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ABSTRACT In this paper, we investigate an imperfect maintenance optimization problem for a multi-
state, Markovian deterioration system with obvious failures under repair restriction based on those non-
periodically collected sensor information. Our aim is to adaptively schedule observations and other
maintenance actions with taking imperfect maintenance effect into consideration. Different from most
existing works, imperfect maintenance here means that repair action can not only restore the system to a less
deteriorated level instead of the good-as-new state but also accelerate the deterioration process so that the
system can be repaired only a limited number of times before it must be replaced with a new one. Assuming
that the system’s deterioration state evolves as a discrete-time Markov chain with a finite state space, and
then choosing the information state together with the number of completed repair times as state variable,
we formulate the problem as a Markov decision process over an infinite time horizon. In order to increase
the computational efficiency, several key structural properties are developed by minimizing the long-run
average cost per unit time. Then, special algorithms are proposed to find the optimal maintenance policies.
Finally, a numerical example is given to illustrate the effectiveness of the proposed algorithms.

INDEX TERMS Condition-based maintenance, deteriorating system, imperfect maintenance, Markov
decision process, repair restriction.

I. INTRODUCTION
Most complex engineering systems are always subject to
deterioration due to their age and everyday operations, and
eventually fail unless some intervention is taken. As a useful
approach, maintenance has been introduced to keep the sys-
tem reliability above a satisfactory level. Maintenance opti-
mization mainly focuses on finding an optimal maintenance
policy to make the balance between the costs and benefits
of performing the maintenance actions on the complex sys-
tem subject to performance degradation. In the past decades,
maintenance policies for repairable systems have been exten-
sively studied, e.g. [1]–[6] and the references therein.

As an efficient maintenance approach, condition-based
maintenance (CBM) utilizes the information gathered
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through condition monitoring to recommend appropriate
maintenance actions, and has captured more and more peo-
ple’s attention. Jardin et al. [3] summarized those work about
CBM appearing before 2006. However, research in this area
still grows rapidly. A large amount of papers associated with
CBM have appeared during the past several years [7]–[10].

In the area of CBM, several important aspects should be
carefully examined.One is the cost associated with collecting
the condition information used for decision making. Most
works on CBM consider that information can be periodically
obtained based on the assumption that the sampling cost can
be neglected, e.g. [7]–[9], [11], [12]. However, in many real
applications, the deterioration state is very expensive or hard
to collect. Hence, it is necessary to determine when to collect
the condition information and how to utilize that information
to make the optimal maintenance policy together. Another
important aspect is whether the obtained information is
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perfect or not. Perfect information can exactly reveal the true
state of the system, while the imperfect information is only
stochastically related to the underlying state. Therefore, it is
very interesting to study the problem of joint optimization
of sampling and maintenance with imperfect information.
As early as in 1968, Eckles [13] studied partially observable
systems with imperfect information under a very general
setting. Other classical works include [14], [15]. However,
few structural properties have been reported in these papers.
Fortunately, Maillart [16], [17] considered maintenance sys-
tems with perfect and imperfect information and developed
structural properties for perfect information which is then
used to motivate heuristic policies for the information case.
Recently, Kim and Makis [18] studied the similar problem
with the main difference in that the system state process was
modelled in continuous time. They proved that the optimal
maintenance policy could be represented as a control chart
with three critical thresholds. In addition, maintenance effect
is also an important aspect which should be carefully con-
sidered in CBM. Maintenance effect has been considered
in many papers, e.g. [19]–[21]. Imperfect maintenance here
means that repair action can only restore the system to a less
deteriorated level instead of the good-as-new state (Imperfect
maintenance 1, IM1), or that the system can be repaired
only a limited number of times before they must be replaced
with a new one due to physical, safety, technological and/or
economical restrictions (Imperfect maintenance 2, IM2). The
former case can be easily understood and has been studied
by many researchers. While the latter case means that a
system subject to IM2 becomesmore prone to deterioration as
the number of performed repair actions increases [22]–[25].
And such case can also be found in many engineering and
service applications [11]. For example, aircraft engine turbine
blades always suffer from degradation of fatigue strength
for the reason that they operate at high temperatures and
experience centrifugal stresses. They can be reworked only
a limited number of times followed by a replacement action
to ensure flight safety. As such, Kurt et al. [11] studied the
maintenance problem for a Markovian deteriorating system
based on IM2. They formulated the problem as an infinite-
horizon Markov decision process, and derived key structural
properties of the optimal cost function to develop a more
efficient computational algorithm. But the system considered
in [11] is periodically inspected and completely observable.

Therefore, in this paper we try to combine the first and
last aspects together into one maintenance model. Specially,
we study the imperfect maintenance decision problem for a
multi-state system with non-periodical perfect observations
under the constraint that only a limited number of imper-
fect preventive repair actions can be performed between two
successive preventive replacements. That is, both IM1 and
IM2 are considered in this paper. As far as we know,
there exist few works on the above-mentioned problem.
Fan et al. [25] considered the similar problem of optimally
maintaining a multi-state system only based on IM2, and
no observation was used to make the maintenance decision.

Chen et al. [28] improved the work in [25] through taking
IM1 into consideration. However, IM1 was only considered
in maintenance modelling. The structural properties were
obtained still based on perfect maintenance. Hence, our work
can be viewed as an extension of the works of [25], [28].

The remainder is organized as follows. The next section
formulates the problem and constructs the optimality equa-
tions. In Section 3 we analyze the structural properties of
the optimal value function based on which an algorithm to
determine the optimal maintenance policies is developed in
Section 4. A numerical example is then given to show the
effectiveness of the proposed algorithm. The last section
draws up our conclusions and shows the future work.

II. MODEL DESCRIPTION AND FORMULATION
In this paper, a repairable system subject to continuous dete-
rioration in time is considered. In order to keep the system
health, maintenance decisions are made at discrete equidis-
tant times tn = n1, where n ∈ N0 = N ∪ {0} and 1 is the
decision interval. The system deterioration at tn is character-
ized by a random variable Xn = X (tn) whose value should
be chosen from the set S = {1, . . . ,m+ 1} with a natural
order on its elements. That is, the numbers are arranged in
order of increasing deterioration level. Level 1 denotes the
best health condition meaning that the system is as good as
new, m denotes the most deteriorated condition, and m + 1
shows that the system has failed. Furthermore, {Xn, n ∈ N0}

is assumed to be a discrete time Markov chain (DTMC)
on the state space S. Although Xn can describe the system
deterioration condition, its realization, i.e. the system true
deterioration state, can’t always be obtained at tn except when
the observation action is performed on the system. Therefore,
information state π = [π1, π2, · · · , πm+1] ∈ � is adopted
to describe the belief over the actual deteriorated condition,
where � = {π :

∑m+1
i=1 πi = 1} and πi represents the

probability that the system is now in the deterioration level i,
i = 1, . . . ,m + 1. Since the system failure is obvious,
there exist πm+1 = 0 if the system is still working, oth-
erwise, πm+1 = 1. As mentioned in the previous section,
the system in this paper is subject to IM2, that is, it can
only be repaired for a limited number of times, which means
that each repair action will affect the deterioration process,
thus it is reasonable to assume that the transition probability
matrix is influnced by completed repair times. Furthermore,
let Pk = [pkij](m+1)×(m+1) denote transition probability matrix
when the system has been repaired k times, where pkij is one-
step transition probability from deterioration state i to j, pkij =
P{Xn+1 = j|Xn = i,N (tn) = k}. Here, N (t) is the number of
performed repairs up to time t and satisfies 0 ≤ N (t) ≤ K ,
where K is the maximal number of available repairs. For
simplification, let K = {0, 1, . . . ,K } and K′ = K\{K }.

