learn a generator only utilizing normal
images. The posterior probability of a testing sample is opti-
mized to reconstruct the sample by the generator. Finally,
an anomaly score based on the reconstructed image and the
feature map of the discriminator is calculated to discover
abnormal markers in medical images. Later on, in order to
reduce the complexity of mapping from image to latent space,
Zenati et al. [25] jointly train them by making good use of
the BiGAN [44] structure and distinguish anomalies with the
same anomaly scores. In a follow-up study, Akcay et al. [45]
propose GANomaly comprising an encoder-decoder-encoder
network groups to explore the deep latent representation of
the normal samples and adopt an anomaly score computed
from the latent spaces. Their work announce achieving state-
of-the-art performance statistically over benchmarks.

Different from the [3], [25], [45], Sabokrou et al. [22]
present a new framework for anomaly detection, which
leverages the reconstruction error to train a one-class clas-
sifier instead of computing the anomaly score. In [23],
Pidhorskyi et al. propose a similar structure based on the
GAN and the encoder-decoder network. But he computes an
anomaly probability indicating the possibility that the sample
belongs to normal data.

These most recent methods [3], [22], [23], [25], [45] are
the successful GAN-based generative approaches for detect-
ing unknown abnormal images. Nevertheless, they all suf-
fer from mode collapsing problem [46] of GANs. Besides,
the latent space of traditional encoders used in [3], [22],
[25], [45], is not a disentangled representation nor a smooth
manifold [47]. As a result, the latent manifold has less use-
ful information to exploit and can’t accurately describe the
intrinsic characteristics of the normal samples [47], [48].
Furthermore, the reconstruction of [3], [22], [23], [25], [45]
is performed by a pixel-wise L-norm loss which treats
all pixels independent. It lacks consideration of the inter-
pixel relationship, which prevents these methods from being
applied to real-world scenes. In addition, the decoder of
traditional auto-encoder is not robust to noises [47], [49]
either.

In order to further improve the accuracy of GAN-based
anomaly detection, negative training andmanifold regulations
can be used. The negative training utilizes the abnormal
samples to increase the identification ability of anomalies.
Munawar et al. [50] introduce a negative training stage to
unlearn the anomaly reconstruction, which can also limit
the strong generative capability of the GANs. Kimura and
Yanagihara [51] exclude the distribution of abnormal images
to reduce the influence of noisy normal data. However these
methods assume the abnormal images are easily accessi-
ble. It’s not an assumption for the semi-supervised prob-
lem. Therefore, we propose an active negative training
approach. The active negative training can generate abnor-
mal samples and utilizes the abnormal samples to conduct
negative training.

With respect to the regulations of manifold, it can provide
a desired representation of normal data. Gray et al. [52]
present an IGMM-GANmodel to cope with multiple types of
data, in which the BiGAN [44] is combined with an infinite
Gaussian mixture model [53]. Munawar et al. [50] use adver-
sarial autoencoders (AAE) [54] to impose a supervised prior
distribution on the latent space. Thus it can map the anomaly
items away from the normal data. However, [52] requires the
labels of normal samples and [50] needs to get some random
inputs as anomalies. In this paper, the problem faced with
is more general where normal samples are unlabeled and
anomalies are not well defined.

With regard to the informative latent space, generative
architectures are usually used to build good latent repre-
sentations by virtue of reconstruction [44], [47], [55], [56].
A high-quality representation from the encoder is beneficial
to the downstream tasks, such as classification task [57].
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FIGURE 1. The proposed network architecture for anomaly detection. It is composed of a conditional variational auto-encoder(CVAE), a feature
discriminator (FD) and a WGAN-GP discriminator. The CVAE comprises an encoder, a decoder, a classifier which is surrounded by the red dashed
rectangle, and means corresponding to input categories. The FD is denoted by the blue dashed rectangle.

To obtain useful representations of normal samples without
using labels, an unsupervised way is used to maximize the
mutual information between the normal samples and the
corresponding latent codes [57].

In this paper, we propose a novel end-to-end deep con-
volutional networks, which are only trained on unclassi-
fied normal images, to detect unknown anomalies. We don’t
use the auto-encoder structures but a designed conditional
variational auto-encoder (CVAE). Different from variational
auto-encoder (VAE) [47], it can take advantage of potential
class information of training samples to generate a mani-
fold which is regularized by multivariate Gaussian distribu-
tions with learnable mean values. The manifold of CVAE
is smooth and disentangled. Besides the converged gener-
ative model is more robust to noises. We add the maxi-
mization of mutual information into the proposed approach.
Therefore, the latent codes are encouraged to learn more
useful representations associated with the inputs. In order
to promote the convergence of network and the accuracy
of reconstruction, we use the structural similarity (SSIM)
metric [58] as a loss function and adopt the WGAN-GP [59]
framework. SSIM is a measurement to capture salient differ-
ences between the input and the reconstruction. WGAN-GP
can generate photo-realistic images. By virtue of Wasserstein
loss [60] and gradient penalty [59], the WGAN-GP avoids
the mode collapsing problem caused by vanilla GAN and
feature matching based GAN [43]. In order to enhance the
identification ability between normal samples and similar
abnormal samples, potential outliers are generated from the
regularized latent space and are involved in the active negative
training. To describe the degree of abnormality, we present
a reconstruction-based anomaly score, comprising the SSIM
and L1-norm losses. Experimental results demonstrate
that our approach achieves excellent results for anomaly

detection, and outperforms several recent state-of-the-art
works on various benchmarks.

