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ABSTRACT This paper presents a novel scheme for image-based visual servoing (IBVS) of a robot
manipulator by considering robot dynamics without using joint velocity measurements in the presence of
constraints, uncalibrated camera intrinsic and extrinsic parameters and unknown feature position parameters.
An approach to design model predictive control (MPC) method based on identification algorithm and
sliding mode observer has been proposed. Based on the MPC method, the IBVS tasks can be considered
as a nonlinear optimization problem while the constraints due to the visibility constraint and the torque
constraint can be explicitly taken into account. By using the depth-independent interactionmatrix framework,
the identification algorithm can be used to update the unknown parameters and the prediction model.
In addition, many existing controllers require the joint velocity measurements which can be contaminated by
noises, thus resulting in the IBVS performance degradation. To overcome the problem without joint velocity
measurements, the sliding mode observer is designed to estimate the joint velocities of the IBVS system.
The simulation results for both eye-in-hand and eye-to-hand camera configurations are presented to verify
the effectiveness of the proposed control method.

INDEX TERMS Image-based visual servoing, model predictive control, constrained optimization control,
depth-independent interaction matrix, sliding mode observer.

I. INTRODUCTION
Visual servoing has been used widely in robotics field to
make the machines more flexible and intelligent. In general,
the visual features are used as the feedback signals to control
the motion of a robot manipulator. The visual information
can be obtained from the vision system either mounted on the
end-effector of the robot manipulator (eye-in-hand) or fixed
at the position near the manipulator (eye-to-hand). The
visual servoing schemes can be divided into three types
which depend on the feedback information: position-based
visual servoing (PBVS) [1]–[3], image-based visual ser-
voing [4]–[8] and hybrid visual servoing [9]–[11]. In the
position-based visual servoing, the control errors are the
Cartesian errors of relative pose between the end-effector and
the target. The relative pose is computed by using the pose
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estimation algorithm from the image measurements [12].
In the image-based visual servoing, the control errors are the
image errors between the current features and the desired fea-
tures. The hybrid visual servoing is also called 2 1/2-D visual
servoing which combines the PBVS and IBVS, the control
errors are chosen visual features as the feedback signals
defined partly in 2-D, and partly in 3-D [5].

The classical image-based visual servoing uses the propor-
tional control law which is designed based on the traditional
image Jacobian matrix [4], where there may exist the prob-
lem of local minima and singularities in the image Jacobian
matrix. In [13], an IBVS control scheme with eye-in-hand
camera configuration is proposed to solve the problem of
regulation of robot’s end-effector with the remote radio unit,
where the PD type controller is designed on the basis of
the idea of sliding surface from variable structure control.
In [14], the reinforcement learning scheme is used to adap-
tively adjust the proportional servoing gain of IBVS system,

73540
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-9362-4642
https://orcid.org/0000-0002-8246-6546


Z. Qiu et al.: MPC for Uncalibrated and Constrained IBVS Without Joint Velocity Measurements

instead of employing a constant gain, where a bagging
method is used to compute the inverse kinematics. However,
these methods [4], [13], [14] have not explicitly handled
the constraints which are important for the IBVS controller
designing. For instance, if the initial and desired positions
of the features are far away, the features may get out of the
camera’s field of view and the actuator limitations may be
violated in the visual servoing process, which will lead to the
failure of the visual servoing tasks. Hence, the satisfaction of
the constraints is an crucial issue. A great deal of approaches
focus on the constraints handling in the design of visual
servoing controllers.

One approach to cope with constraints is via path plan-
ning technique [15]–[17]. A collision-free trajectory can be
generated by the potential field approach in [15], where the
constraints such that the target stays into the camera’s field of
view or the robot avoids the joint limitations are considered.
In [16], [17], the path planning in the camera space has
been designed by using LMI optimization, where the camera
intrinsic and extrinsic parameters and the model of the target
should be known. Another way to handle the constraints in the
vision-based control is through numerous advanced control
schemes, such as optimal control [18]–[20], LMI [21], [22],
sensor-based control [23], [24], switch control [25], [26],
neural network [27], and predictive control [28]–[31]. In [22],
an LMI optimization is proposed by minimizing the error
norm to handle visibility and kinematic constraints. A sensor-
based control method is proposed in [24] to deal with
constraints, where a weighting matrix is chosen to make
the contribution of each feature with regularity. In [25],
the authors proposed a switching approach among position-
based visual servoing schemes and backward motion to keep
all features within the camera’s field of view, where the
extrinsic parameters should be given and the chattering phe-
nomenon would be caused by the switches between control
patterns. In [27], a recurrent neural network scheme with
eye-in-hand camera configuration is proposed for the IBVS
system to deal with joint angle and velocity limits of the
robot manipulators and the pseudoinversion performing of
the image Jacobian matrix are not needed, where the camera
intrinsic and extrinsic parameters are assumed to be known
and the nonlinear robot dynamics are not considered. More-
over, it is well known that one of the advantage of model
predictive control is that constraints can be handled explicitly,
and numerous MPC-based control approaches [28]–[31] are
proposed to deal with constraints in image-based visual ser-
voing system. In [29], a MPC-based IBVS method designed
based on the traditional image Jacobian matrix is proposed,
where the contribution of the image prediction is indicated.
A quasi-min-max MPC method designed by using the poly-
topic model of IBVS with the fixed depth value is pro-
posed in [30] for constrained IBVS. In [31], a robust MPC
scheme is introduced to cope with system constraints and
prevent the visual features from leaving the camera’s field of
view. However, the abovementionedmodel predictive control

methods [28]–[31] for constrained visual servoing systems
require the knowledge of the camera intrinsic and extrin-
sic parameters, and the depth information should be given.
Moreover, these model predictive control methods design the
velocity control command by using visual feedback without
taking into account the nonlinear robot dynamics, which
assumes that the robot manipulator can perfectly perform
the velocity control. When nonlinear forces have dominated
influences in high-speed tasks, the kinematic-based schemes
cannot ensure satisfactory performance.

In this paper, we propose a novel model predictive control
approach to regulate a set of feature points on the image plane
to desired positions by considering nonlinear robot dynam-
ics without the use of joint velocity measurements in the
presence of unknown camera intrinsic and extrinsic param-
eters, unknown feature position parameters, the visibility
constraint and the torque constraint. The MPC scheme based
on the identification algorithm and sliding mode observer
for the IBVS system has been presented. By using the MPC
strategy, the visual servoing task is written as a nonlinear
optimization control problem on the image plane, where
the visibility constraint and the torque constraint can be
easily handled. Due to the prediction algorithm and the
receding horizon strategy, the performance of the control
system can achieve highly efficient. Moreover, since the cam-
era calibration is usually a costly, tedious and error prone
process, and it is difficult to measure the depth online for
the monocular vision, then, we adopt the depth-independent
interaction matrix framework, and the identification algo-
rithm is incorporated in the MPC for obtaining the model
parameters and the MPC controller determines the control
input and updates the parameter estimates at every time
instant. In addition, to address the problem of absence of
the joint velocity measurements, the MPC-based IBVS con-
troller using estimated joint velocities, which is generated
by a sliding mode observer, is designed. Compared to the
traditional sliding mode observer [32], the proposed sliding
mode observer here is designed based on a sigmoid function,
which can reduce the chattering problem effectively. The
proposed control approach can be used for both fixed and
eye-in-hand camera configurations. Simulation results are
provided to demonstrate the performance of the proposed
control approach.

