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ABSTRACT In order to solve the problem of image degradation in foggy weather, a single image defogging
method based on a multi-scale retinex with color restoration (MSRCR) of multi-channel convolution (MC)
is proposed. The whole defogging process mainly consists of four key parts: estimation of illumination
components, guided filter operation, reconstruction of fog-free images, and white balance operation. First,
the multi-scale Gaussian kernels are employed to extract precise features to estimate the illumination
component. After that, the MSRCR method is applied to enhance the global contrast, detail information,
and color restoration of the image. Second, the smoothing constraints of both illumination component and
reflected component are considered together by using the guided filter twice, thus the enhanced image
satisfies the smoothing constraint and the noise in the enhanced image is reduced. Third, the enhanced
image by the MSRCR and the image processed by the secondary guided filter are fused by linear weighting
to reconstruct the final fog-free image. Finally, in order to eliminate the influence of illumination on the
color of the defogged image, the final defogged image is processed by white balance. The experimental
results demonstrated that the proposed method can outperform state-of-the-art methods in both qualitative
and quantitative comparisons.

INDEX TERMS Image defogging, multi-channel convolution, guided filter, weighted fusion, MSRCR.

I. INTRODUCTION
A clear image is a key prerequisite for understanding real-
world scenarios in the field of digital imaging. In the out-
door environment, visibility and contrast of a photograph
will seriously reduce due to bad weather such as light, fog
and haze [1]–[3]. The main reason is that the quality of
the photo is highly susceptible to scattering, refraction, and
reflection of a large amount of small particles in the air
before the light reaches the camera lens. In order to effectively
remove dense fog and highlight the details of the image,
image restoration and enhancement are commonly used
methods [4]–[6]. Fig. 1 shows examples of dense fog images
and their corresponding defogged images. As shown in the
top row of Fig. 1, low-quality images greatly affect the per-
ceptions and recognition capabilities of the human eyes. It can

The associate editor coordinating the review of this manuscript and
approving it for publication was Qiangqiang Yuan.

be seen from the bottom row of Fig. 1 that the defogged
images have better visual effects and clearer details, which
are more suitable for applications in expanding areas such as
space, transportation, meteorology, underwater detection, and
military technology. Therefore, image defogging has become
an important research direction, which has attracted more and
more attention of researchers [1]–[6].

In recent decades, image defogging based on image
enhancement and physical model has achieved good devel-
opment [7]. The defogging method based on physical model
could obtain the optimal estimation of fog-free images
is obtained by establishing an approximate atmospheric
scattering model and inversion degradation process [8].
It can be divided into three categories. The first cate-
gory means using depth information [9], [10]. For example,
Tarel et al. [9] and Kopf et al. [10] obtained the depth infor-
mation of the image, and then solved the image degradation
model to estimate the fog-free image. However, this kind of
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FIGURE 1. Examples of dense fog and defogged images. The top row
shows two fog images, the defogged images by our method on the
bottom row.

method is highly targeted with high hardware requirements
that limit its application in many fields. The second cate-
gory means using atmospheric light polarization [11], [12].
Schechner and Averbuch [11] and Shwartz et al. [12] cap-
tured images under different brightness through polarizer
to estimate polarization, ambient light intensity, and trans-
mittance distribution to achieved rapid defogging. However,
this kind of method has poor defogging effect in dense
fog and cannot process a single image automatically. The
third category means using prior information [13]–[15],
He et al. [13], Nishino et al. [14] and Chen et al. [15] pro-
posed to restore foggy images to fog-free images by acquiring
prior information. However, this kind of method is difficult
to acquire prior information and the time complexity is high.
In short, the defogging method based on physical model
needs some prior information of one or more images in the
same scene, or requires some physical equipment, which is
inconvenient in practical application [16].