The remainder of the paper is structured as follows.
Section II describes the proposed approach including con-
ditional variational auto-encoder, mutual information max-
imization, structural similarity, WGAN-GP, active negative
training and anomaly score. Section III gives the experimental
results and analyses in detail. The conclusions are summa-
rized in Section IV.

II. THE PROPOSED APPROACH
Fig. 1 illustrates the overview of the proposed CVAE-GAN-
based architecture. The CVAE learns the input data represen-
tation by the encoder and works as a generator to reconstruct
the image via the decoder. The encoder adopts three identical
pipelines which are composed of the convolutional layers
followed by the batch-norm and the leaky ReLU activation.
The decoder utilizes the similar structure of a DCGAN gen-
erator [24]. As shown in Fig. 1, the CVAE uses reparame-
terization trick [47], [61] to generate latent encoded vector
z from u and σ , and the classifier denoted by red rectangle
associates z with the input category y. The learnable means
uy are parameters of the multivariate Gaussian distributions
which are imposed on z. The WGAN-GP discriminator is
similar to the encoder but abandons the batch-norm layers and
attaches fully connected layers to the convolutional layers as
output. The feature discriminator (FD) uses 1 × 1 convolu-
tional kernels to identify the combination between z and the
true feature map. In this way, the mutual information between
z and the inputs can be maximized.

A. CONDITIONAL VARIATIONAL AUTO-ENCODER
VAE [47] is a state-of-the-art image modeling technique and
is known to generate a smooth, continuous and disentangled
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latent manifold. (1) shows the reparameterization trick of
VAE, where � denotes an element-wise product, N (0, 1) is
a standard Normal distribution.

z = u+ σ � ξ ξ ∈ N (0, 1) (1)

VAE utilizes this trick to realize random sampling from mul-
tivariate Gaussian distributions. As shown in (2), as shown at
the bottom of this page, it learns to generate data which max-
imizes a variational lower bound of the model log-likelihood
Ex∼pdata(x)

[
logPmodel(x)

]
.

As illustrated in (2), the primary idea of the VAE
is the stochastic variational inference which minimizes
a reconstruction term Ex∼pdata(x)

[
Ez∼p(z|x)

[
− log q (x|z)

]]
,

a Kullback-Leibler (KL) divergence term KL (p(z)||q(z)) and
amutual information term I (z; x). In (2), x is a data point from
the distribution pdata(x), p (z|x) is a variational approximate
posterior [47] which is modeled by the encoder. The VAE
can match an arbitrary prior q(z), which is usually defined
as standard Normal distribution, to the aggregated posterior
distribution p(z). Furthermore, q (x|z) represents a data gener-
ator which is depicted by the decoder. Additionally,E denotes
mathematical expectation and is calculated over the training
batches.

In order to handle the inputs with multiple classes, we
design a CVAE, a kind of recent advanced model, to replace
VAE. It improves VAE and is able to generate data condi-
tioned on certain attributes. To be more general, we assume
the training data is not classified. Without labels, we imple-
ment our CVAE in an unsupervised way. We regard the
latent code as a combination of z and y instead of only z,
where y is a discrete latent variable that represents a cate-
gory. As a result, we replace the z in (3), as shown at the
bottom of this page, by (z, y). In this way, the CVAE not
only keeps all the features of VAE but also learns a more
informative manifold. (3) is another derivation of (2). Based
on (3), the loss of CVAE is derived from (4), as shown at
the bottom of this page. In (4), we model the q(z|y) as multi-
variate Gaussian distributions with variances 1 and learnable
means uy for different categories y. Thus the q(z|y) can be
expressed by (5), as shown at the bottom of this page. In (5),
the covariance matrix of z is a diagonal matrix. Because we
hope that every component of the latent vector z is inde-
pendent so that they are maximally informative. Besides,
d represents the dimension of vector z. In (4), p(y|z) is a
classifier for hidden variables. Its architecture is denoted by
the red dashed rectangle in Fig. 1. q(y) is the prior distribution

Ex∼pdata(x)
[
logPmodel(x)

]
> −Ex∼pdata(x)

[
Ez∼p(z|x)

[
− log q (x|z)

]]
− Ex∼pdata(x) [KL (p (z|x) ||q (z))]

= −Ex∼pdata(x)
[
Ez∼p(z|x)

[
− log q (x|z)

]]
−

∫ ∫
p(z|x)pdata(x) log

p(z|x)p(z)
q(z)p(z|x)

dzdx −
∫ ∫

p(z|x)pdata(x) log
p(z|x)
p(z)

dzdx

= −Ex∼pdata(x)
[
Ez∼p(z|x)

[
− log q (x|z)

]]
− KL (p(z)||q(z))− I (z; x)

= −Ex∼pdata(x)
[
Ez∼p(z|x)

[
− log q (x|z)

]]
−

∫
p(z) log

p(z)
q(z)

dz− I (z; x) (2)

Ex∼pdata(x)
[
logPmodel(x)

]
> −Ex∼pdata(x)

[
Ez∼p(z|x)

[
− log q (x|z)

]]
− Ex∼pdata(x) [KL (p (z|x) ||q (z))]

= −Ex∼pdata(x)

[
−

∫
p(z|x) log q(x|z)dz+

∫
p(z|x) log

p(z|x)
q(z)

dz
]