At the beginning of each decision epoch, if N (t) ∈ K′,
there are three available maintenance actions: no action (NA),
taking an observation (OB), and preventive mainte-
nance (PM). However, the system cannot be repaired any
more after the K th performed repair action, the available
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maintenance actions for N (t) = K become NA, OB, and
preventive replacement (PR). It should be noted that the
OB action sometimes is so complicated that it cannot reveal
the true state immediately. Hence, in this paper we make
an assumption that only one action can be chosen at the
beginning of each decision epoch. In summary, given that
the current system information state is π and the system has
been repaired k times, the action space A(π , k) is

A(π , k) =

{
{NA,OB,PM} , for k ∈ K′;
{NA,OB,PR} , for k = K .

The four actions are explained in detail as follows.
• NA: let the system continue to operate without any
intervention. If this action is adopted, the system will
still be operable after the next transition with probability
Rk (π ) = 1−

∑m
i=1 πip

k
i,m+1, and the current information

state π will transit to state π ′(π , k) at the begining of the
next decision period. Particularly, the new information
state π ′(π , k) can be obtained through

π ′j (π , k) =


∑m

i=1 πip
k
ij

Rk (π )
, j = 1, 2, . . . ,m;

0, j = m+ 1.
(1)

But, if the system fails with probability 1−Rk (π ), it will
be replaced with a new one at cost cfr , and then the new
information state is em+1, where ei = [0, . . . , 1, . . . , 0]
is an (m+ 1)× 1 dimensional row vector with a 1 in the
i-th position, and 0 elsewhere.

• PM: preventively maintain the system at cost cpm.
PM action is imperfect in the sense that it can only
restore the system to a less deteriorated level j, j ≤ i
with probability qij if the current deterioration level is i,
where

∑i
j=1 qij = 1, 0 ≤ qij ≤ 1, qil = 0, i <

l ≤ m + 1, i ∈ S ′ = S\ {m+ 1}. Since the failure
is obvious and each failure replacement will restore
the system to the level 1, we define q(m+1)1 = 1 and
q(m+1)j = 0, j ∈ S ′. The matrix Q = [qij](m+1)×(m+1)
is called maintenance effect matrix in this paper. Thus,
after PM, the current system deterioration state becomes
j(j = 1, . . . ,m) with probability

∑m
i=j πiqij based on

the assumption that the PM action is performed instan-
taneously, and then the information state at the cur-
rent time becomes

[
π ′1(π , k), . . . , π

′
m(π , k), 0

]
, where

π ′j (π , k) =
∑m

i=j πiqij, j = 1, 2, . . . ,m. As mentioned
previously, the PM action can be considered only when
k ∈ K′.

• PR: restore the system deterioration condition to the best
level 1 with negligible time at cost cpr (cpm < cpr <
cfr <∞). After PR, the information state at the current
time becomes e1. This action can be available only when
k = K .

• OB: evaluate the exact deterioration level at cost co(co+
cpr < cfr ). After OB, the true deterioration state can be
obtained, and the information state becomes ei.

Considering that OB actions are performed non-
periodically, we can formulate the maintenance problem
as a partially observed Markov decision process (POMDP)
model. However, through introducing an ordered pair
(π , k) ∈ � × K as the state of the decision process,
the problem can then be reformulated as a Markov decision
process (MDP) model. At first, we consider the maintenance
problem over a finite time horizon. Let Vn(π , k) denote the
expected total cost over the remaining n decision periods
when the system has been repaired k times and the current
information state is π ∈ �. In this paper, we consider main-
tenance decisions are made frequently, hence the discount
rate is approximately equal to 1. Therefore, the optimality
equation can be written as

Vn(π , k) = min{NAn(π , k),PXn(π , k),OBn(π , k)} (2)

where

NAn(π , k) = (cfr + Vn−1(e1, 0))(1− Rk (π ))

+Vn−1(π ′(π , k), k)Rk (π ), k ∈ K, (3)

OBn(π , k) = co +
m∑
i=1

πiVn(ei, k), k ∈ K, (4)

PXn(π , k) =

{
PMn(π , k), k ∈ K′,
PRn(π , k), k = K ,

(5)

PMn(π , k) = cpm +
m∑
i=1

πi

i∑
j=1

qijVn(ej, k + 1), (6)

PRn(π ,K ) = cpr + Vn(e1, 0). (7)

Eq. (3) represents the expected cost incurred by NA. The
first term in right hand side (r.h.s.) of Eq. (3) is the cost
incurred when a failure happens with probability 1− Rk (π ).
Since the failure replacement action makes the state of MDP
revert to (e1, 0), the failure associated cost is calculated
through adding failure replacement cost cfr to the cost-to-go
during the remaining n−1 periodsVn−1(e1, 0).While the sec-
ond term in r.h.s. of Eq. (3) is the cost incurred when the
system is still operable with probability Rk (π ) at the begining
of the next decision period. In this case, the information state
is updated to π ′(π , k), and the number of completed repairs is
still equal to k . Therefore, the new state of the MDP becomes
(π ′(π , k), k), and the cost-to-go during the remaining n − 1
periods isVn−1(π ′(π , k), k). Eq. (4) shows that OBwill cause
observation cost co as well as the cost-to-go associated with
starting in the state revealed through perfect observation.
Eq. (6) calculates the expected cost incurred by PM. The
first term in r.h.s. of Eq. (6) is the instantaneous cost cpm,
while the second term is the cost-to-go during the remaining n
periods. As previously mentioned, the information state after
PM becomes ej with probability πiqij, i = 1, . . . ,m, j =
1, . . . , i, and the number of performed PM action increases
by 1, thus the updated state of the MDP becomes (ej, k + 1)
with probability πiqij, based on which the second term in
r.h.s. of Eq. (6) can be obtained. Finally, Eq. (7) reflects the
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fact that PR incurs cost cpr plus the cost-to-go associated with
starting in the state (e1, 0).
Because both failure replacement and preventive replace-

ment can renew the system, it is possible that the model is
unichain [17]. Hence, for each (π , k) ∈ �×K, according to
the theory of MDP [29], there exists the following equation

lim
n→∞

Vn(π , k) = ng+ b(π , k) (8)

where g is the minimum expected cost per unit time, and
b(π , k) is the relative cost of starting in state (π , k) under the
optimal policy. Thus, making n in Eq. (2) tend to infinity, and
then using Eq. (8), we can have

b(π , k) = min{bNA(π , k), bPX (π , k), bOB(π , k)} (9)

where

bNA(π , k)=(cfr + b(e1, 0))(1− Rk (π ))

+b(π ′(π , k), k)Rk (π )− g, k ∈ K, (10)

bOB(π , k)=co +
m∑
i=1

πib(ei, k), k ∈ K, (11)

bPX (π , k)=

{
bPM (π , k), k ∈ K′,
bPR(π , k), k = K .

(12)

bPM (π , k)=cpm +
m∑
i=1

πi

i∑
j=1

qijb(ej, k + 1), (13)

bPR(π ,K )=cpr + b(e1, 0). (14)

After constructing the above optimality equation, the
remaining work is to solve it. If the state space is finite,
traditional policy or value iteration algorithm can be adopted
to obtain the optimal maintenance policy [29]. However,
in this paper, belief state space � is continuous and infinite.
In order to overcome the difficulty, the concept of sample
path is introduced at first. Suppose that the system initial
belief state is π and then goes without any intervention, all
the information states it would occupy will form a sequence
of information states over time which is called a sample path
emating from π . Assuming that the system has been repaired
k times, let �k

π =
{
π ,π2

k , . . . ,π
l
k , . . . ,

}
denote the sample

path emanating from π where π lk = π ′(π l−1k , k), l ≥ 2,
and π1

k = π . In addition, if the Markov chain is acyclic,
the sample path converges to the absorbing state which is
defined as πLkk , where Lk = min

{
l; ‖π l+1k − π lk‖ ≤ ε

}
with

any ε > 0 [17]. In this paper, both perfect OB and imperfect
PM only can make the process restarting from state ei, i =
1, . . . ,m. Furthermore, we assume the deterioration state at
time 0 is known. That is, initial information state is one of
the states e1, . . . , em. Hence, we can confine the belief state
space to�′(9) =

⋃
π∈9,k∈K�

k
π which is finite, where 9 =

{e1, . . . , em}. After approximating � as �′(9), traditional
policy or value iteration algorithm can be directly applied for
solving the optimality equation. However, in order to develop
a more efficient and effective algorithm, it is still meaningful
to derive some key structural properties which is discussed in
the next section.