This article is organized as follows: Section 2 discusses
the visual servoing model. The proposed control method is
presented in Section 3, which provides the MPC formulation
for IBVS system, the uncertainty and learning for IBVS, and
the sliding mode observer design. In Section 4, simulation
results are presented to demonstrate the effectiveness of the
proposed control method. Finally, the conclusion is provided
in Section 5.

II. VISUAL SERVOING MODEL
The image formation models of the feature points for the
eye-in-hand camera configuration and eye-to-hand camera
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configuration have the same structure, here, we present a
kinematics framework which can be applied to both camera
configurations. The image projected coordinates sm =

[um, vm]T of the feature point can be obtained by using the
perspective projection model

sm =
1
Z c

[
pT1
pT2

]
T
[
y
1

]
, (1)

where Z c denotes the depth of the feature point, pTi denotes
the ith row vector of the unknown camera intrinsic and extrin-
sic matrix P ∈ <3×4, T ∈ <4×4 denotes the homogeneous
transformation matrix defined by the forward kinematics of
the robot manipulator, and y ∈ <3×1 denotes the unknown
3-D position coordinates of the feature point.

Differentiating (1) with respect to time, we can obtain the
following relationship which depicts the visual variation with
respect to the joint velocity

ṡm =
1
Z c
Dq̇, (2)

where q̇ ∈ <n×1 denotes the joint velocity, n denotes the num-
ber of DOFs, and D ∈ <2×n denotes the depth-independent
image Jacobian matrix, which is expressed as

D =

(
pT1 − ump

T
3

pT2 − vmp
T
3

) ∂ (T ( y
1

))
∂q

. (3)

The depth Z c can be written as

Z c = pT3 T
(
y
1

)
. (4)

The dynamic equation of the robot manipulator can be
expressed as

M (q)q̈+ C(q, q̇)q̇+ K (q) = τ, (5)

where M (q) ∈ <n×n denotes the inertia matrix, C(q, q̇) ∈
<
n×n denotes the centripetal and Coriolis torque matrix,

K (q) ∈ <n×1 denotes the gravitational torques and τ ∈ <n×1

denotes the input torque vector. Consider the dynamics given
in (5), the dynamics can be rewritten as

q̈ = −M (q)−1C(q, q̇)q̇−M (q)−1K (q)+M (q)−1τ, (6)

for the system of (6), the feedback linearization control can
be obtained as

τ = C(q, q̇)q̇+ K (q)+M (q)v, (7)

and defining v as

v = w+ Kvq̇, (8)

where w is the new input, and an internal state feedback
is implemented via matrix Kv on the velocity loop, then,
from (6), (7) and (8), we can obtain the dynamic model

q̈ = f (q, q̇,w) = w+ Kvq̇, (9)

which is considered as the model employed for the open loop
prediction in the MPC method.

To use MPC to control the robotic IBVS system, the dis-
crete time model is used. Defining a state vector

[
sTm q̇T

]T ,
(2) and (9) can be incorporated and the overall system dynam-
ics can be expressed as follows:(

sm(k + 1)
q̇(k + 1)

)
=

(
sm(k)
q̇(k)

)
+

( 1
Z cD(k)q̇(k)Te
(w+ Kvq̇)Te

)
, (10)

where sm(k) is both the system’s states and outputs, and
Te denotes the sampling period.

III. CONTROLLER DESIGN
The control objective is to tackle the visual servoing problem
in the presence of the constraints, parametric uncertainties
associated with the robot and camera models, while the joint
velocity measurements are unavailable.

A. THE MPC FORMULATION FOR IBVS SYSTEM
Given the overall system dynamics model (10), the visual
predictive control can be formulated by finding the optimal
control input by solving the constrained finite-time optimiza-
tion control problem. The quadratic cost function at sampling
time k is defined as:

J (k)=
Np∑
i=1

‖sd (k+i)−sm(k+i|k)‖2F+
Nc∑
i=1

‖w(k+i−1)‖2G,

(11)

where Np is the prediction horizon and Nc is the control
horizon, usually Np ≥ Nc, F and G are weighting matrices,
‖·‖ represents the Euclidean vector norm, sd (k+i) denotes the
desired projection location of the feature point at the future
sampling instant k+i, sm(k+i|k) denotes the predicted output
at the future sampling instant k + i, which are predicted at
the current instant k by using the prediction model involving
the input w(k), w(k + i− 1) denotes the input at the future
sampling instant k + i− 1.
The MPC approach for IBVS by considering the system

dynamics, the visibility constraint and the torque constraint
can be formulated as:

min
{w(j)}k+Nc−1j=k

J (k) (12)

subject to sm(k + 1) = sm(k)+
1

Ẑ c
D̂(k)q̇(k)Te, (13)

q̇(k + 1) = q̇(k)+ (w+ Kvq̇)Te, (14)

umin
m ≤ um(k) ≤ umax

m , (15)

vmin
m ≤ vm(k) ≤ vmax

m , (16)

τmin
≤ τ (k) ≤ τmax, (17)

where umax
m and vmax

m are the maximum coordinates of the
image plane, umin

m and vmin
m are the minimum coordinates of

the image plane, and (15) and (16) represent the visibility
constraints, which can be used to ensure the feature point
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within the camera’s field of view. τmax and τmin are the lower
and upper bounds of the force torque, and (17) represents
the torque constraint. The constraints can be written as the
functions of the optimal sequence of the input. The MPC
method is implemented based on a receding horizon strat-
egy. At every sampling instant, the optimal input sequence
{w(j)}k+Nc−1j=k is calculated by solving the open-loop finite-
horizon optimal control problem. The first element of the
sequence is treated as the input w(k). This process is repeated
at the next sampling instant. The sequential quadratic pro-
graming (SQP) algorithm is used to solve the above optimal
control problem.