The defogging method based on image enhancement can
be detached from the dependence on physical devices and
become the main research direction of current defogging
method, which includes histogram equalization [17], homo-
morphic filter [18], bilateral filter [19], guided filter [20],
and retinex method [21]–[23]. Histogram equalization [17]
may enhance the contrast of background noise and reduce
the contrast of usable signals because of it does not select the
processed data. The computational complexity of homomor-
phic filtering and bilateral filtering is high, and the efficiency
and practicability of the method are not satisfactory. As a
local linear image filter, guided filter [20] has good edge
preservation and smooth filtering performance. However,
when the original image is complex and noisy, the enhanced
image may appear noise enhancement. Image defogging
methods based on Retinex theory include Single-scale

Retinex (SSR) [21], Multi-scale Retinex (MSR) [22], Multi-
scale Retinex with color restoration (MSRCR) [23], and other
improved methods. In these defogging methods, the estima-
tion and elimination of illumination components are the key
steps, and Gaussian filtering is usually used to estimate the
illumination component. SSR [21] method was mainly used
to enhance grayscale images, but it was difficult to balance
the dynamic range compression and color constancy of the
image. The MSR [22] method is a linear weighted fusion
of multiple SSRs with different scales, which could enhance
the color image, but would produce the problem of color
degradation. MSRCR [23] introduced the color recovery fac-
tor on the basis of MSR, so that the enhanced image had
better color guarantee, but the color of the image would
deviate from the original color and the whole image tended
to white. Tare et al. [24] used MSR method to remove fog in
dense fog scenario for many objects. However, the defogging
image is far from the fog-free image when the fog in the sce-
nario was non-uniform, which indicated that MSR increased
some contrasts corresponding to fog and not to the scene.
Zhang et al. [25] employed the retinex to obtain the illumi-
nation component and used gamma correction to balance the
image brightness. However, since the attenuation of illumi-
nation light was not considered, the image after defogging
appeared local distortion and blurred details. Wang et al. [26]
proposed an efficient single image defogging method based
on physical model and MSRCR, which could be fast and
efficient, but the defogged image appeared over-exposed and
halo effect. Because of the good learning and representation
ability of deep network structure, the single image defogging
technology based on deep learning [27]–[29] has been widely
promoted and applied.

In summary, defogging method based on image enhance-
ment can be detached from the dependence on physical
devices and has good application value. In order to take full
advantage of the enhancements with the retinex and solve
the problem of missing image detail information, a defog-
ging model based on multi-channel convolutional MSRCR
(MC_MSRCR) is proposed, which is combined by guided
filtering and MSRCR, as well as introduces multi-channel
convolution and linear weighted fusion. The main contribu-
tions of this paper include four aspects:

1) For the enhanced image of MSRCR, the smoothing con-
straints of both illumination component and reflected compo-
nent are considered together by using guided filter twice, thus
the enhanced image satisfies the smoothing constraint and the
noise in the enhanced image is reduced.

2) In order to extract more precise features to estimate the
illumination component, six Gaussian convolution kernels
of different scales are used for multi-channel convolution.
Meanwhile, the Retinex operation is carried out, and the
quantization operation is introduced to ensure that the defog-
ging image has good color fidelity.

3) The final defogging image is a linear weighted fusion of
the image after secondary guided filtering processing and the
MSRCR-based enhanced.
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FIGURE 2. The framework of the proposed algorithm.

4) The final defogged image is processed by white balance
to improve the visual effect of defogged image.

The rest of the paper is organized as follows. The pro-
posed defogging method and its detail operation are shown
in section II. Along with experimental results and analysis
in section III, the performance of the proposed method in
different applications is evaluated. The conclusion and the
exploration of the future work are shown in section IV.

II. PROPOSED DEFOGGING MODEL
In this section, we will describe in detail the proposed defog-
ging model in detail, as shown in Fig. 2. In the following,
we describe the process and analyze the meaning of each
step in detail. Firstly, the guided filtering processing of the
original image preserves the edge information and overcomes
the noise. Secondly, in order to extract more precise fea-
tures to estimate the illumination component, the R, G and
B channels after the guided filtering are convolution by six
Gaussian convolution kernels of different scales, respectively,
and then the corresponding six feature maps of the same size
are obtained. Thirdly, the six feature maps corresponding to
each channel are enhanced by MSRCR and merged with the
linear weighting to improve the enhanced quality, and the
quantization operation is introduced to ensure that the defog-
ging image with good color fidelity. Meanwhile, the overflow
judgment is introduced to ensure that the pixel-value of the
defogged image is between 0 ∼ 255. Fourthly, since the first
guided filter only considers the smoothing constraints on the
illumination component, the final defogged image not only
preserves the noise of the original image, but also enhances
the estimation error of the illumination component. However,
the smoothing constraints of both illumination component
and reflected image are considered by using twice guided

filter, so that the enhanced image satisfies the smoothing con-
straint and the noise in the enhanced image is reduced. Fifthly,
the image enhanced by MSRCR and the image processed
by secondary guided filter are fused with linear weighting
to reconstruct the final fog-free image. Finally, in order to
enhance the appearance of the defogged image by white
balance processing.