III. STRUCTURAL RESULTS
In this section, we establish several structural properties of
the optimal value function to reduce the computation time
cost in solving Eq. (9). At first, some useful definitions are
introduced. After that, several preliminary results are given
to provide the basis for deriving useful structural properties
of the optimal value function.

A. PRELIMINARY RESULTS AND MAIN ASSUMPTIONS
Although the following definitions are widely used in
POMDP related literature, e.g. [17], [26]–[28], [30], we still
introduce them here to keep the integrity of the paper.
At first, we give two definitions about how to compare two
information states.
Definition 1: The information state π is stochastically less

than the information state π̂ , denoted as π ≺st π̂ , if and only
if
∑

i≥l πi ≤
∑

i≥l π̂i for all l.
Definition 2: The information state π is less in likelihood

than the information state π̂ , denoted as π ≺lr π̂ , if πiπ̂j ≥
πjπ̂i for all j ≥ i.
Both of the above two definitions mean that if one infor-

mation state is stochastically less than another one, then the
system in the smaller information state is less deteriorated.
But, the condition of Definition 2 is more stringent than
that of Definition 1. Next, two definitions on the probability
transition matrix P are also provided.
Definition 3: A probability transition matrix P has an

Increasing Failure Rate (IFR) if
∑

j≥l pi,j ≤
∑

j≥l pi′,j for
i ≤ i′ and ∀l.
Definition 4: A probability transition matrix P is Totally

Positive of order 2 (TP2) if pijpi′j′ ≥ pi′jpij′ , ∀i′ ≥ i, j′ ≥ j.
The condition of definition 3 implies that the system is

more prone to deteriorate further and fail when the system
is now in the stochastically larger information state. Defi-
nition 4 implies the same meaning, but in a stronger sense,
which is illustrated in the following proposition.
Proposition 1 [30]: (a) If π ≺lr π̂ , then π ≺st π̂ . (b) If P

is TP2, P is IFR.
To proceed the discussion, we make the following three

assumptions about the probability transition matrix Pk based
on the above definitions.
Assumption 1: Pk is TP2. That is, pki,: ≺lr pkj,: for i ≤ j,

where pki,: denotes the ith row vector of Pk with k ∈ K.
Assumption 2: If k1 ≤ k2, then p

k1
ij ≥ pk2ij for j ≤ i, while

for j > i, pk1ij ≤ p
k2
ij , and furthermore pk1i,: ≺lr p

k2
i,:, where i ∈ S

and k1, k2 ∈ K.
Assumption 3: qi1,: ≺st qi2,: holds for i1 ≤ i2, where qi1,:

and qi2,: denote the i1th row vector and the i2th row vector of
Q respectively, i1, i2 ∈ S ′.

Assumption 1 shows that the system in larger deterioration
level j is more prone to deteriorate further than the one in
smaller deterioration level i (i ≤ j) when the they have
the same cumulative completed repairs. Like Assumption 1,
Assumption 2 implies that, given two systems in the same
deterioration level, the system with more completed repair
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times is more likely to get worse than the other one with
less completed repair times. Assumption 3 relates the mainte-
nance effect with the system’s deterioration level. After main-
tenance action, the system at smaller deterioration level i1 is
more likely to become less deteriorated than the other. That is,
the larger the system deterioration level is, the harder people
can repair it.

Before providing our results, we introduce another
well-known result in the following proposition.
Proposition 2 [31]: For any column vector v such that

vi ≤ vi+1, ∀i, if π ≺st π̂ , then πv ≤ π̂v.
According to the above Proposition 2, we can obtain the

results about the reliability of the system.
Proposition 3: (a) Suppose Assumption 1 is satisfied.

If π ≺st π̂ , then Rk (π ) ≥ Rk (π̂ ) for all k ∈ K. (b) If Assump-
tion 2 is satisfied, then Rk (π ) is non-increasing in k ∈ K for
∀π ∈ �.

Proof: The proof of part (a) is similar to that in [17].
We focus on the proof of part (b). According to Assumption 2,
we have pk1i,m+1 ≤ p

k2
i,m+1 for k1 < k2 and i = 1, 2, . . . ,m+1.

Then,

Rk1 (π ) = 1−
m∑
i=1

πip
k1
i,m+1 ≥ 1−

m∑
i=1

πip
k2
i,m+1 = Rk2 (π ),

which implies that Rk (π ) is non-increasing in k ∈ K.
Proposition 3 is consistent with our intuition in that a less

deteriorated system has a higher reliability and the system
repaired more times has the lower ability to perform the
required functions.
Proposition 4: (a) If Assumption 1 is satisfied, then for

π ≺lr π̂ , π ′(π , k) ≺lr π ′(π̂ , k) for all k ∈ K. (b) If Assump-
tions 1 and 2 are both satisfied, then π ′(π , k1) ≺lr π ′(π , k2)
for k1 ≤ k2 and π ∈ �.

Proof: The proof of the case when k is fixed is the same
as that of Proposition 4 in [17] and omitted here. More atten-
tion is paid on proving part (b). For k1 ≤ k2 and l ≥ i, accord-
ing to Assumptions 1 and 2, we have pk1i,: ≺lr pk2i,: ≺lr pk2l,:,
which implies that pk1ij p

k2
lj′ ≥ p

k1
ij′ p

k2
lj for j′ ≥ j.

Hence,

0 ≤
m∑
i=1

m∑
l=1

πiπl(p
k1
ij p

k2
lj′ − p

k1
ij′ p

k2
lj )

=

m∑
i=1

m∑
l=1

πiπlp
k1
ij p

k2
lj′ −

m∑
i=1

m∑
l=1

πiπlp
k1
ij′ p

k2
lj

=

m∑
i=1

πip
k1
ij

m∑
l=1

πlp
k2
lj′ −

m∑
i=1

πip
k1
ij′

m∑
l=1

πlp
k2
lj .

Since the failure is obvious, the reliability of the system in
service is not equal to 0, i.e. Rk1 (π ) 6= 0 and Rk2 (π ) 6= 0.
Then we have

0 ≤

∑m
i=1 πip

k1
ij
∑m

l=1 πlp
k2
lj′

Rk1 (π )Rk2 (π )
−

∑m
i=1 πip

k1
ij′
∑m

l=1 πlp
k2
lj

Rk1 (π )Rk2 (π )
= π ′j (π , k1)π

′

j′ (π , k2)− π
′

j′ (π , k1)π
′
j (π , k2),

which means that π ′(π , k1) ≺lr π ′(π , k2) for k1 ≤ k2 and
π ∈ �.

This proposition shows that the ≺lr -ordered information
states retain their order after the state transition.

According to Proposition 4, a sample path emanating from
any state has the following property for π ≺lr π ′(π , k).
Proposition 5: Suppose Assumptions 1 and 2 are both sat-

isfied. If π ≺lr π ′(π , k) for ∀π ∈ �, then π = π1
k ≺lr

· · · ≺lr π
Lk
k holds for the sample path starting from the

information state π ∈ �.
The proof of this proposition can be easily obtained accord-

ing to part (a) of Proposition 4 and is omitted here.
Lemma 1: Suppose Assumptions 1 and 3 are satisfied. (a)

b(π ,K ) is nondecreasing in ≺lr . (b) If b(em, k) ≤ cfr +
b(e1, 0), then b(π , k) is nondecreasing in ≺lr for any fixed
k ∈ K′.