= −Ex∼pdata(x)

[∫
p(z|x) log

p(z|x)
q(x, z)

dz
]

(3)∑
y

Ex∼pdata(x)

[∫
p(z, y|x) log

p(z, y|x)
q(x, z, y)

dz
]

= Ex∼pdata(x)

∑
y

∫
p(y|z)p(z|x) log

p(y|z)p(z|x)
q(x|z, y)q(z|y)q(y)

dz


= Ex∼pdata(x)

Ez∼p(z|x)
−∑

y

p(y|z) log q(x|z, y)+
∑
y

p(y|z) log
p(z|x)
q(z|y)

+ KL (p(y|z)||q(y))


= Ex∼pdata(x)

Ez∼p(z|x)
−Ey∼p(y|z) [log q(x|z, y)]+∑

y

p(y|z) log
p(z|x)
q(z|y)

+ KL (p(y|z)||q(y))

 (4)

q(z|y) =
1

(2π )d/2
e−

1
2 ||z−µy||

2
(5)
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of categories. Without labels, we just estimate and set the
number of the categories for y. This number is also the
number of different multivariate Gaussian distributions. The
Ex∼pdata(x)

[
Ez∼p(z|x)

[
−Ey∼p(y|z)

[
log q(x|z, y)

]]]
is a recon-

struction term. The latent loss of CVAE is Ex∼pdata(x)[Ez∼p(z|x)
[
∑
y
p(y|z) log p(z|x)

q(z|y) ]]. It is capable of forcing each z to be

as close as possible to its corresponding multivariate Gaus-
sian distribution which represents one of the classes. It is
more natural than standard Normal distribution with 0 mean
value in VAE and plays a role of unsupervised cluster-
ing in latent space. In VAE, the p(z|x) is assumed to be
multivariate Gaussian distributions with diagonal covariance
matrixes [47]. So the p(z|x)

q(z|y) in CVAE can be embodied
by the ratio of the two Gaussian distributions. Moreover,
the Ez∼p(z|x) [KL (p(y|z)||q(y))] is a categorical loss term. The
optimization of the categorical loss can reduce the KL diver-
gence between p(y|z) and q(y). Without any prior distribution
of categories y, q(y) can be assumed to be uniformly dis-
tributed. So, the categorical loss is optional, it can be realized
by the cross entropy and can force the normal classes to be
evenly distributed.

Another method AAE [54] can also make the manifold
continuous, smooth and disentangled. However, the AAE
can’t provide learnable means of multivariate Gaussian dis-
tributions as the CVAE does. The learnable means can cluster
the same kind of objects in the latent space. They make
the latent space disentangled and conditioned on the input
categories. In this way, the CVAE enhances the relationship
between the input normal data and the manifold in an unsu-
pervised way and the network can learn more features of
normal objects. So we designed the CVAE.

B. MUTUAL INFORMATION MAXIMIZATION
As shown in (2), the optimal solution of the VAE is to
minimize the reconstruction term, simultaneously minimize
the mutual information term. When a simple decoder is used,
minimizing the reconstruction termwill force the latent codes
z relevant to input data, which leads to a maximization of
I (z; x) [62]. However, this good situation doesn’t often occur.
When the decoder is powerful, the mutual information I (z; x)
in (2) will be minimized without being affected by the min-
imization of the other two terms [63], [64]. Minimizing the
mutual information makes the inputs x and the latent codes
z independent, which means the latent codes don’t learn use-
ful representations. Therefore, the mutual information term
needs to be maximized to learn an informative manifold
and at the same time to aid in promoting the reconstruc-
tion accuracy of normal data. Finally, the trained network
is able to extract more unique features from the training
set.

I (x, z) =
∫ ∫

p(x, z) log
p(x, z)
p(x)p(z)

dxdz

=

∫ ∫
p(z|x)pdata(x) log

p(z|x)
p(z)

dxdz

= KL(p(z|x)pdata(x)||p(z)pdata(x)) (6)

JS(P,Q) =
1
2
KL(P||

P+ Q
2

)+
1
2
KL(Q||

P+ Q
2

)

(7)

min
G

max
D

V (D,G) = Ex∼pr
[
logD(x)

]
+Ex∼pg

[
log(1− D(x))

]
(8)

min
G
V (D∗,G) = 2JS(pr ||pg)− 2 log 2 (9)

According to the mutual information definition, the mutual
information can be derived as (6). Maximizing the mutual
information between the inputs x and the latent codes
z is equivalent to enlarging the KL divergence between
p(z|x)pdata(x) and p(z)pdata(x). The larger KL divergence
indicates a larger p(z|x)

p(z) . It means that for each data x,
the encoder p(z|x) can encode the unique z so that the proba-
bility of p(z|x) is much larger than the probability of random
prior distribution p(z). That is to say, the encoder learns the
information from the inputs x and has a high probability
p(z|x) to generate the unique latent codes z. When x is known,
the uncertainty of z is greatly reduced. It is also themeaning of
mutual information. Because the KL divergence doesn’t have
an upper bound.We replace the KL divergence by the Jensen-
Shannon (JS) divergence which has a same effect to measure
the distribution distance and has an upper bound of 1

2 log 2.
The upper bound enables a stable maximization process. The
JS divergence is widely used in traditional GAN training and
is shown in (7), where P and Q are two data distributions.
(8) is the classical GAN objective proposed in [42]. G and