B. UNCERTAINTY AND LEARNING FOR IBVS
In most of MPC-based IBVS schemes, the prediction
models are on the basis of the traditional image Jacobian
matrix [28]–[31]. The traditional Jacobian matrix maps the
visual signals onto the camera Cartesian space and the
depth parameter appears nonlinearly in the traditional image
Jacobian matrix. Generally, the camera values and the depth
parameter which cannot be measured from the image should
be known. Here, the prediction model of the proposed MPC
method for IBVS is formulated on the basis of the depth-
independent interaction matrix which maps the image errors
onto the joint space of the manipulator directly, and the depth
can be linearly parameterized by the constant camera parame-
ters and 3-D position values of the feature, then, the unknown
parameters can be represented as a linear form by using the
perspective projectionmodel, so that the unknown parameters
can be learned based on the measurements of image features
and robot joints by using the system identification algorithm.
Moreover, under the depth-independent interaction matrix
framework, the unknown parameters in the prediction model
and the perspective projection model are the same, then
the parameter estimates θ̂ updated from the identification
algorithm form the basis for the prediction model of the
feature at each time instant.

The perspective projection model (1) is rewritten as

Z csm =

[
pT1
pT2

]
T
[
y
1

]
, (18)

and the depth Z c of the feature point (4) can be represented
as a linear form of products of unknown camera parameters
and feature position parameters

Z c=γ T θ3, (19)

where γ̄= (r11, r21, r31, r12, r22, r32, r13, r23, r33, t1, t2, t3)T ,
γ= (γ̄ T , 1)T . R and t are the rotation matrix and the
translational vector of the forward kinematics matrix T ,
and rij is the (i, j) component of R and ti is the
ith component of t . pij is the (i, j) component of
the camera intrinsic and extrinsic matrix P. Denote
θ̄i = (pi1y1, pi2y1, pi3y1, pi1y2, pi2y2, pi3y2, pi1y3, pi2y3,
pi3y3, pi1, pi2, pi3)T and θi = (θ̄Ti , pi4)

T . Substituting (19)

into (18), we can obtain the parameter estimation model

sm(k) = ψT (k)θ, (20)

where ψ(k) denotes the measurement matrix on the basis
of the measurements of image coordinates and joint angles,
which is expressed as

ψ(k) =
[
γ T 01×13 −um(k)γ̄ T

01×13 γ T −vm(k)γ̄ T

]T
, (21)

and θ = θ̄
/
p34, θ̄ = (θT1 , θ

T
2 , θ̄

T
3 )

T . The row vectors in
the depth-independent image Jacobian matrix (3) can be
expressed as

pTi
∂

∂q

(
T
(
y
1

))
=

∂

∂q
(r11pi1y1 + r21pi2y1 + r31pi3y1 + r12pi1y2

+ r22pi2y2 + r32pi3y2 + r13pi1y3 + r23pi2y3
+r33pi3y3 + t1pi1 + t2pi2 + t3pi3)

=
∂

∂q

(
γ̄ θ̄i
)
, (22)

then the updated parameter estimates θ̂ can be used to update
the estimated image Jacobian matrix 1

Ẑ c
D̂ together with

the prediction model. From (20), the recursive least square
method is employed to estimate the unknown parameters θ ,
the criterion function to be minimized at time N is defined as

θ̂ = argmin
θ

N∑
k=1

εN−k (sm(k)− ψT (k)θ )2, (23)

where 0 < ε ≤ 1 represents the exponential forgetting factor.
The parameter estimates are updated by

θ̂ (k) = θ̂ (k − 1)+ Y (k)(sm(k)− ψT (k)θ̂ (k − 1)) (24)

Y (k) = H (k − 1)ψ(k)(ε + ψT (k)H (k − 1)ψ(k))−1 (25)

H (k) = (I − Y (k)ψT (k))H (k − 1). (26)

The image errors are defined as

e(k) = sm(k)− sd = ψT (k)θ − sd , (27)

since the forward kinematics components rij(i = 1, 2, 3,
j = 1, 2, 3) and ti(i = 1, 2, 3) are bounded, we have

‖ψi(k)‖ ≤ m1 + m2smi(k), (28)

where 0 < m1 <∞, 0 < m2 <∞, and ψi(k) and smi(k) are
the ith row of ψ(k) and sm(k), respectively.
We assume that the desired trajectory sd satisfies |sd | ≤

m3 < ∞, then we can obtain the linear boundedness
condition

‖ψi(k)‖ ≤ m1 + m2(m3 + |ei(k)|) = C1 + C2 |ei(k)| , (29)

where 0 < C1 <∞, 0 < C2 <∞.
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FIGURE 1. The control system diagram.

When θ is unknown, we have θ̃ (k) = θ̂ (k) − θ and
the function V (k) = θ̃T (k)H−1(k)θ̃ (k), from the matrix
inversion lemma, we have

H−1(k) = H−1(k − 1)+
1
ε
ψ(k)ψT (k), (30)

using (26) and the matrix inversion lemma, we obtain

H−1(k)θ̃ (k) = H−1(k − 1)θ̃ (k − 1), (31)

using (24) and (31), we have

V (k)− V (k − 1) =
[
θ̃ (k)−θ̃ (k − 1)

]T
H−1(k − 1)θ̃ (k − 1)

=−

[
θ̃T (k−1)ψ(k)

]2
ε + ψT (k)H (k − 1)ψ(k)

≤ 0, (32)

thus V (k) is a bounded, nonnegative and nonincreasing func-
tion and hence it can converge, if the condition ψT (k)θ̂ = sd
is satisfied, then it can be obtained from [33] that

lim
k→∞

|ei(k)|2

1+ 2(αmax[H (k − 1)])‖ψi(k)‖2
= 0. (33)

From the matrix inversion lemma, we can obtain

αmin[H−1(k)] ≥ αmin[H−1(k − 1)] ≥ αmin[H−1(0)], (34)

where αmin[H−1(k)] denotes the minimum eigenvalue of the
matrix H−1(k).
Since αmin[H−1(k)] is a non-decreasing function and it

has a lower bound αmin[H−1(0)] > 0. Then, from (33),
the uniform boundedness condition is satisfied

0 < a1=1 <∞, 0<a2=2αmax[H (k−1)]<∞. (35)

Based on the linear boundedness condition (29) and the uni-
form boundedness condition (35), from (33) we can obtain

lim
k→∞

ei(k) = 0. (36)

C. THE SLIDING MODE OBSERVER DESIGN
The velocity measurements are usually contaminated by
noises, which will result in the degradation performances of
the control system, or even lead to servoing failure. Under the
condition that the robot and camera parameters are unknown,
in order to overcome the inabilities without the velocity mea-
surements, the sliding mode observer is designed to estimate
the joint velocities for the controller design. The overall
control system diagram is illustrated in Figure 1.