Proof: In the following, the proofs of part (a) and part (b)
are provided together. From Eq. (8), we know that b(π , k)
can be obtained by taking the limits of Vn(π , k). Hence,
it is sufficient to show that Vn(π , k) is nondecreasing in ≺lr
for all n = 1, 2, . . . and k ∈ K. Furthermore, since the
minimum of nondecreasing functions is still nodecreasing,
it suffices to show that NAn(π , k), PXn(π , k) and OBn(π , k)
are nondecreasing in ≺lr for all n = 1, 2, . . . and k ∈ K,
which is achieved through the inductionmethod.Without loss
of generality, we firstly suppose that V0(π , k) = 0 for all
π ∈ �, k ∈ K. Next, as the induction hypothesis, assume that
Vn−1(π , k) is nondecreasing in ≺lr for all fixed k ∈ K. Our
aim is to show Vn(π , k) is also nondecreasing in ≺lr . Firstly,
the monotonicity of NAn(π , k) in π is discussed. Suppose
π1 ≺lr π2. If k = K , then according to Proposition 3 and
Proposition 4, there exists

NAn(π1, k) = (cfr + Vn−1(e1, 0))(1− Rk (π1))

+ Vn−1(π ′(π1, k), k)Rk (π1)

≤ (cfr + Vn−1(e1, 0))(1− Rk (π1))

+ Vn−1(π ′(π2, k), k)Rk (π1) (15)

= (cfr + Vn−1(e1, 0))+ (Vn−1(π ′(π2, k), k)

− cfr − Vn−1(e1, 0))Rk (π1)

≤ (cfr + Vn−1(e1, 0))+ (Vn−1(π ′(π2, k), k)

− cfr − Vn−1(e1, 0))Rk (π2)

= (cfr + Vn−1(e1, 0))(1− Rk (π2))

+ Vn−1(π ′(π2, k), k)Rk (π2)

= NAn(π2, k), (16)

which implies thatNAn(π ,K ) is nondecreasing in π . Inequal-
ity (15) follows from the induction hypothesis and Propo-
sition 4, and holds for all k ∈ K. Inequality (16) follows
from Proposition 3 and the fact that Vn−1(π ′(π2,K ),K ) ≤
cpr + Vn−1(e1, 0) < cfr + Vn−1(e1, 0). However, for k ∈ K′,
according to the induction hypothesis, Vn−1(π ′(π2, k), k) ≤
Vn−1(em, k). Hence, if Vn−1(em, k) ≤ cfr + Vn−1(e1, 0),
then we have Vn−1(π ′(π2, k), k) ≤ cfr + Vn−1(e1, 0)
which makes inequality (16) holds. Thus, NAn(π , k) is
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nondecreasing in π for any fixed k ∈ K′ if Vn−1(em, k) ≤
cfr + Vn−1(e1, 0). Secondly, we examine the monotonic-
ity of PXn(π , k). Obviously, PRn(π ,K ) is constant and
nondecreasing in π . Hence, we only needs to study the
monotonicity of PMn(π , k), k ∈ K′. To begin with, we study
the monotonicity of Vn(ei,K ) in i. According to Eq. (4),
OBn(ei, k) = co + Vn(ei, k) > Vn(ei, k) which implies
that Vn(ei, k) = min{NAn(ei, k),PXn(ei, k)}. Since we have
already established that NAn(π ,K ) is nondecreasing in π
and PRn(π ,K ) is constant, it is clear that Vn(ei,K ) is non-
decreasing in i. Then, according to the Proposition 2 and
Assumption 3, we can conclude that

∑m
j=1 qi1jVn(ej,K ) ≤∑m

j=1 qi2jVn(ej,K ) holds for i1 ≤ i2, which further implies
that PMn(π1,K − 1) ≤ PMn(π2,K − 1) for π1 ≺lr π2.
Thus, the value function Vn(ei,K − 1) is nondecreasing in
i if Vn−1(em,K − 1) ≤ cfr + Vn−1(e1, 0). Analogically,
we can successively obtain that PMn(π , k) and Vn(ei, k), k =
K − 2, . . . , 1 are all nondecreasing in ≺lr if Vn−1(em, k) ≤
cfr + Vn−1(e1, 0). From the above analysis, it can be con-
cluded that PRn(π ,K ) is nondecreasing in π and PMn(π , k)
is nondecreasing in π if Vn−1(em, k) ≤ cfr + Vn−1(e1, 0) for
any fixed k ∈ K′. Furthermore, once given that Vn(ei, k)
is nondecreasing in i, then according to Proposition 2,
there exists OBn(π1, k) = co +

∑m
i=1 π1,iVn(ei, k) ≤

co +
∑m

i=1 π2,iVn(ei, k) = OBn(π2, k) which shows that
OBn(π , k) is nondecreasing in ≺lr . As a result, Vn(π ,K ) is
nondecreasing in ≺lr for all n by induction, and the claim (a)
holds, while for k ∈ K′, if Vn−1(em, k) ≤ cfr + Vn−1(e1, 0)
holds for all n, Vn(π ,K ) is nondecreasing in ≺lr for all n by
induction, which implies claim (b) holds.

Lemma 1 shows that the optimal expected total cost does
not decrease when the system with the same repair times gets
more deteriorated.

B. ACTION BOUNDARY EXPRESSIONS
Based on the above conclusions, we further study the closed
expressions for the optimal preventive repair region and other
structural properties. Let a∗(π , k) denote the optimal mainte-
nance action at the state (π , k).
Lemma 2: Define the bias value vector bk = [b(e1, k), . . . ,

b(em+1, k)]′ for k ∈ K, �k
NA≤PM = {π; (π

′Qbk+1 − cfr +
cpm − b(e1, 0))Rk (π ) ≤ πQbk+1 − cfr + cpm − b(e1, 0)+ g}
for k ∈ K′. (a) If π ∈ �k

NA≤PM , then a
∗(π , k) 6= PM.

(b) Suppose Assumptions 1 and 3 are satisfied. If RK (π ) ≥
1−g/(cfr−cpr ), a∗(π ,K ) 6= PR; otherwise, a∗(π ,K ) 6= NA
for π ≺lr π ′(π , k).

Proof: Firstly, we compare bNA(π , k) to bPX (π , k) as
follows. If k ∈ K′, there exists
bNA(π , k)− bPM (π , k)

=(cfr + b(e1, 0))(1− Rk (π ))+ b(π ′(π , k), k)Rk (π )

− g− cpm −
m∑
i=1

πi

i∑
j=1

qijb(ej, k + 1)

=
(
cfr + b(e1, 0)− cpm − πQbk+1

)
(1− Rk (π ))

− g+ (b(π ′(π , k), k)− cpm − πQbk+1)Rk (π )

=
(
cfr − cpm + b(e1, 0)− πQbk+1

)
(1− Rk (π ))

− g+ (b(π ′(π , k), k)− cpm − π ′Qbk+1)Rk (π )

+ (π ′Qbk+1 − πQbk+1)Rk (π )

=
(
cfr − cpm + b(e1, 0)

)
(1− Rk (π ))

− πQbk+1 (1− Rk (π ))− g

+ (b(π ′(π , k), k)− cpm − π ′Qbk+1)Rk (π )

+ (π ′Qbk+1 − πQbk+1)Rk (π )

=
(
cfr − cpm + b(e1, 0)

)
(1− Rk (π ))− πQbk+1

+ π ′Qbk+1Rk (π )− g

+(b(π ′(π , k), k)− cpm − π ′Qbk+1)Rk (π )

=
(
cfr − cpm + b(e1, 0)− πQbk+1

)
− g

+ Rk (π )
(
π ′Qbk+1 − cfr + cpm − b(e1, 0)

)
+ (b(π ′(π , k), k)− cpm − π ′Qbk+1)Rk (π )

From Eq. (9), we conclude that b(π ′(π , k), k) ≤ cpm +
π ′Qbk+1. Thus, bNA(π , k) ≤ bPM (π , k) if (cfr − cpm +
b(e1, 0) − πQbk+1) − g + Rk (π )(π ′Qbk+1 − cfr + cpm −
b(e1, 0)) ≤ 0, i.e. doing nothing is preferred to preventive
maintenance action.
For the special case that k = K , there exists

bNA(π ,K )− bPR(π ,K )