D are a generator and a discriminator respectively. Besides
pr and pg are separately the real data distribution and the data
distribution generated from G. The optimal (maximal) dis-
criminator in (8) has a form of D∗(x) = pr (x)

pr (x)+pg(x)
. Then (9)

can be derived by puttingD∗(x) into (8). So the maximization
process in (8) is to force the GAN objective to approximate
the JS divergence. From (9), it can be seen that minimizing
V (D∗,G) is to find an optimal G to reduce the JS divergence
between the pg and pr [65]. On the contrary, themaximization
of mutual information requires increasing the JS divergence.
So by imitating (8), we replace the minimization process by
maximization process to find a p(z|x) which canmaximize the
JS divergence between p(z|x)pdata(x) and p(z)pdata(x). The
JS-based mutual information loss can be denoted as (10),
as shown at the top of the next page. The FD in (10) is
a discriminator similar to D in (8). The architecture of the
network FD is denoted by the blue dashed rectangle in Fig. 1.

C. STRUCTURAL SIMILARITY
SSIM is able to depict inter-dependencies between twoK×K
sized patches e and f of an image to make up for the widely
used pixel-wise L1-norm loss. The SSIM considers image
similarity in terms of luminance l(e, f ), contrast c(e, f ), and
structure s(e, f ). It can be expressed by (11), whereµe andµf
are mean intensities of patches, σ 2

e and σ 2
f denote the patch

variances, σef represents the covariance of two patches, c1
and c2 are two constants to ensure numerical stability and are
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max
p(z|x),FD

E(x,z)∼p(z)pdata(x)
[
logFD(x, z)

]
+ E(x,z)∼p(z|x)pdata(x)

[
log (1− FD(x, z))

]
(10)

typically 0.01 and 0.03. In our proposed approach, the entire
reconstruction loss is constituted of the negative log of SSIM
loss and the per-pixel L1-norm loss.

SSIM (e, f ) = l(e, f )c(e, f )s(e, f )

=
2µeµf + c1
µ2
e + µ

2
f + c1

·
2σeσf + c2
σ 2
e + σ

2
f + c2

·
2σef +

c2
2

σeσf +
c2
2

=

(
2µeµf + c1

) (
2σef + c2

)(
µ2
e + µ

2
f + c1

) (
σ 2
e + σ

2
f + c2

) (11)

D. WASSERSTEIN GAN

W (pr , pg) =
1
K

sup
||f ||L≤K

Ex∼pr [f (x)]− Ex∼pg [f (x)] (12)

Traditional GAN optimizes the Jensen-Shannon (JS) diver-
gence which leads to a mode collapse problem and unstable
generator gradients [65] for GANs. The Wasserstein loss,
also known as the earth-mover distance, is better for GAN
training [65]. It can be expressed as (12), where W (pr , pg)
represents the Wasserstein distance of two distributions pr
and pg, sup indicates maximization, f is defined in the real
number field and denotes a set of functions which satisfy the
Lipschitz condition (||f ||L ≤ K , K ≥ 0). By utilizing the
Wasserstein loss, the Wasserstein GAN (WGAN) [60] has
stable convergent performance. It can reduce blurriness and
add more local details to the generated images.

LG = −Ez∼p(z) [D (G (z))]

LD = −Ex∼pdata(x) [D (x)]+ Ez∼p(z) [D (G (z))] (13)

The WGAN is composed of a generator network G (the
CVAE) and a discriminator network D. The discriminator
is updated several times, and subsequently, the generator is
updated once. In this way, the training loss can be reduced.
As illustrated in (13), LG and LD are the generator loss and
the discriminator loss respectively. Minimizing LD in (13) is
exactly the same as approximating the Wasserstein distance
W (pr , pg) in (12) [60]. In further, training D via the LD
can let the D distinguish the difference between distribution
pdata(x) and the generated distribution px∼G(z) (x). Because,
to satisfy the LD, the Ex∼pdata(x) [D (x)] is maximized and the
Ez∼p(z) [D (G (z))] is minimized.With respect to the LG, small
value of LG means samples generated from the latent space
p(z) are almost the same as the samples from pdata(x) from
perspective of the discriminator.

GP|x̂ = Ex̂
[(∥∥∇x̂D (x̂)∥∥2 − 1

)2]
x̂ = tx + (1− t)G(z)

x ∼ pdata(x)

z ∼ p(z) (14)

LD = −Ex∼pdata(x) [D (x)]+ Ez∼p(z) [D (G (z))]+ λGP|x̂
(15)

In WGAN, the f in (12) uses weight clipping to satisfy the
Lipschitz condition. However, it leads to optimization diffi-
culties due to gradient exploding or vanishing problems [59].
WGAN-GP is an improved strategy to replace the weight
clipping. It imposes a gradient penalty on the discriminator
to enforce the Lipschitz constraint. The gradient penalty is
shown in (14), where t is sampled uniformly from [0, 1].
With the gradient penalty, the discriminator loss is finally
defined as (15), where λ is a proportionality coefficient.
It further improves the training stability and can generate
higher-quality images.