The functionsM ,C andK are assumed uncertain, while the
corresponding nominal functionsMn,Cn andKn are supposed
to be known. The control input τ is supposed to be given
by the known feedback functions. Introducing new variables
x1 = q, x2 = q̇, u = τ , the model (5) can be represented by
a second order model

ẋ1 = x2
ẋ2 = g(t, x1, x2, u)+ η(t, x1, x2, u)

y = x1, (37)

where the nominal part of the system dynamics is expressed
as g(t, x1, x2, u) = M−1n (x1)(u−Cn(x1, x2)x2 −Kn(x1)),Mn,
Cn andKn are the known nominal functions and the uncertain-
ties are lumped in the term η(t, x1, x2, u). To apply the internal
state feedback and to perform system prediction (13)−(14),
the knowledge of joint velocities is required, while the joint
velocity measurements q̇ are unavailable, hence, the follow-
ing sliding mode observer is proposed to estimate the joint
velocities

˙̂x1 = x̂2 + κ
∣∣x1 − x̂1∣∣1/2 x1 − x̂1∣∣x1 − x̂1∣∣+ ξ

˙̂x2 = g(t, x1, x̂2, u)+ σ
x1 − x̂1∣∣x1 − x̂1∣∣+ ξ , (38)

where x̂1 and x̂2 are the estimation values, and κ , σ and ξ
are the observer parameters. Defining the estimation errors
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FIGURE 2. Majorant curve for the sliding mode observer.

FIGURE 3. The structure diagram of the 2-DOF robot manipulator with
eye-in-hand camera configuration.

FIGURE 4. The structure diagram of the 2-DOF robot manipulator with
eye-to-hand camera configuration.

z1 = x1 − x̂1, z2 = x2 − x̂2, and the error functions can be
expressed as

ż1 = z2 − κ|z1|1/2
z1

|z1| + ξ

ż2 = G(t, x1, x2, x̂2)− σ
z1

|z1| + ξ
, (39)

FIGURE 5. Simulation results for 2-DOF robot manipulator with
eye-in-hand camera configuration. (a) Image trajectory by the proposed
method. (b) The chattering phenomenon caused by the traditional sliding
mode observer. (c) Torque by the proposed method.

where G(t, x1, x2, x̂2) = g(t, x1, x2, u(t, x1, x2)) −
g(t, x1, x̂2, u(t, x1, x2)) + η(t, x1, x2, u(t, x1, x2)). Suppose
that there exists a positive constant, such that∣∣G(t, x1, x2, x̂2)∣∣ < g+, (40)
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FIGURE 6. The phase portrait by the proposed method for 2-DOF robot
manipulator with eye-in-hand camera configuration. (a) q1, q̇1. (b) q2, q̇2.

for any t, x1, x2. Calculating the derivative of ż1, we can
obtain

z̈1=ż2−κ|z1|1/2ż1

(
1
2

1
|z1|

z1
|z1| + ξ

signz1 +
1
z1

(
z1

|z1| + ξ

−

(
z1

|z1| + ξ

)2

signz1

))
, (41)

where d |z1|
/
dt = ż1signz1. We have ż2 ∈ [−g+,+g+] −

σ z1
|z1|+ξ

, and z1
|z1|+ξ

∈ [−1, 1], denote ρ = z1
|z1|+ξ

, then we
can obtain

z̈1 ∈ [−g+,+g+]− ( σρ + κ|z1|1/2ż1 (
1
2

1
|z1|

ρsignz1

+
1
z1

(
ρ −ρ2signz1

)))
. (42)

At the initial instant, z1 = 0 and z2 = x2 − 0 = x2,
let z1 > 0, ż1 > 0, then the trajectory is confined between
the axis z1 = 0, ż1 = 0 and z̈1 = −(σρ − g+). The majorant
curve for the sliding mode observer is shown in Figure 2.
As shown in Figure 2 line (L1), let z1N be the intersection
of the majorant curve and the axis ż1 = 0, we have ż210 =
2(σρ−g+)z1N , where ż10 > 0 is the intersection of the curve
and the axis z1 = 0, let σ satisfies the inequality σρ > g+,
for z1 > 0, ż1 > 0, we have

z̈1≤g+−σρ−κ|z1|1/2ż1

(
1
2

1
|z1|
ρ+

1
z1

(
ρ−ρ2

))
<0. (43)

Hence, the trajectory approaches the axis ż1 = 0. For
z1 > 0, ż1 ≤ 0, the majorant curve is composed of two parts,
for the first part, when the trajectory enters the half plane
ż1 ≤ 0, ż1 keeps decreasing to pointP0 until z̈1 = 0, themajo-
rant curve is a vertical line (see Line (L2) in Figure 1), when
the right hand side of (42) is equal to zero in the worst case,
we have

−g+−
(
σρ+κ|z1|1/2ż1

(
1
2

1
|z1|

ρ+
1
z1

(
ρ−ρ2

)))
=0, (44)

the coordinate of the point P0 is (z1N , ż1N ), then from (44),
we can obtain

ż1N = (−2
/
(κ(3ρ − 2ρ2)))(σρ + g+)z1/21N . (45)

For the second part, the majorant curve is the horizontal line
between the points (z1N , (−2

/
(κ(3ρ − 2ρ2)))(σρ+ g+)z1/21N )

and (0, ż1N ), as line L3 depicted in Figure 2. Then, we can
obtain

|ż10|
|ż1N |

=
κ(3ρ − 2ρ2)

√
2(σρ − g+)

2(σρ + g+)
, (46)

we have 3ρ − 2ρ2 < 2, then if the following inequality is
satisfied

κ >
(σρ + g+)√
2(σρ − g+)

, (47)

we can obtain
|ż10|
|ż1N |

> 1, (48)

the series {ż1i} = ż10, ż11, · · · , ż1i, · · · are the consequent
crossing points of the system (37) starting at (0, ż10) with
axis z1 = 0, (48) means that |ż1i| becomes smaller and we can
obtain the convergence of the variable (0, ż1i) to z1 = ż1 = 0.

IV. SIMULATION RESULTS
A. 2-DOF ROBOT MANIPULATOR
In order to illustrate the effectiveness of the proposed method
via the joint velocity estimation in the presence of con-
straints and unknown parameters, the simulations on a 2-DOF
robot manipulator with both eye-in-hand and eye-to-hand

FIGURE 7. Simulation results for 2-DOF robot manipulator with eye-in-hand camera configuration. (a) Image errors of the classical IBVS scheme.
(b) Image errors of the visual predictive control scheme. (c) Image errors of the proposed method.
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FIGURE 8. Simulation results for 2-DOF robot manipulator with eye-in-hand camera configuration. (a) Image trajectory of the classical IBVS
scheme. (b) Image trajectory of the visual predictive control scheme. (c) Image trajectory of the proposed method. (d) Image errors of the classical
IBVS scheme. (e) Image errors of the visual predictive control scheme. (f) Image errors of the proposed method.