=(cfr + b(e1, 0))(1− RK (π ))

+ b(π ′(π ,K ),K )RK (π )− g− cpr − b(e1, 0)

=
(
cfr − cpr

)
(1− RK (π ))− g+ (b(π ′(π ,K ),K )

− cpr − b(e1, 0))RK (π )

Clearly, b(π ′(π ,K ),K ) < cpr+b(e1, 0). So if (cfr−cpr )(1−
RK (π ))− g ≤ 0, or equivalently, RK (π ) ≥ 1− g/(cfr − cpr ),
then bNA(π ,K ) < bPR(π ,K ). For the situation that RK (π ) <
1− g/(cfr − cpr ), suppose a∗(π ,K ) = NA, then we have

b(π ′(π ,K ),K )− b(π ,K )

=b(π ′(π ,K ),K )− (cfr + b(e1, 0))(1− RK (π ))

− b(π ′(π ,K ),K )RK (π )+ g

=(b(π ′(π ,K ),K )− cpr − b(e1, 0))(1− RK (π ))

− (cfr − cpr )(1− RK (π ))+ g

<0

which contradicts the fact that b(π ′(π ,K ),K ) ≥ b(π ,K ) for
π ≺lr π

′(π ,K ). Therefore, the optimal action cannot be NA
when RK (π ) ≥ 1− g/(cfr − cpr ) and π ≺lr π ′(π ,K ).
Corollary 1: Suppose Assumptions 1 and 3 are satisfied,

and cpm + b(em, k) ≤ cfr + b(e1, 0) for any fixed k ∈ K′.
If Rk (π ) ≥ (cfr + b(e1, 0) − cpm − πQbk+1 − g)/(cfr +
b(e1, 0)− cpm − π ′Qbk+1) then a∗(π , k) 6= PM; otherwise,
if Rk (π ) ≤ 1 − g/(cfr + b(e1, 0) − cpm − π ′Qbk+1), then
a∗(π , k) 6= NA for π ≺lr π ′(π , k).

Proof: Based on the assumption of this corollary,
we have b(em, k) < cpm + b(em, k) ≤ cfr + b(e1, 0), then
according to Lemma 1, there exists cpm + π ′Qbk+1 ≤ cpm +
emQbk+1 = cpm +

∑m
j=1 qmjb(ej, k + 1) ≤ cpm + b(em, k +

1) ≤ cfr+b(e1, 0). Therefore, the former part of this corollary
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can be obtained directly according to Lemma 2, while for the
case that Rk (π ) ≤ 1 − g/(cfr + b(e1, 0) − cpm − π ′Qbk+1),
suppose a∗(π , k) = NA, then we have

b(π ′(π , k), k)− b(π , k)

=b(π ′(π , k), k)− (cfr + b(e1, 0))(1− Rk (π ))

− b(π ′(π , k), k)Rk (π )+ g

=(b(π ′(π , k), k)− cpm − π ′Qbk+1)(1− Rk (π ))

− (cfr + b(e1, 0)− cpm − π ′Qbk+1)(1− Rk (π ))+ g

<0

which contradicts the fact that b(π ′(π , k), k) ≥ b(π , k) for
π ≺lr π

′(π , k). Therefore, the optimal action cannot be NA
when Rk (π ) ≤ 1− g/(cfr + b(e1, 0)− cpm − π ′Qbk+1).
Lemma 3: (a) Let �k

OB≤PM = {π;π (bk − Qbk+1) ≤
cpm − co}, k ∈ K′. If π ∈ �k

OB≤PM , then a ∗ (π , k) 6= PM;
otherwise, a∗ (π , k) 6= OB. (b) If πbK < cpr + b(e1, 0)− co,
then a ∗ (π ,K ) 6= PR; otherwise, a ∗ (π ,K ) 6= OB.

Proof: We first compae bOB(π , k) with bPX (π , k) for
each k ∈ K′ when the state is (π , k).

bOB(π , k)− bPM (π , k)=co +
m∑
i=1

πib(ei, k)− cpm

−

m∑
i=1

πi

i∑
j=1

qijb(ej, k + 1)

=co − cpm + πbk − πQbk+1
=co − cpm + π (bk −Qbk+1)

Hence, if π (bk − Qbk+1) ≤ cpm − co, then bOB(π , k) ≤
bPM (π , k), otherwise bOB(π , k) > bPM (π , k).
Then, compare bOB(π ,K ) with bPR(π ,K ) for the state

(π ,K ). Clearly, bOB(π ,K ) − bPR(π ,K ) = co +∑m
i=1 πib(ei,K )−cpr−b(e1, 0) = πbK +co−cpr−b(e1, 0).

Thus, ifπbK < cpr+b(e1, 0)−co, then OB is preferred to PR,
otherwise, PR is preferred to OB.

According to Lemmas 2 and 3, the following corollary can
be obtained to specify the sufficient conditions for NA and
OB to be optimal respectively.
Corollary 2: Suppose Assumptions 1 and 3 are satisfied.

(a) If π ∈ (�k
NA≤PM ∩ �̄

k
OB≤PM ), k ∈ K′, or if RK (π ) ≥

1 − g/(cfr − cpr ) and πbK ≥ cpr + b(e1, 0) − co are both
satisfied, then a∗(π , k) = NA. (b) If RK (π ) < 1−g/(cfr−cpr )
and πbK < cpr+b(e1, 0)−co, a∗(π ,K ) = OB for π ≺lr π ′.

Furthermore, for the case cpm + b(em, k) ≤ cfr + b(e1, 0)
for any fixed k ∈ K′, the following corollary is provided
to specify the sufficient condition for PM to be optimal
according to Corollary 1 and Lemma 3.
Corollary 3: Suppose Assumptions 1 and 3 are satisfied,

and cpm+b(em, k) ≤ cfr+b(e1, 0) for any fixed k ∈ K′. Ifπ ∈
�̄k
OB≤PM and Rk (π ) ≤ 1−g/(cfr+b(e1, 0)−cpm−π ′Qbk+1),

then a∗(π , k) = PM for π ≺lr π ′(π , k).
Particularly, for the special case k = K , we can get several

beautiful structural properties. According to Lemmas 2 and 3,
we can conclude that if RK (π ) < 1 − g/(cfr − cpr ), and
πbK ≥ cpr + b(e1, 0) − co for π ≺lr π ′(π ,K ), the optimal

policy is PR. Furthermore, from the facts that bOB(π ,K ) is
nondecreasing in ≺lr ordering, and bPR(π ,K ) is constant,
the control limit for PR can be derived in closed form. The
following Theorem 1 summarizes the sufficient and neces-
sary condition of the existence of the control limit for PR.
Theorem 1: Suppose Assumptions 1 and 3 are satisfied.

(a) For π ≺lr π ′(π ,K ), the region where the optimal policy
is PR is defined by �K

PR = {π;RK (π ) < 1 − g/(cfr −
cpr ),πbK ≥ cpr + b(e1, 0) − co}, whereas PR cannot be
optimal for 6∈ �K

PR. (b) Furthermore, if a
∗(π ,K ) = PR,

a∗(π̂ ,K ) = PR for π ≺lr π̂ .
The Theorem 1 points out that there exists a control limit

for PR when k = K due to bPR(π ,K ) is constant. However,
for the case k ∈ K′, the similar structural properties cannot be
obtained for the reason that bPM (π , k) varies along with π .

Finally, let us compare bNA(π , k) with bOB(π , k) to obtain
the sufficient condisions under which NA is preferred to OB.
Lemma 4: Let �k

NA≤OB = {π : (co + π ′bk − cfr −
b(e1, 0))Rk (π ) ≤ g + co + πbk − cfr − b(e1, 0)} for any
fixed k ∈ K′. (a) If π ∈ �k

NA≤OB, then a
∗(π , k) 6= OB for

k ∈ K′. (b) If RK (π ) ≥ (cfr +b(e1, 0)−co−πbK −g)/(cfr +
b(e1, 0)− co − π ′bK ), then a∗(π ,K ) 6= OB.