E. ACTIVE NEGATIVE TRAINING
The GAN-based architecture usually has a great generative
ability. In particular, the anomalies similar to normal datamay
have a good reconstruction result. In order to prevent a high-
quality generation of abnormal samples, abnormal samples
can be used in the negative training to limit their recon-
struction accuracy. In this paper, we assume the anomalies
cannot be sampled or well defined. So, abnormal samples
need to be generated actively. Due to the complexity and high
dimensions of the image data, it is very difficult to generate
abnormal samples in the image data space. Instead of search-
ing in image space, the proposed active negative training
method finds potential anomalies from the regularized low-
dimensional manifold.

We consider an inherent property that the distributions
of anomalies are very different from normal data and are
also usually scattered. In the proposed approach, the CVAE
imposes multivariate Gaussian distributions on the latent
manifold for normal samples, forcing the latent codes of
normal data to be clustered. As a consequence, the anomalies
are not as concentrated as the normal data. It is also consistent
with many other researches [66]. The latent vectors that are
far away from the Gaussian means are considered as possible
anomalies.

We adopt a random sampling strategy in the latent sub-
space to generate potential latent codes of anomalies. Their
distances to the learnable means are required to be larger than
2 (twice the corresponding variance value 1). This distance
above can be tuned based on the degree of similarity between
abnormal and normal samples. For example, if abnormal and
normal samples aren’t similar to each other, the distance can
be larger. In further, the latent loss can reflect the distribution
distance between the latent vectors of normal samples and the
multivariate Gaussian samples. So if the latent loss is larger
than a threshold, the active negative training can be suspended
until the latent loss is smaller.
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F. ANOMALY SCORE
Our approach can reconstruct normal data with high accuracy
and has poor reconstruction effect for unknown abnormal
data. So based on the reconstruction, the proposed anomaly
score is the sum of the SSIM and L1-norm losses. The SSIM
loss compares the texture similarity between local regions of
two images and the L1-norm loss examines the single pixel
value of two images. The two losses are computed for each
individual test sample. In order to balance the impacts of the
two losses, each loss is normalized between 0 and 1 within
the whole test set.

III. EXPERIMENTS AND ANALYSES
In this section, we evaluate and analyze the performance
of the proposed anomaly detection architecture in detail.
The results are compared with several state-of-the-art
approaches qualitatively and quantitatively over four different
benchmarks.

A. DATASETS DESCRIPTION
The anomaly detection tasks are constructed from the follow-
ing public datasets.

1) MNIST
MNIST [67] consists of 70000 28×28 grayscale handwritten
digits from 0 to 9. Each digit has 7000 images, among them
6000 for training and 1000 for testing. This dataset is the sim-
plest in the four benchmarks and is not difficult to be trained
by the neural networks. As a consequence, the anomalies can
be reconstructed via learned information from normal data,
leading to a decrease of detection accuracy.

2) CIFAR10
CIFAR10 [68] contains 60000 32 × 32 color images
in 10 classes. Each category has 5000 training samples and
1000 testing samples for a total of 6000 images. The images
in this benchmark have nature objects and backgrounds and
are like real world photos. It is the most difficult dataset to be
trained in the four benchmarks. As a result, the generalization
ability of networks needs to be improved so that other normal
objects which don’t exist in the training set can be recon-
structed well. Moreover, the anomaly reconstruction needs
to be degraded, especially for anomalies which have similar
structures to normal objects.

3) FASHION-MNIST
Fashion-MNIST [69] is a recent proposed dataset designed
for machine learning algorithms. It is composed of 70000
28× 28 grayscale fashion products, associated with 10 kinds
of labels. It has the same structure of training and testing splits
as MNIST. Fashion-MNIST is becoming popular, because
it’s more challenging than traditional MNIST and can better
represent modern CV tasks.

4) COIL-100
The Coil-100 [70] is a dataset containing 7200 128 × 128
color images of 100 real-world objects. Each object is rotated

by a turntable through 360 degrees and the image is taken
at pose intervals of 5 degrees. So, this corresponds to only
72 images per object. The small data size gives great chal-
lenges to the proposed architecture.

B. QUANTITATIVE EVALUATION METHODOLOGY
For anomaly detection problem, methods generate a value
(anomaly score) for each data point, indicating the degree of
its abnormality. If the anomaly score is higher than a given
threshold, it is identified as an abnormal sample. Otherwise,
it is a normal sample. In combination with a threshold value,
the testing samples are divided into four types: true positive
(TP: abnormal samples are correctly detected), false neg-
ative (FN: abnormal samples are considered normal), true
negative (TN: normal samples are correctly detected), and
false positive (FP: normal samples are considered abnormal).
In further, the true positive rate (TPR) and false positive
rate (FPR) are defined as follows:

TPR =
TP

TP+ FN
(16)

FPR =
FP

FP + TN
(17)

Given different threshold values, a receiver operating char-
acteristic (ROC) curve plots all pairs of the true positive rate
and the false positive rate. We utilize the area under the ROC
curve (AUC) as performance measurement. The larger the
values are, the better the model is. The two metrics are all
between 0 and 1 and a perfect model has a value of 1.

F1 =
2× PRECISION × RECALL
PRECISION + RECALL

(18)

With respect to another metric, we adopt the F1-score.
As shown in (18), it is the harmonic mean of precision and
recall. The F1-score is related to the choice of thresholds,
and we use the largest F1-score to evaluate the models.With a
certain threshold, a perfect model provides 1 to both precision
and recall, and thus gives F1-score equal to 1.

All values of the performance metrics take an average
result of 20 trials. In each trial, training samples and testing
samples are re-selected using different random seeds.