camera configurations are presented. The structure diagrams
of the 2-DOF robot manipulator with eye-in-hand cam-
era configuration and eye-to-hand camera configuration are
shown in Figure 3 and Figure 4, respectively. The real
camera intrinsic parameters are as follows: the focal length
f = 0.005 m, the coordinates of the principal point (u0, v0) =
(646, 482) pixels, the scale factors along the u axis αu =
269167 pixels/m and the scale factors along the v axis
αv = 267778 pixels/m. The image has a 1292 × 964 pixels
resolution. The lengths of the first and second links are l1 =
0.18 m and l2 = 0.15 m, the mass centers of first and second
links are lc1 = 0.091m, lc2 = 0.105m, the masses of the first
and second links are m1 = 23.9 kg and m2 = 4.44 kg, and
the inertia of the first and second links are I1 = 1.27 kgm2,
I2 = 0.24 kgm2. The sampling period of the controller is
40 ms, which corresponds to an usual camera capturing rate
with 25 frames/second. The visibility constraint is performed
as [

umin = 0
vmin = 0

]
≤ sm ≤

[
umax = 1292
vmax = 964

]
. (49)

Moreover, actuator saturation limits of −10 Nm ≤ τ ≤

10 Nm are considered. The simulations are conducted under
MATLAB on a desktop with a 3.2 GHz Intel Core i7. The
SQP algorithm (fmincon function from optimization Matlab
toolbox) is used for solving the optimization problems. The
rough camera intrinsic parameters are û0 = 500 pixels, v̂0 =
500 pixels, α̂u = 250000 pixels/m, α̂v = 250000 pixels/m.

The rough robot parameters are l̂1 = 0.05 m, l̂2 = 0.05 m,
l̂c1 = 0.05 m, l̂c2 = 0.05 m, m̂1 = 10 kg, m̂2 = 2 kg,
Î1 = 1 kgm2, and Î2 = 0.2 kgm2.
The simulation results of the IBVS system under the

proposed control method is compared with those under the
classical IBVS scheme in [4] and the visual predictive control
scheme in [29].
In the eye-in-hand camera configuration, the simulations

are carried out to take four feature points from initial positions
to their desired positions on the image plane. The 3-D position
coordinates of the feature points with respect to the robot
base frame are (0.1, 0.15, 2.5)T m, (−0.1,−0.15, 2.5)T m,
(0.1,−0.15, 2.5)T m and (−0.1, 0.15, 2.5)T m, respectively.
The transformation matrix from the robot end-effector frame
to the camera frame is

T ce =


−1 0 0 0.01
0 −1 0 −0.02
0 0 1 0.015
0 0 0 1

 . (50)

The initial roughly estimated camera extrinsic parameter
matrix T̂ ce (0) is

T̂ ce (0) =

−1 0 −0.3 0.001
0 −1 0 0.03
0 0 0.95 0.001
0 0 0 1

 . (51)

The initial roughly estimated 3-D position parameters of
the feature points in the robot base frame are (0.09,
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0.01, 0.05)T m, (0.09, 0.01, 0.05)T m, (0.09, 0.01, 0.05)T m
and (0, 0, 0.05)T m, respectively. The initial locations of
the features points on the image plane are (734.8, 476.7)T

pixels, (895.3, 370.2)T pixels, (895.3, 476.7)T pixels and
(734.8, 370.2)T pixels, respectively. The desired locations of
the features points on the image plane are (771.1, 416.3)T

pixels, (878.2, 576)T pixels, (771.1, 576)T pixels and
(878.2, 416.3)T pixels, respectively. The weighting matrices
are F = 10I8×8, G = I2×2. To balance the computational
time and the control efficiency, the prediction horizon and the
control horizon are chosen as Np = 3 and Nc = 2. The initial
covariance matrix is chosen as H (0) = 1010I , the forgetting
factor is set as ε = 0.995,Kv = −5I2×2, and the slidingmode
observer parameters are κ = 100, σ = 80, ξ = 2. The true
values of the camera intrinsic and extrinsic parameters and the
depth information are not necessary. Only the initial rough
camera intrinsic and extrinsic parameters and feature position
parameters are used for the controller design. Figure 5(a)
depicts the 2-D trajectory of the feature points on the image
plane under the control of the proposed method, which illus-
trates that the proposed controller takes the feature points to
their desired values successfully. Figure 5(b) shows the chat-
tering phenomenon caused by the traditional sliding mode
observer, the severe chattering in the robot system is very
harmful. Then, the proposed sliding mode observer is used
here to eliminate the chattering effects, and the corresponding
result is given in Figure 5(c), from which we can observe
that the chattering effect is completely eliminated, and the
torque constraint of joint 1 is quickly reached to guarantee
a fast motion. With the initial conditions (q1(0), q̇1(0))T =(
π
/
3, 0.006

)T , (q2(0), q̇2(0))T = (π/6, 0.006)T , the phase-
portrait of the system is depicted in Figure 6 to indicate sys-
tem dynamic behavior. The computational time in solving the
optimization problem under the proposed approach is about
18 ms per sampling period. We can observe that the proposed
control approach can reject the model uncertainty well in the
case when the joint velocity measurements are unavailable,
while the visibility constraint and the torque constraint can
be considered.

The image errors of the classical IBVS scheme, the visual
predictive control scheme and the proposed control approach
are illustrated in Figure 7. Compared with the classical IBVS
scheme and the visual predictive control scheme, the settling
time for response of the IBVS system under the proposed
control method (about 4 s) is shorter than that under the visual
predictive control scheme (about 11 s) and the classical IBVS
scheme (about 20 s). Furthermore, if the initial estimates
of the camera values and position coordinates of features
are too rough, the classical IBVS scheme and the visual
predictive control scheme will fail in the control tasks. The
initial estimated camera extrinsic values are set as

T̂ ce (0) =


1 0 −0.3 0.001
0 −1 0 0.03
0 0 0.95 0.001
0 0 0 1

 , (52)

FIGURE 9. Simulation results by the proposed method for 2-DOF robot
manipulator with eye-to-hand camera configuration. (a) Image trajectory.
(b) Robot joint angles. (c) Torque.

then the comparison results of the three methods are
illustrated in Figure 8, it can be seen from the Figure 8
that only the proposed method successfully fulfills
the visual servoing tasks, the classical IBVS scheme
and the visual predictive control scheme cannot fulfill
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FIGURE 10. Simulation results for 2-DOF robot manipulator with eye-to-hand camera configuration. (a) Image errors of the classical IBVS
scheme. (b) Image errors of the visual predictive control scheme. (c) Image errors of the proposed method.

FIGURE 11. Simulation results for 2-DOF robot manipulator with eye-to-hand camera configuration. (a) Image trajectory of the classical IBVS
scheme. (b) Image trajectory of the visual predictive control scheme. (c) Image trajectory of the proposed method. (d) Image errors of the classical
IBVS scheme. (e) Image errors of the visual predictive control scheme. (f) Image errors of the proposed method.

the visual servoing tasks because of the large model
uncertainty.