Proof:

bNA(π , k)− bOB(π , k)
=(cfr + b(e1, 0))(1− Rk (π ))+ b(π ′(π , k), k)Rk (π )
− g− co − πbk
=(cfr + b(e1, 0)− co − πbk )(1− Rk (π ))− g
+ (b(π ′(π , k), k)− co − πbk )Rk (π )
=(cfr + b(e1, 0)− co − πbk )(1− Rk (π ))− g
+ (b(π ′(π , k), k)− co − π ′bk + π ′bk − πbk )Rk (π )
=(cfr + b(e1, 0)− co − πbk )(1− Rk (π ))− g
+ (b(π ′(π , k), k)− co − π ′bk )Rk (π )
+ (π ′bk − πbk )Rk (π )

Since b(π ′(π , k), k) < co + π ′bk , if (cfr + b(e1, 0) − co −
πbk )(1−Rk (π ))−g+(π ′bk−πbk )Rk (π ) ≤ 0, or equivalently
π ∈ �k

NA≤OB = {π : (co + π
′bk − cfr − b(e1, 0))Rk (π ) ≤

g+ co + πbk − cfr − b(e1, 0)}, then bNA(π , k) ≤ bOB(π , k).
In detail, if cfr + b(e1, 0) − co < π ′bk , then bNA(π , k) <
bOB(π , k) satisfies under the condition that Rk (π ) < 1 −
(π ′bk − πbk − g)/(co + π ′bk − cfr − b(e1, 0)). On the other
side, if cfr+b(e1, 0)−co > π ′bk , then bNA(π , k) ≤ bOB(π , k)
satisfies under the condition that Rk (π ) ≥ 1− (π ′bk −πbk −
g)/(co + π ′bk − cfr − b(e1, 0)).
For the case k = K , there exists b(ei, k) ≤ cpr + b(e1, 0).

Thus, co+π ′bk ≤ co+ cpr + b(e1, 0) < cfr + b(e1, 0) based
on the assumption that co+ cpr < cfr . Therefore, part (b) can
be obtained based on the proof of part (a).
The following corollary specifies the sufficient condition

under which NA is optimal; its proof follows directly from
Lemma 3 and Lemma 4, and is omitted here.
Corollary 4: Suppose Assumptions 1-3 are all satisfied.

If π ∈ (�k
NA≤OB ∩ �

k
OB≤PM ), k ∈ K′, or if RK (π ) ≥

max{1−g/(cfr − cpr ), (cfr +b(e1, 0)− co−πbK −g)/(cfr +
b(e1, 0)− co − π ′bK )}, then a∗(π ,K ) = NA.
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From the above-mentioned analysis, we can find that there
are many good properties for the special case k = K . The
detailed results are discussed in the following.

According to Lemma 3, it can be easily obtained that
the action space for any order pair (π ,K ) ∈ � × K is
represented as

A(π ,K ) =

{
{NA,OB} , πbK < cpr + b(e1, 0)− co;
{NA,PR} , πbK ≥ cpr + b(e1, 0)− co.

Thus, for the fixed repair number K , the region { π :
πbK ≥ cpr − co + b(e1, 0) } can be divided into two parts in
terms of the threshold 1−g/(cfr−cpr ) according to Lemma 2
and Theorem 1. One is�K

PR, the other is doing nothing region.
However, for the region { π : πbK < cpr − co + b(e1, 0) },
if 1− g/(cfr − cpr ) ≥ (cfr + b(e1, 0)− co−πbK − g)/(cfr +
b(e1, 0) − co − π ′bK ), it can also be be divided into two
parts in terms of the threshold 1 − g/(cfr − cpr ) according
to Corollary 2 and Corollary 4; otherwise, the bound distin-
guishing NA from OB cannot be determined exactly.

C. THE MONOTONIC AT-MOST-FOUR-REGION
POLICY FOR k = K
To speed the computation time, the AM4R policy has been
studied in several previous studies, eg. [17], [32], [33].
A monotonic AM4R structure means that the state space can
be divided at most four regions, and the action corresponding
to each region occurs with a certain order. In this paper,
the similar results can also be established for the special
case k = K . Specially, the monotonic AM4R policy for
our maintenance model means that along any straight line of
≺lr -ordered information states π1,π2, . . . there are at most
three numbers 0 ≤ n∗1 ≤ n

∗

2 ≤ n
∗

3 to divide the optimal region
as follows.

a∗(πn,K ) =


NA, n < n∗1 or n

∗

2 < n ≤ n∗3,
OB, n∗1 ≤ n ≤ n

∗

2,

PR, n > n∗3.

(17)

Furthermore, as n increases, the action corresponding to each
region occurs with the order NA, OB, NA, PR.

In order to obtain this AM4R structure for the special case
k = K , the following lemma is provided firstly.
Lemma 5: b(π , k) given by Equation (9) is piecewise-

linear concave for any fixed k ∈ K.
Proof: According to Equation (8), it can be found that

b(π , k) is piecewise-linear concave if Vn(π , k) is piecewise-
linear concave for all n. Obviously, OBn(π , k) and PXn(π , k)
are both linear concave functions of π for any fixed
k ∈ K. Considering the fact that the minimum of piecewise-
linear concave functions is still piecewise-linear concave,
we only need to show NAn(π , k) is piecewise-linear concave.
To achieve this aim, induction technique is adopted here.
Suppose V0(π , k) = 0 for ∀π without loss of generality.
NA1(π , k) = cfr (1−Rk (π )) is linear in π . Now, suppose that
NAn(π , k) is piecewise-linear concave, which implies that
Vn(π , k) = min{π · uTn ;un ∈ Un} where u is a 1× (m+ 1)

dimensional row vector. After that, the piecewise-linear con-
cavity of NAn+1(π , k) is examined. Clearly, the first term of
NAn+1(π , k), that is, (cfr+Vn(π , k))(1−Rk (π )) is linear in π .
Therefore, we only need to consider the second term which
is Vn(π ′(π , k), k)Rk (π ). There exists

Vn(π ′(π , k), k)Rk (π )

=min{π ′(π , k), k) · uTn ;un ∈ Un}Rk (π )

=min

{[∑m
i=1 πip

k
i1

Rk (π )
, . . . ,

∑m
i=1 πip

k
im

Rk (π )
, 0

]
· uTn

}
Rk (π )

=min

{[
m∑
i=1

πipki1,
m∑
i=1

πipki2, . . . ,
m∑
i=1

πipkim, 0

]
· uTn

}
=min{π · uTn+1;un+1 ∈ Un+1} (18)

which is piecewise-linear concave. Thus, NAn+1(π , k) is
also piecewise-linear concave. As a result, Vn+1(π , k) is
piecewise-linear concave and the claims holds for all n by
induction.
According to the above Lemma 5, the following Theorem 2

can be obtained to show that the optimal maintenance policy
for the case k = K in our problem is characterized by the
monotonic AM4R structure along a ≺lr -increasing line.
Theorem 2: If PK is TP2, the optimal policy for k = K

has the monotonic AM4R structure along any straight line of
information states in ≺lr -increasing order.

Proof: Let �k
NA, �

k
OB and �k

PX denote the set of infor-
mation states corresponding to a∗(π , k) = NA, a∗(π , k) =
OB and a∗(π , k) = PX , respectively. Since both bOB(π , k)
and bPX (π , k) are hyperplanes,�k

PX and�k
OB are convex sub-

sets of � according to Lemma 5 in this paper and Lemma 1
in [15]. While, bNA(π , k) is not a hyperplane but a piecewise-
linear function in π , hence �k

NA is not a convex subset.
Furthermore, for k = K , once an information state π which
increases along a ≺lr -increasing line enters into �K

PR, it will
not leave �K

PR due to the fact that bPR(π ,K ) is constant
and b(π ,K ) is nondecreasing in≺lr -increasing order. Hence,
there are at most two NA regions, and then the action changes
in the order NA→ OB→ NA→ PR along any ≺lr -ordered
straight line of information states, which implies the claim
holds.