C. IMPLEMENTATION DETAILS
The input images are all resized to 32×32. The input images
of other works mentioned in the experiments are all resized to
32× 32 pixels. For anomaly score, the weights of SSIM loss
and L1-norm loss are equal. The patch size K for SSIM is set
as 11. The architecture of our approach is implemented based
on the deep learning framework PyTorch [71]. Our network is
optimized by Adamwith a learning rate of 1×10−3, momen-
tums β1 = 0.50, β2 = 0.999. According to the numbers of
normal samples in different datasets, the batch size is set as 64
forMNIST, CIFAR10, Fashion-MNISTwhile 1 for Coil-100.
The size of latent code is set as 256. The weight values for
SSIM loss and L1-norm loss are 50 and 10 respectively. The
weight of mutual information loss is set as 10. The latent loss
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and categorical loss separately have weight coefficients of 5
and 1 on CIFAR10, Fashion-MNIST and Coil-100 datasets.
But for the simplest MNIST dataset, the weight of latent loss
is 15 so as to increase the difficulty of reconstruction. For the
training ofWGAN-GP, the discriminator updates 5 times, and
then the generator (CVAE) updates once. In each of the first
four steps of the discriminator update, we successively use the
L1-norm loss, SSIM loss, latent loss and mutual information
loss to optimize the weights of CVAE. For a better and
fast convergence of reconstruction, the L1-norm loss and the
SSIM loss are used twice. The negative training process can
be added when the latent loss is smaller than a threshold.
Because when the latent loss is smaller, the latent codes of the
normal samples are clustered well and the potential outliers
can be easily and well generated. The categorical loss is
optional, because the optimization of it means the normal
classes are evenly distributed. The whole training process is
shown in Algorithm 1.

Algorithm 1 Training Process of the Proposed Network
Input: A threshold T for active negative training
1: Initialize the network with random weights. count = 0
2: for each epoch do
3: for each data batch do
4: if count <= 3 then
5: Optimize WGAN-GP discriminator by LD.
6: Optimize CVAE by SSIM and L1-norm loss.
7: Optimize CVAE by latent loss.
8: if latent loss < T then
9: Conduct negative training.

10: Optimize CVAE by mutual information loss.
11: Optimize CVAE by SSIM and L1-norm loss.
12: else if count <= 4 then
13: Optimize WGAN-GP discriminator by LD.
14: else
15: Optimize WGAN-GP generator by LG.
16: if count == 5 then
17: count = 0
18: else
19: count = count+1

D. EXPERIMENTS IN MNIST AND CIFAR10 DATASETS
We compare our proposed CVAE-GAN-based anomaly
detection (CVGAD) approach with the three recent state-of-
the-art models [3], [25], [45] over two reference benchmarks
MNIST [72] and CIFAR10 [68]. We follow the protocol as
described in [25], [45]. Each of the ten categories is treated
as an anomaly, while the rest of the categories are regarded as
normal classes. For each dataset, 80% of normal samples are
randomly sampled to constitute the training set. The testing
set is composed of all abnormal samples and the rest normal
samples.

Fig. 2 and Fig. 3 show the AUC results obtained onMNIST
and CIFAR10 respectively. It can be seen that the proposed

FIGURE 2. Experimental results of AUC performance in MNIST dataset.

FIGURE 3. Experimental results of AUC performance in CIFAR10 dataset.

CVGAD is superior to other approaches and achieves the best
AUC. In Fig. 2, compared with other digits, the digit 1 has a
relatively lower AUC result for the models of [3], [25], [45].
The reason is that 1 has the simplest structure and the deep
convolutional networks have a strong ability to learn extra
information from other digits to reconstruct 1. In our frame-
work, the reparameterization trick of CVAE in the training
process provides variances in the latent space. The variances
give some uncertainty to increase the reconstruction difficulty
and finally make the trained model more robust to noises.
In this way, CVAE prevents the model from easily recon-
structing other objects not in the training set. Fig. 4 shows
the original input and its reconstruction results. The designed
CVAE module makes the abnormal digit 1 distinguishable.
Therefore, our approach achieves better performance when
treating 1 as an anomaly.

A challenge reflected in Fig. 3 is that there are rel-
atively large differences between the AUC results in
CIFAR10 dataset when designating different abnormal
classes. One reason is that we adopt only one set of param-
eters to verify the model generality. The other one is the
similarity between normal and abnormal objects. For exam-
ple, the cat is similar to the dog. To distinguish the anoma-
lies that are similar to normal samples, the architecture
is required to learn more local details and reconstruct the
fine-grained images. In [22], [73], they show that an added
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FIGURE 4. Experimental results in MNIST dataset. (a) Input samples in
testing set. (b) Reconstruction results of (a) when designating digit 1 as
an anomalous class.

adversarial module is capable of improving generative ability
of decoded images. In our framework, theWGAN-GP is used
for the adversarial training. It can further relieve the GAN
problems of training instability and mode collapse. Besides,
it can accelerate the convergence and reduce hyper-parameter
tuning [74]. Traditional image reconstruction task by auto-
encoder tends to use the L2-norm loss. However they bring
blurriness to the decoded images. This may be because the
pixel-wise L2-norm loss is too rigorous. The adopted SSIM
value reflects image similarity frommultiple perspectives and
can measure the similarity degree smoothly and intuitively.
Fig. 5 illustrates the reconstruction results of the proposed
approach in CIFAR10 dataset. Fig. 5 (a) and Fig. 5 (b) show
the normal testing samples and their corresponding decoded
images. The blurriness is successfully reduced andmore local
details of images are recovered. Conversely, compared with
abnormal testing samples in Fig. 5 (c), the reconstructed
images in Fig. 5 (d) cannot accurately recover the texture
details. Therefore, the accuracy improvement of the proposed
detection approach attributes much to the fine-grained recon-
struction.