In the eye-to-hand camera configuration, four feature
points are marked on the robot end-effector. The control
objective is to regulate the feature points from initial loca-
tions to desired locations on the image plane. The trans-
formation matrix from the robot base frame to the camera
frame is

T cb =


1 0 0 0.06
0 −1 0 0.05
0 0 −1 3.8
0 0 0 1

 . (53)

The initial roughly estimated camera extrinsic matrix T̂ cb (0) is

T̂ cb (0) =


1 −0.2 −0.3 0.01
0 −0.98 0 0.025
0 0 −0.95 0.02
0 0 0 1

 . (54)

The initial roughly estimated position values of the feature
points in the end-effector frame are (0.01,−0.01, 0.01)T m,
(0.3,−0.1, 0.042)T m, (−0.1, 0.003, 0)T m, (−0.049, 0, 0.1)T

m, respectively. The initial positions of the features points
on the image plane are (780, 541.3)T pixels, (770.3, 544)T

pixels, (776.5, 547.4)T pixels and (773.9, 537.8)T pixels,
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FIGURE 12. Simulation results by the proposed method for 6-DOF robot manipulator with eye-in-hand camera configuration. (a) Image
trajectory. (b) Image errors. (c) Robot joint angles. (d) Torque.

respectively. The desired positions of the features points on
the image plane are (636.4, 592.4)T pixels, (639, 582.8)T

pixels, (632.9, 586.3)T pixels and (642.6, 588.9)T pixels,
respectively. The prediction horizon, the control horizon,
the initial covariance matrix, and the forgetting factor are
set the same values to the previous simulation, the weighting
matrices are F = 10I8×8, G = 10I2×2, Kv = −20I2×2,
and the sliding mode observer parameters are κ = 60,
σ = 50, ξ = 2. The simulation results of the proposed control
approach are presented in Figure 9. The image trajectory of
the feature points are illustrated in Figure 9(a), the result
shows that the proposed controller can make the feature
points reach to the desired positions while keeping the feature
points within the camera’s field of view. The changes of
the joint angles in the visual servoing task are illustrated
in Figure 9(b). Figure 9(c) shows that the torques of joint
1 rapidly reach to the saturation constraint, ensuring a fast
response. The computational time in solving the optimization
problem under the proposed approach is about 22 ms per

sampling period. We can observe that the model uncertainty
can be rejected under the situation that the joint velocity mea-
surements are unavailable in the proposed control method,
while the visibility constraint and the torque constraint can
be taken into account during the visual servoing task.

The image errors of the three approaches are demonstrated
in Figure 10. It can be seen from Figure 10 that the settling
time for response of the IBVS system under the proposed
control method is about 6 s, which is much shorter than that
under the visual predictive control scheme (about 12 s) and
the classical IBVS scheme (about 22 s). Moreover, if the
model uncertainty is too large, the classical IBVS scheme
and the visual predictive control scheme will fail in the visual
servoing tasks. The initial estimated transformation matrix
from the robot base frame to the camera frame is set as

T̂ cb (0) =


−1 −0.8 −0.3 0.01
0 0.6 0 0.025
0 0 −0.95 0.02
0 0 0 1

 , (55)
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FIGURE 13. Simulation results by the proposed method for 6-DOF robot manipulator with eye-to-hand camera configuration. (a) Image
trajectory. (b) Image errors. (c) Robot joint angles. (d) Torque.

then the comparison results of the three methods are shown
in Figure 11, from Figure 11, we can see that only the
proposed method succeeds in completing the visual servo-
ing tasks, which validates the effectiveness of the proposed
method.

It can be concluded that the proposed approach can
achieve satisfactory control performance by considering
robot dynamics for both the eye-in-hand and eye-to-hand
camera configurations without the use of joint velocity
measurements in the presence of the visibility constraint,
the torque constraint and the model uncertainty.

B. 6-DOF ROBOT MANIPULATOR
To further demonstrate the performance of the proposed
algorithm and verify that the method can cope with the 3D
motion problem of robot manipulators, simulation results on
a 6-DOF PUMA560 robot manipulator are presented in this
subsection. The dynamic model and the dynamic parameters
are given in [34].

In the eye-in-hand-camera configuration, the feature posi-
tion coordinates with respect to the robot base frame are
(0.15, 0.15, 4)T m, (−0.15,−0.15, 4)T m, (0.15,−0.15, 4)T

m and (−0.15, 0.15, 4)T m, respectively. The transformation
matrix from the robot end-effector frame to the camera frame
is

T ce =


1 0 0 0.01
0 1 0 −0.02
0 0 1 0.015
0 0 0 1

 , (56)

the initial roughly estimated camera extrinsic matrix T̂ ce (0) is

T̂ ce (0) =


1 0 −0.3 0.001
0 1 0 0.03
0 0 0.95 0.001
0 0 0 1

 , (57)

the initial rough estimations of camera intrinsic values and
the rough estimations of feature position coordinates are
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FIGURE 14. Simulation results by the proposed method for 6-DOF robot
manipulator with eye-to-hand camera configuration in the case with
noises. (a) Image trajectory. (b) Image errors.

set the same initial values to the simulation of the 2-DOF
robot manipulator with eye-in-hand camera configuration.
The initial positions of the features points on the image
plane are (513.6, 612.6)T pixels, (448.9, 528.8)T pixels,
(423.7, 617)T pixels and (537.2, 525.2)T pixels, respec-
tively. The desired locations of the features points on the
image plane are (993.3, 275.5)T pixels, (1067.6, 170.7)T

pixels, (969.9, 199.5)T pixels and (1091.5, 248.3)T pixels,
respectively. The objective is to control the motion of the
robot manipulator by employing image information from the
camera to take the feature points to their desired locations on
the image plane. The actuator saturation limits of−50 Nm ≤
τ ≤ 50 Nm are considered. The weighting matrices are F =
10I8×8,G = 0.1I6×6, the prediction horizon and the control
horizon are set as Np = 2 and Nc = 1, the initial covariance
matrix is H (0) = 1010I , the forgetting factor is ε = 0.995,
Kv = −10I6×6, and the sliding mode observer parameters are
κ = 6, σ = 1, ξ = 2. The simulation results of the proposed
method are shown in Figure 12, from the figure, we can see

that the proposed method can take the features to their desired
locations for the control of the 6-DOF robot manipulator.
The computational time in solving the optimization problem
under the proposed approach is about 32 ms per sampling
period.
In the eye-to-hand-camera configuration, the feature points

are fixed on the robot end-effector. The transformation
matrix from the robot base frame to the camera frame
is