Unfortunately, we cannot obtain the monotonic AM4R for
any fixed k ∈ K′ due to that bPM (π , k) is not constant.
In this situtaion, only the conclusion that �k

OB and �k
PM are

both convex subsets of� can be achieved, which implies that
either OB or PM action appears at most one times.

IV. ALGORITHMS
In this section, we use the structural properties obtained in the
previous section to develop amore efficient and computation-
ally tractable algorithm to determine the optimal maintenance
action for each state (π , k) ∈ �×K.
Parameters such as the cost cfr , cpr , co, the transition prob-

ability matrix Pk and the maximal number of repair actionsK
are specified at first. From the analysis of the structural prop-
erties of the optimal policy, we should calculate the biases
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b(ei, k), i ∈ S, k ∈ K. As far as we know, policy iteration
and value iteration algorithms are widely used algorithms to
solve the Markov decision problems [29]. Hence, we first use
value iteration to obtain b(ei, k)(i ∈ S, k ∈ K) based on the
sample path emanating from ei, i ∈ S ′. The details of the
value iteration algorithm can be found in [29] and omitted
here. Then for each state (π , k) ∈ � × K, the following
algorithms are developed based on the structural properties
provided in the previous section to obtain the optimal policy.

Algorithm 1 k ∈ K′

1) Suppose π ∈ �k
OB≤PM . If π ∈ �k

NA≤OB, then
a∗(π , k) = NA; otherwise, go to setp 4).

2) Suppose π /∈ �k
OB≤PM and cpm + b(em, k) ≤ cfr +

b(e1, 0). If Rk (π ) ≤ 1 − g/(cfr + b(e1, 0) − cpm −
π ′Qbk+1), then a∗(π , k) = PM; otherwise, if Rk (π ) ≥
(cfr + b(e1, 0)− cpm − πQbk+1 − g)/(cfr + b(e1, 0)−
cpm−π ′Qbk+1), then a∗(π , k) = NA; otherwise, go to
setp 4).

3) Suppose π /∈ �k
OB≤PM and cpm + b(em, k) > cfr +

b(e1, 0). If π ∈ �k
NA≤PM , then a

∗(π , k) = NA; other-
wise, go to setp 4).

4) The following steps are used to decide the optimal
policy for the remaining information states.
a) Set l = 1, π1

k = π .
b) Compute π lk = π

′(π l−1k , k) according to Eq. (1).
c) If cpm + b(em, k) ≤ cfr + b(e1, 0) and Rk (π ) ≤

1 − g/(cfr + b(e1, 0) − cpm − π ′Qbk+1),
or if cpm + b(em, k) > cfr + b(e1, 0) and
π lk /∈ (�k

NA≤OB ∪ �
k
NA≤PM ), then b(π

l
k , k) =

min{bOB(π lk , k), bPM (π lk , k)}which can be easily
obtained through (11) and (13). Then apply the
recursive set of (9) backward to get b(π l−1, k),
. . . , b(π , k). Otherwise, go to setp d).

d) If ‖π l+1k − π lk‖ ≤ ε, then let 5k (π ) = π lk
and replace both π and π ′(π , k) in Eq. (10)
with 5k (π ) to obtain bNA(5k (π ), k). Similarly,
we can obtain bOB(5k (π ), k) and bPM (5k (π ), k)
according to (11) and (13) respectively. Thus,
b(5k (π ), k) can be calculated through compar-
ing the previous three terms. Finally, step back-
wards recursively along the sample path to get
b(πLk−1, k), . . . , b(π , k) and the optimal main-
tenance action for the current state (π , k). Other-
wise, set l = l + 1 and go back to the Step b).

The above algorithm is constructed according to the action
boundary expressions and can be used to find an optimal
maintenance policy. Step 1), Step 2) and Step 3) are pro-
vided based on Corollary 2, Corollary 3 and Corollary 4
respectively. The optimal maintenance policy for those states
which don’t satisfy the conditions of Step 1)- Step 3) needs
to be determined based on the sample path as Step a)-Step d)
shows. Step c) means that there is no need to proceed until
the sample path converges at a stationary state 5k (π ) if

π lk /∈ (�k
NA≤OB∪�

k
NA≤PM ) for cpm+b(em, k) > cfr+b(e1, 0)

or Rk (π ) ≤ 1−g/(cfr +b(e1, 0)−cpm−π ′Qbk+1) for cpm+
b(em, k) ≤ cfr + b(e1, 0) satisfies. Clearly, the optimal main-
tenance action is not NA in this case. Hence, b(π lk , k) can
be obtained through comparing bOB(π lk , k) with bPM (π lk , k).
Then we can step backwards through (9) to get b(π , k) with
its corresponding maintenance action. Otherwise, proceed to
Step d). bNA(5k (π ), k) can then be calculated through replac-
ing both π and π ′(π , k) in Eq. (10) with5k (π ) based on the
fact that b(ei, k), i = 1, . . . ,m, k ∈ K′ and the average cost
g which have been obtained. In the same way, bOB(5k (π ), k)
and bPM (5k (π ), k) can also be easily computed through
(11) and (13) respectively. As a result, b(5k (π ), k) can be
determined. Finally, step backwards to π to determine the
optimal policy.

Algorithm 2 k = K
1) If a∗(π ,K ) = PR, then a∗(π̂ ,K ) = PR for any π̂

subject to π ≺lr π̂ .
2) Suppose RK (π ) < 1 − g/(cfr − cpr ). If πbK <

cpr + b(e1, 0) − co, then a∗(π , k) = OB. Otherwise,
a∗(π , k) = PR.

3) Suppose RK (π ) ≥ 1 − g/(cfr − cpr ). If πbK ≥ cpr +
b(e1, 0)−co, or if RK (π ) ≥ (cfr+b(e1, 0)−co−πbK−
g)/(cfr + b(e1, 0)− co − π ′bK ), then a∗(π , k) = NA.

4) Suppose 1−g/(cfr − cpr ) ≤ RK (π ) ≤ (cfr +b(e1, 0)−
co−πbK −g)/(cfr +b(e1, 0)−co−π ′bK ) and πbK ≥
cpr + b(e1, 0) − co. Then the following steps are used
to obtain the optimal maintenance policy instead of the
pure recursive technique.
a) Set l = 1, π1

K = π .
b) Calculate π lK = π

′(π l−1K ,K ) according to (1).
c) If RK (π lK ) < 1− g/(cfr − cpr ), then b(π lK ,K ) =

min{bOB(π lK ,K ), bPR(π lK ,K )}which can be eas-
ily obtained through (11) and (13). Then apply the
recursive set of (9) backward to get b(π l−1,K ),
. . . , b(π ,K ). Otherwise, go to setp d).

d) If ‖π l+1K − π lK‖ ≤ ε, then let 5K (π ) = π lK
and replace both π and π ′(π ,K ) in Eq. (10) with
5K (π ) to obtain bNA(5K (π ),K ). Then we obtain
b(5K (π ),K ) through comparing bNA(5K (π ),K )
and bOB(5K (π ),K ). After that, step backwards
recursively along the sample path through com-
paring bNA(π lK ,K ) and bOB(π lK ,K ) to get
b(π ,K ) and the optimal maintenance action for
the current state (π ,K ). Otherwise, set l = l + 1
and go back to the Step b).

This algorithm is developed for the case k = K . In this
situation, the recursive method can only be used for those
states satisfying 1−g/(cfr−cpr ) ≤ RK (π ) ≤ (cfr+b(e1, 0)−
co − πbK − g)/(cfr + b(e1, 0) − co − π ′bK ) and πbK ≥
cpr + b(e1, 0)− co. Even that, we also don’t need to proceed
until the sample path converges. Once the state which varies
along the sample path satisfies RK (π lK ) < 1− g/(cfr − cpr ),
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we can obtain b(π lK ,K ) through comparing bOB(π lK ,K ) and
bPR(π lK ,K ) according to the part (b) of Lemma 2.