E. ANALYSES OF LOSS TERMS
The latent loss takes advantage of hidden category informa-
tion to regularize the latent space by multivariate Gaussian
distributions with learnable means. It can generate a much
better data manifold which is smooth, continuous and dis-
entangled [47], [75]. That means the coding space is filled,
exhibits no holes and can also reflect class information. The
learnedmeans enhance the relationship between the input and
the manifold to potentially cluster the same kind of objects.
We use the latent loss to regularize the latent space and use
the SSIM, L1-norm and Wasserstein loss for reconstruction.
Fig. 6 shows the clustering result. The three pictures represent
three different categories clustered in latent space. The digits
in each picture are sampled near the three clustered centers.
It can be seen that the digits align their own correspond-
ing means of different multivariate Gaussian distributions.
In addition, based on the clustered means in Fig. 6, the poten-
tial abnormal samples can be generated reasonably in the

FIGURE 5. Experimental results in CIFAR10 dataset. (a) Input samples of
normal classes in testing set. Deers are designated as anomalous class.
(b) Reconstruction results of (a). (c) Input samples of abnormal class deer
in testing set. (d) Reconstruction results of (c).

FIGURE 6. In the latent space, we randomly select three different
categories. The digits in the three pictures are sampled near the three
clustered centers respectively.

latent space for the negative training process. It provides a
good assistant for the semi-supervised learning task.

In order to distinguish anomalies, the encoded manifold
needs to well represent the characteristics of normal input
data. Maximizing the mutual information can progressively
increase the relationship between the latent codes and the
inputs. We use the mutual information loss to make the man-
ifold informative and use the SSIM, L1-norm and Wasser-
stein loss for reconstruction. Fig. 7 shows some relationship
established by the mutual information loss. Fig. 7 (b) exhibits
images that are close to the images of Fig. 7 (a) in latent space.
The images of Fig. 7 (a) and (b) are similar in colors and
structures. In contrast, the images in Fig. 7 (c) look different
from Fig.7 (a) and they are further apart from each other in
latent space.

In order to show the performance enhancement caused
by each of these multiple loss terms, we reduce one of
the losses and repeat the experiments in CIFAR10 dataset.
We designate the deer as an anomaly and the rest categories
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FIGURE 7. (a) shows a randomly selected testing sample. (b) shows
10 testing samples closest to (a) in latent space. (c) shows 10 testing
samples furthest from (a) in latent space. The Euclidean distance is used
as the distance metric.

TABLE 1. The impact of each loss on performance.

as normal classes. The results are shown in Table 1. The
Wasserstein loss has the greatest impact on performance.
It may attribute to the adversarial training style. Without
the latent loss, the performance is degraded. That may be
because the latent loss can improve the generalization ability
of the model. Besides, the negative training process can’t
work well without the clustering effect of the latent loss.
Compared with the L1-norm loss, the SSIM loss has a greater
impact on performance. It may be because the network can
learn more features of normal images by virtue of the SSIM
loss. In addition, the mutual information loss can improve
the accuracy of anomaly detection and the negative training
process has a minimal effect on performance enhancement.

F. TRAINING CONVERGENCE
Fig. 8 shows the curves of training losses. The SSIM and
L1-norm losses are decreased, making the manifold learn
more reconstruction-based data characteristics. Minimizing
the latent loss reduces the distance between the data represen-
tations and the multivariate Gaussian distributions, forcing
the latent space to be smooth and disentangled. The reparam-
eterization trick in the latent loss, provides noises to increase
the generalization ability of the model. The latent loss and
the reconstruction loss restrict each other. They form a hidden
adversarial training style which is reflected by the curve jitter
in Fig. 8 (a). The hidden adversarial training can endow the
model with better performance. Fig. 8 (a) also illustrates

FIGURE 8. (a) Training losses of CVAE. (b) Training losses of WGAN-GP.
D_w_cost represents the loss cost of discriminator weights. G_w_cost
denotes the loss cost of generator weights. Wasserstein_D is the
Wasserstein distance.

the negative training process which increases the recon-
struction (SSIM and L1-norm) losses for potential out-
liers. In addition, Fig. 8 (b) shows the training curves of
WGAN-GP. The Wasserstein loss gradually decreases to
reduce the distance between the distribution of generated
samples and normal samples. All losses decrease and the
converged model achieves an overall high likelihood.

G. EXPERIMENTS IN FASHION-MNIST DATASET
In this section, we evaluate the proposed architecture in
FASHION-MNIST dataset. Different from the last experi-
ment, the normal inputs in this experiment are images of one
class but not nine classes. A similar setup in [23] is applied.
The anomalies are randomly selected from the other classes.
Besides, the 5-fold cross-validation is adopted with each fold
taking 20% of each class. The partition ratio of the training
set, validation set and testing set is 6:2:2.