T cb =


0 0 1 0.05
−1 0 0 0.2
0 −1 0 3
0 0 0 1

 , (58)

and the initial roughly estimated transformation matrix T̂ cb (0)
is

T̂ cb =


0 −0.2 0.95 0.01
−1 0 0 0.25
0 −0.98 −0.3 2
0 0 0 1

 , (59)

the initial roughly estimated camera intrinsic parameters
and the roughly estimated feature position parameters are
set the same initial values to the simulation of the 2-DOF
robot manipulator with eye-to-hand camera configuration.
The initial locations of the features points on the image
plane are (554.2, 610.6)T pixels, (517.8, 689.1)T pixels,
(493.1, 645.5)T pixels and (597.7, 687.1)T pixels, respec-
tively. The desired positions of the features points on the
image plane are (520.2, 550.6)T pixels, (446.4, 616.4)T

pixels, (440.2, 567.6)T pixels and (530.2, 637.5)T pixels,
respectively. The actuator saturation limits, the weighting
matrices, the prediction horizon, the control horizon, the ini-
tial covariance matrix are set the same values to the pre-
vious simulation, the forgetting factor is ε = 0.994,
Kv = −20I6×6, and the sliding mode observer parame-
ters are κ = 20, σ = 10, ξ = 2. The simulation
results of the proposed algorithm are given in Figure 13,
from which we can observe that the satisfactory control
performance can be achieved for the control of the 6-DOF
robot manipulator. The computational time in solving the
optimization problem under the proposed approach is about
33 ms per sampling period. Moreover, to test the robust-
ness of the proposed control approach, random noises with
amplitude of ±3 pixels are then added to the system out-
put to simulate image processing errors, the visual servo-
ing results are illustrated in Figure 14. It can be seen from
Figure 14 that the control tasks are still satisfied. Further-
more, from Figures 12−14, we can also see that the proposed
algorithm can cope with the 3D motion problem of robot
manipulators.

V. CONCLUSION
In visual servoing, the constraints are usually either
ignored or treated at the kinematic level, and many existing
schemes including MPC-based IBVS methods have limita-
tions in the presence of model uncertainty. In this paper,
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a new composite MPC-based IBVS design method by con-
sidering the robot dynamics is proposed to simultaneously
deal with the constraints, the unknown camera intrinsic and
extrinsic parameters and unknown depth information under
the situation that the joint velocity measurements are not
available. The design of the MPC scheme based on identi-
fication algorithm and sliding mode observer for the IBVS
system has been investigated. The proposed approach can
be applied to both the eye-in-hand and eye-to-hand camera
configurations. By using MPC strategy, the control signal
is computed through minimizing the cost function based on
the image errors, and the constraints due to the visibility
constraint and the torque constraint can be explicitly taken
into account. Under the depth-independent image Jacobian
matrix framework, the iterative identification algorithm is
incorporated in the MPC design method for obtaining the
model parameters at each time step. Moreover, to avoid
performance decaying caused by measurement errors of
the joint velocity, the sliding mode observer is used to
provide the estimated values of the joint velocities. The
simulation results show that the IBVS system under the
composite MPC method can achieve satisfactory control
performance.

REFERENCES
[1] D.-H. Park, J.-H. Kwon, and I.-J. Ha, ‘‘Novel position-based visual

servoing approach to robust global stability under field-of-view con-
straint,’’ IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4735–4752,
Dec. 2012.

[2] B. Thuilot, P. Martinet, L. Cordesses, and J. Gallice, ‘‘Position based
visual servoing: Keeping the object in the field of vision,’’ in Proc.
IEEE Int. Conf. Robot. Automat., Washington, DC, USA, May 2002,
pp. 1624–1629.

[3] V. Lippiello, B. Siciliano, and L. Villani, ‘‘Position-based visual servoing
in industrial multirobot cells using a hybrid camera configuration,’’ IEEE
Trans. Robot., vol. 23, no. 1, pp. 73–86, Feb. 2007.

[4] F. Chaumette and S. Hutchinson, ‘‘Visual servo control. I. Basic
approaches,’’ IEEE Robot. Autom. Mag., vol. 13, no. 4, pp. 82–90,
Dec. 2006.

[5] F. Chaumette and S. Hutchinson, ‘‘Visual servo control. II. Advanced
approaches [Tutorial],’’ IEEE Robot. Autom. Mag., vol. 14, no. 1,
pp. 109–118, Mar. 2007.

[6] A. Chan, S. Leonard, E. A. Croft, and J. J. Little, ‘‘Collision-free visual
servoing of an eye-in-hand manipulator via constraint-aware planning
and control,’’ in Proc. Amer. Control Conf., San Francisco, CA, USA,
Jun./Jul. 2011, pp. 4642–4648.

[7] X. Liang, H. Wang, W. Chen, and Y.-H. Liu, ‘‘Uncalibrated image-
based visual servoing of rigid-link electrically driven robotic
manipulators,’’ Asian J. Control, vol. 16, no. 3, pp. 714–728,
May 2014.

[8] X. Liang, H. Wang, W. Chen, D. Guo, and T. Liu, ‘‘Adaptive image-
based trajectory tracking control of wheeled mobile robots with an uncal-
ibrated fixed camera,’’ IEEE Trans. Control Syst. Technol., vol. 23, no. 6,
pp. 2266–2282, Nov. 2015.

[9] N. R. Gans and S. A. Hutchinson, ‘‘Stable visual servoing through hybrid
switched-system control,’’ IEEE Trans. Robot., vol. 23, no. 3, pp. 530–540,
Jun. 2007.

[10] V. Lippiello, J. Cacace, A. Santamaria-Navarro, J. Andrade-Cetto,
M. Á. Trujillo, Y. R. Esteves, and A. Viguria, ‘‘Hybrid visual servoing
with hierarchical task composition for aerial manipulation,’’ IEEE Robot.
Autom. Lett., vol. 1, no. 1, pp. 259–266, Jan. 2016.

[11] Y.Wang, H. Lang, and C.W. D. Silva, ‘‘A hybrid visual servo controller for
robust grasping by wheeled mobile robots,’’ IEEE/ASME Trans. Mecha-
tronics, vol. 15, no. 5, pp. 757–769, Oct. 2010.

[12] F. Janabi-Sharifi and M. Marey, ‘‘A Kalman-filter-based method for
pose estimation in visual servoing,’’ IEEE Trans. Robot., vol. 26, no. 5,
pp. 939–947, Oct. 2010.

[13] A. Anwar, W. Lin, X. Deng, J. Qiu, and H. Gao, ‘‘Quality inspection
of remote radio units using depth-free image based visual servo with
acceleration command,’’ IEEE Trans. Ind. Electron., to be published.

[14] S. Haobin, H. Kao-Shing, L. Xuesi, and C. Jialin, ‘‘A learning approach
to image-based visual servoing with a bagging method of velocity calcu-
lations,’’ Inf. Sci., vol. 481, pp. 244–257, May 2019.

[15] Y. Mezouar and F. Chaumette, ‘‘Path planning for robust image-based con-
trol,’’ IEEE Trans. Robot. Autom., vol. 18, no. 4, pp. 534–549, Aug. 2002.

[16] G. Chesi, ‘‘Visual servoing path planning via homogeneous forms and LMI
optimizations,’’ IEEE Trans. Robot., vol. 25, no. 2, pp. 281–291, Apr. 2009.