V. A NUMERICAL EXAMPLE
Since maintenance for the system with repair time limit is
scarcely considered in the practical life, there exists few
real data to generate the probability transition matrix. Thus,
in this section, a numerical example is studied to illustrate the
effectiveness of the optimal maintenance decision algorithms
proposed in the previous section. Assume that the deteriora-
tion condition can be categorized 5 levels, i.e. m = 4, and the
maximal number of available repairs K is 8. As done in [11],
we introduce the functions g(i) = 0.05 + 0.005(i − 1) for
i ∈ S, h(k) = 1 + 0.04k for k ∈ K and a stochastic matrix
D = [dij]4×4, i, j ∈ S ′ in order to define the probability
transition matrix, where

D =


0.895 0.1 0 0.005
0 0.9 0.01 0.09
0 0 0.9 0.1
0 0 0 1

 . (19)

Then we define the probability transition matrix Pk as
follows:

pkij =


g(i)h(k), for i ∈ S ′, j = m+ 1, k ∈ K;
(1− g(i)h(k)) dij, for i, j ∈ S ′ and k ∈ K;
1, for i = j = m+ 1, k ∈ K;
0, otherwise.

(20)

By choosing appropriate D, we can guarantee the probabil-
ity transition matrix Pk , k ∈ K satisfies Assumptions 1-3.
In addition, maintenance costs are given as follows: co = 1,
cpm = 30, cpr = 120 and cfr = 500.

Finally, according to the definition of the maintenance
effect matrix and the Assumption 3, the matrix Q is chosen
as follows:

Q =


1 0 0 0 0

0.95 0.05 0 0 0
0.90 0.075 0.025 0 0
0.8 0.1 0.05 0.05 0
1 0 0 0 0

 . (21)

To begin with, value iteration algorithm is adopted to get
the biases b(ei, k), i ∈ S , k ∈ K and average cost g. In this
example, the cost per unit time g is 28.4116. Fig. 1 shows
the evolution of the bias value of b(ei, k) as a function of
i ∈ S ′ for a fixed k ∈ K. From Fig. 1, we can find that
the bias b(ei, k) is increasing in i for a fixed k , which is in
accordance with Lemma 1. Furthermore, it is obvious that
b(e4, 8) < b(e4, 6), which implies that the monotonity of
b(ei, k) in k for the fixed ei cannot be obtained always.

Due to space limitation, only the optimal maintenance
policies for k = 0 and 8 are provided in Figs. 2 and 3
respectively for the purpose of illustration. For clarification,
we manually set π1 = 0, which doesn’t affect the correctness
of the result, and obtain the optimal maintenance policies for
each k ∈ K shown in Fig. 4. Through examining Figs. 2-4,

FIGURE 1. b(ei ,k) versus k ∈ K.

FIGURE 2. Optimal maintenance decision rules for k = 0.

FIGURE 3. Optimal maintenance decision rules for k = 0.

we can find that if the repaired times k(0 ≤ k ≤ 7) gest
larger, the region corresponding to NA gets smaller, while
the region corresponding to OB or PM gets larger. This is
because the system subject to more repair times is more
likely to get worse, and naturally needs more observation
actions to reveal the true deterioration level for making proper
maintenance actions. However, for the case k = 8, the region
corresponding to NA looks larger than that for the case k = 7,
which is due to the fact that the PR costs are larger than the
PM costs.

Figs. 5 and 6 superimposed the action boundaries devel-
oped in Section III-B on the optimal maintenance decision
rules for the system repaired k = 6 and K times respectively.
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FIGURE 4. Optimal maintenance decision rules with taking maintenance effect into consideration.

FIGURE 5. Action boundaries superimposed on the optimal policy
when k = 6.

FIGURE 6. Action boundaries superimposed on the optimal policy
when k = 8.

It should be noted that, we also only select two typical cases
for illustration. For k = 6, since cpm+ b(e4, 6) = 96.5403 <
cfr + b(e1, 0) = 440.0324, two lines can be obtained accord-
ing to Corollary 1 to depict the preference of NA to PM, or
vice versa. The two lines are shown in in Fig. 5 as Line 1 and

Line 2, where Line 1 defines the region where NA is preferred
to PM with Rk (π ) = (cfr + b(e1, 0) − cpm − πQbk+1 −
g)/(cfr + b(e1, 0) − cpm − π ′Qbk+1), while Line 2 depicts
the preference of PM to NA with Rk (π ) = 1 − g/(cfr +
b(e1, 0) − cpm − π ′Qbk+1). However, for k = K , only one
line is needed to depict the preference of NA to PM, or vice
versa. That line is shown as Line 1 in Fig. 6, and obtained
with RK (π ) = 1−g/(cfr−cpr ). Line 3 in Fig. 5 and Line 2 in
Fig. 6 are obtained through comparison of bOB and bPX with
π (bk −Qbk+1) = cpm − co and πbK = cpr + b(e1, 0)− co,
respectively. Finally, Line 4 in Fig. 5 and Line 3 in Fig. 6
depict the preference of NA to OB with (co + π ′bk − cfr −
b(e1, 0))Rk (π ) = g+ co+πbk − cfr − b(e1, 0) and RK (π ) =
(cfr + b(e1, 0)− co−πbK − g)/(cfr + b(e1, 0)− co−π ′bK ),
respectively.

For the purpose of comparison, we study the optimal main-
tenance policies without taking the maintenance effect into
consideration. In this case, the matrixQ is chosen as follows:

Q =


1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

 . (22)

The average cost g in this case is 27.9564 which is smaller
than that in the case with taking maintenance effect into con-
sideration. Similarly, we manually set π1 = 0 and obtain the
optimal maintenance decision rules without considering the
maintenance effect shown in Fig. 7. It can be found that Fig. 7
is very similar to Fig. 4(a) in [17], which partially verifies the
correctness of our results. Obviously, the optimal decision
rules with or without maintenance effect are different. For
example, if k = 0 and we further set π2 = 0, the optimal
maintenance action with maintenance effect changes from
PM to NA when the system gets worse, but vice versa in
the case without maintenance effect. This difference can be
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FIGURE 7. Optimal maintenance decision rules without taking maintenance effect into consideration.

FIGURE 8. The bias value versus π3 with or without maintenance effect for k = 0. (a) Bias value versus π3 with
maintenance effect. (b) Bias value versus π3 without maintenance effect.

clearly illustrated in Fig. 8 which is a plot of bNA(π , k),
bOB(π , k), bPM (π , k) and b(π , k) as a function of the value of
π3 using k = 0, π1 = π2 = 0 with or without maintenance
effect. The major reason for the difference is composed of
two aspects. One is that we have set π1 = π2 = 0 which
means the system suffers from more deteriorated condition.
The other is that the PM cost is constant for the case without
maintenance effect, while increasing in π for the case with
maintenance effect. Fig. 8 also shows that b(π3, 0) with or
without maintenance effect is a concave function which is
consistent with Lemma 5.

VI. CONCLUSION AND THE FUTURE WORK
In this paper, we consider the problem of optimally main-
taining a multi-state system under the constraint that only
a limited number of imperfect repairs can be performed.

Since the observation action is perfect but non-periodical,
the problem can be modeled as a POMDP to adaptively
schedule observation and preventive maintenance actions,
which is different from the work [11]. After combining the
information state together with the completed repair number
as the state variable, the problem is reformulated as a Markov
decision process. In order to increase the computational effi-
ciency, several structural properties are developed, and then
the related maintenance algorithms are developed. Finally,
a numerical example is provided to validate the claims in our
paper as well as the effectiveness of the proposed algorithms.

In the future, we will proceed the work from the fol-
lowing aspects. First, due to the widely use of sensors,
focus on condition-based maintenance grows more rapidly in
recent years. Furthermore, the collected sensor information
is always imperfect. Therefore, it is necessary to introduce
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the effect of imperfect observation into the proposed main-
tenance model proposed in this paper. In addition, the sen-
sitivity analysis of probability transition matrix should be
included in the future work.
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