Fig. 9 shows the normal and abnormal testing samples
and their corresponding decoded images. In Fig. 9(a) and
Fig. 9(b), the vertical linear structures of normal class trousers
are captured by networks. Therefore, the anomalies circled
in yellow are reconstructed like trousers, leading to a large
reconstruction error. Because the shoes circled in red have
a lateral structure, the network responds very little to them.
In Fig. 9(c) and Fig. 9(d), the normal class sneaker circled
in green is well reconstructed. The sandal circled in red and
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FIGURE 9. Experimental results in Fashion-MNIST dataset. (a) Input
samples of testing set. Trousers are designated as normal class.
(b) Reconstruction results of (a). (c) Input samples of testing set. Sneakers
are designated as normal class. (d) Reconstruction results of (c). In (a),
(b), (c), (d), the green circles denote normal classes while the red and
yellow circles represent anomalous classes.

TABLE 2. Comparison results in fashion-MNIST dataset.

the ankle boot circled in yellow are anomalies which are
similar to the sneaker. However, they are reconstructed like
the sneaker without the particular hollow structure and shoe
heel, thus resulting in a high anomaly score.

We compare our methods with the state-of-the-art
GPND [23]. Table 2 shows the performance indexes of the
GPND and the proposed CVGAD. Very different from the
CVGAD, GPND imposes a standard Normal distribution on
latent space, uses auto-encoder loss, traditional GAN train-
ing and detects anomalies by calculating a data probability
density function. The CVGAD achieves a better result when
the percentage of anomalies is high. It performs better in
abnormal samples. That may be because it takes into account
the negative training and can effectively use SSIM loss to
distinguish abnormal local structural details as illustrated
in Fig. 9 (c) and Fig. 9 (d).

H. EXPERIMENTS IN COIL-100 DATASET
In this experiment, we evaluate the performance of the pro-
posed approach in Coil-100 dataset. The Coil-100 dataset has

FIGURE 10. Experimental results in Coil-100 dataset. (a) and (b) are
testing samples of an experiment which takes randomly 7 categories as
normal classes. (c) and (d) belong to another experiment with the same
setup. (a) and (c) are normal inputs and corresponding decoded images.
(b) and (d) are anomalies and corresponding decoded images. The
rectangles in the same colors denote similar normal and abnormal
samples.

only 72 images per object. We follow the similar protocol
in [14]. One, four and seven categories are randomly cho-
sen as normal objects respectively. Due to the few samples
in each kind of object, validation process is not necessary
and 70 pictures are used for training while 2 for testing.
Besides, a maximum of one sample is selected from each
of the remaining categories as an anomaly. Fig. 10 (a) and
Fig. 10 (c) show the testing samples and their reconstruc-
tions for seven different kinds of normal objects. In contrast,
Fig. 10 (b) and Fig. 10 (d) are for the corresponding abnormal
objects. The pictures boxed up in red and purple show that
the reconstructed abnormal objects are similar to the normal
objects. Moreover, the pictures boxed up in blue and green
show that the abnormal objects, which are very similar to
the normal objects, lose their clear textures and are blurred
in their reconstructions.

Table 3 shows the quantitative results of different meth-
ods in Coil-100 dataset. Most of the numbers are borrowed
from [14]. Compared with the l1-thresholding, although
the AUC of the proposed CVGAD is lower than the
l1-thresholding, the CVGAD has higher F1 scores. In partic-
ular, when the number of categories increases, the F1 score
of the l1-thresholding decreases rapidly while the F1 score
of the CVGAD decreases a little. It may attribute to that the
CVGAD enhances the relationship between the inputs and
the latent codes and considers the number of categories. This
can be observed from Fig. 10 (a) and Fig. 10 (c). Although
there are seven different objects in Fig. 10(a) and Fig. 10(c),
the CVGAD can accurately recover each of them without
being influenced by other objects. In addition, the CVGAD
is only trained from random weights with the limited 70 sam-
ples per class. The small data size can influence our training
results.

We don’t compare the proposed CVGAD with the
R-graph [14]. Because, a VGG [81] network pretrained on
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TABLE 3. Comparison results in coil-100 dataset.

ImageNet [82] is used in the R-graph. Besides, the R-graph
has more complex network structures than the CVGAD.

The results of the CVGAD have similar performance with
the GPND and the l1-thresholding [15]. The three approaches
are all based on the data self-expression. It seems that
the self-expression is more suitable and powerful for the
Coil-100 dataset.

IV. CONCLUSION
In conclusion, we propose a novel CVAE-GAN-BASED
end-to-end framework to solve the semi-supervised anomaly
detection problem. Our deep convolutional networks are only
trained by normal images which are not classified and may
have different categories. Our proposed framework takes
advantage of the adversarial training ideas both in CVAE
and GAN to control the latent encoded manifold and to pro-
vide the high-quality reconstructions. Based on the manifold,
the active negative training can add extra anomaly informa-
tion to the network training. The maximization of mutual
information further improves the learning ability for nor-
mal samples. The SSIM and Wasserstein loss have a strong
ability to ensure the convergence of the CVAE and GAN.
In experiments, the normal samples are designed with large
data size, small data size, several categories and one category
respectively. All the experiments achieve satisfactory results.
Compared with the state-of-the-art works on public dataset,
our approach improves the detection accuracy without very
deep and complex architectures. So, our work shows a great
perspective to learn the intrinsic nature of normal data to
distinguish anomalies.

In the future, the performance can be further improved
by designing more anomaly metrics, such as manifold-based
anomaly scores.
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