[17] Y. Mezouar and F. Chaumette, ‘‘Optimal camera trajectory with image-
based control,’’ Int. J. Robot. Res., vol. 22, nos. 10–11, pp. 781–803,
Oct. 2003.

[18] N. P. Papanikolopoulos, P. K. Khosla, and T. Kanade, ‘‘Visual tracking
of a moving target by a camera mounted on a robot: A combination of
control and vision,’’ IEEE Trans. Robot. Autom., vol. 9, no. 1, pp. 14–35,
Feb. 1993.

[19] K. Hashimoto and H. Kimura, ‘‘LQ optimal and nonlinear approaches
to visual servoing,’’ in Visual Servoing (World Scientific Series in
Robotics and Intelligent Systems), vol. 7, K. Hashimoto, Ed. Singapore:
World Scientific, 1993, pp. 165–198.

[20] K. Hashimoto, T. Ebine, and H. Kimura, ‘‘Visual servoing with hand-
eye manipulator-optimal control approach,’’ IEEE Trans. Robot. Autom.,
vol. 12, no. 5, pp. 766–774, Oct. 1996.

[21] P. Danès and D. Bellot, ‘‘Towards an LMI approach to multicriteria visual
servoing in robotics,’’ Eur. J. Control, vol. 12, no. 1, pp. 86–110, 2006.

[22] M. U. Khan, I. Jan, A. Ahmed, M. A. Azad, and N. Iqbal, ‘‘Uncal-
ibrated visual servo control with multi-constraint satisfaction,’’ in
Proc. IEEE Int. Conf. Robot. Automat., Shanghai, China, May 2011,
pp. 6318–6323.

[23] O. Kermorgant and F. Chaumette, ‘‘Avoiding joint limits with a low-
level fusion scheme,’’ in Proc. EEE/RSJ Int. Conf. Intell. Robots Syst.,
San Francisco, CA, USA, Sep. 2011, pp. 768–773.

[24] O. Kermorgant and F. Chaumette, ‘‘Dealing with constraints in sensor-
based robot control,’’ IEEE Trans. Robot, vol. 30, no. 1, pp. 244–257,
Feb. 2014.

[25] G. Chesi, K. Hashimoto, D. Prattichizzo, and A. Vicino, ‘‘Keeping fea-
tures in the field of view in eye-in-hand visual servoing: A switch-
ing approach,’’ IEEE Trans. Robot., vol. 20, no. 5, pp. 908–914,
Oct. 2004.

[26] G. Lopez-Nicolas, S. Bhattacharya, J. J. Guerrero, C. Sagues, and
S. Hutchinson, ‘‘Switched homography-based visual control of differential
drive vehicles with field-of-view constraints,’’ in Proc. IEEE Int. Conf.
Robot. Automat., Roma, Italy, Apr. 2007, pp. 4238–4244.

[27] Y. Zhang and S. Li, ‘‘A neural controller for image-based visual servoing of
manipulators with physical constraints,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 29, no. 11, pp. 5419–5429, Nov. 2018.

[28] M. Sauvée, P. Poignet, and E. Dombre, ‘‘Ultrasound image-based visual
servoing of a surgical instrument through nonlinear model predictive con-
trol,’’ Int. J. Robot. Res., vol. 27, no. 1, pp. 25–40, Jan. 2008.

[29] G. Allibert, E. Courtial, and F. Chaumette, ‘‘Predictive control for con-
strained image-based visual servoing,’’ IEEE Trans. Robot., vol. 26, no. 5,
pp. 933–939, Oct. 2010.

[30] T. T. Wang, W. F. Xie, G. D. Liu, and Y. M. Zhao, ‘‘Quasi-min-max model
predictive control for image-based visual servoing with tensor product
model transformation,’’ Asian J. Control, vol. 17, no. 2, pp. 402–416,
Mar. 2015.

[31] A. Hajiloo,M. Keshmiri,W.-F. Xie, and T.-T.Wang, ‘‘Robust online model
predictive control for a constrained image-based visual servoing,’’ IEEE
Trans. Ind. Electron., vol. 63, no. 4, pp. 2242–2250, Apr. 2016.

[32] J. Davila, L. M. Fridman, and A. Levant, ‘‘Second-order sliding-mode
observer for mechanical systems,’’ IEEE Trans. Autom. Control, vol. 50,
no. 11, pp. 1785–1789, Nov. 2005.

[33] G. Goodwin, P. J. Ramadge, and P. E. Caines, ‘‘Discrete-timemultivariable
adaptive control,’’ IEEE Trans. Autom. Control, vol. 25, no. 3, pp. 449–456,
Jun. 1980.

[34] B. Armstrong, O. Khatib, and J. Burdick, ‘‘The explicit dynamic model
and inertial parameters of the PUMA 560 arm,’’ in Proc. IEEE Int. Conf.
Robot. Automat., San Francisco, CA, USA, Apr. 1986, pp. 510–518.

VOLUME 7, 2019 73553



Z. Qiu et al.: MPC for Uncalibrated and Constrained IBVS Without Joint Velocity Measurements

ZHOUJINGZI QIU received the M.S. degree in
control engineering from the Shenzhen Graduate
School, Harbin Institute of Technology, Shenzhen,
China, in 2014. She is currently pursuing the Ph.D.
degree with the School of Aeronautics and Astro-
nautics, Shanghai Jiao Tong University.

Her scientific interests include visual servoing,
predictive control, and computer vision.

SHIQIANG HU received the Ph.D. degree in
electronics and information technology from the
Beijing Institute of Technology, in 2002.

He is currently a Professor and the Associate
Dean of the School of Aeronautics and Astronau-
tics, Shanghai Jiao Tong University. His research
areas include intelligent information processing,
image understanding, and nonlinear filtering.

XINWU LIANG received the B.S. and Ph.D.
degrees in control engineering from the Huazhong
University of Science and Technology, Wuhan,
China, in 2006 and 2011, respectively.

He was a Postdoctoral Fellow of the Department
of Automation, Shanghai Jiao Tong University,
Shanghai, China, from 2011 to 2014, where
he is currently an Associate Professor with the
School of Aeronautics and Astronautics. He was a
Postdoctoral Fellow of the Department ofMechan-

ical and Automation Engineering, The Chinese University of Hong Kong,
Hong Kong, from 2014 to 2015. His current research interests include robot
control, visual servoing, adaptive control, and computer vision.

73554 VOLUME 7, 2019


	INTRODUCTION
	VISUAL SERVOING MODEL
	CONTROLLER DESIGN
	THE MPC FORMULATION FOR IBVS SYSTEM
	UNCERTAINTY AND LEARNING FOR IBVS
	THE SLIDING MODE OBSERVER DESIGN

	SIMULATION RESULTS
	2-DOF ROBOT MANIPULATOR
	6-DOF ROBOT MANIPULATOR

	CONCLUSION
	REFERENCES
	Biographies
	ZHOUJINGZI QIU
	SHIQIANG HU
	XINWU LIANG