A. FIRST GUIDED FILTER
The guided filter is a novel edge-preserving filter with edge
smoothing and detail enhancement. Its output is a local
linear transformation of the guided image. He et al. [20]
gave the definition and introduced the detailed solution
process of the guided filter, which is expressed as q =
guided_filter(p, I , r, ε ) where p is the input image of the
filter, I is the guiding image, r is the window size of the filter
ε > 0 is the regularization coefficient, and q is the filtered
image. As can be observed in Fig. 2, the original image
is divided into R, G, and B channels. The guided filtering
processing of R, G, and B channels are expressed as follows:

R1GF = guided_filter(R,R, r, ε) (1)

G1
GF = guided_filter(G,G, r, ε) (2)

B1GF = guided_filter(B,B, r, ε) (3)

where r = 32 and ε = 0.01, and they are determined by a
large number of experiments.

B. MULTI-CHANNEL CONVOLUTION
Different convolution kernels can obtain different Feature
maps of input image in CNN [27]–[29], and these Features
maps are a representation of feature information. However,
the complexity of the algorithm increases as the number of
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convolution kernel increases. Therefore, it is necessary to
determine the number of convolution kernel by weighing the
amount of feature information and the time complexity of
the algorithm. The estimation of illumination components
in Retinex is convolution operation on the input image by
Gaussian kernels of different scales. These images obtained
by convolution of the input image by Gaussian kernels of
different scales are like Feature maps in CNN. However,
the traditional MSRCR method uses Gaussian kernel func-
tions with three different scales to convolution R, G and
B channels. Based on this consideration, the idea of multiple
kernel convolutions is introduced into MSRCR method by
referring to the ability of multiple kernel convolutions to
extract precise features in CNN [27]–[29]. Firstly, six Gaus-
sian convolution kernels of different scales were used for
convolution of R, G, and B channels in order to extract precise
features to estimate illumination components. Then, in order
to enhance the detail information and global contrast of the
image by a multi-scale linear weighted retinex operation is
performed on the illumination component. The framework of
multi-channel multi-scale convolution is shown in the second
phase of Fig. 2, the estimation formula of the illumination
component is expressed as follows:

Lni (Gfi (x, y)) = S (Gfi (x, y)) ∗ Gn (x, y) (4)

where G(x, y) = 1
2πσ 2

exp(− x2+y2

2σ 2
) is a Gaussian kernel

function, n is the number of filter radius scales of theGaussian
filter and

∫∫
G(x, y)dxdy = 1, we use six scales in actual

applications (n = 6). Typically, two small scales are 0 ≤
σ1 ≤ σ2 < 50, two medium scales are 50 ≤ σ3 ≤ σ4 < 100,
and two large scales are 100 ≤ σ5 < σ6. Gfi(x, y) is a
guiding filter function of the original image. Lni (Gfi(x, y)) is
the illumination component corresponding to the nth scale of
the ith channel.

C. MSRCR
The basic idea of retinex [21] is that the intensity of the
reflected light is not a decisive factor in the color of an
object, whereas it is determined by the ability of an object
to reflect the light of a long, medium and short wave. That
is, the reflection property of the object is preserved, and
the influence of the illumination light on the original image
is removed. According to retinex theory, an idea image is
defined as follows:

S(x, y) = L(x, y) ∗ R(x, y) (5)

where S(x, y) is an image observed in the real word or gener-
ated by other imaging devices, and L(x, y) is an illumination
component and R(x, y) is a reflected image. Then, taking
logarithm of both sides of equation (5)

log(S(x, y)) = log(L(x, y))+ log(R(x, y)) (6)

R(x, y) can be expressed as follows:

log(R(x, y)) = log(S(x, y))− log(L(x, y)) (7)

the detailed solution process of L(x, y) is shown in section B,
L(x, y) = S(x, y) ∗ G(x, y) and G(x, y) = 1

2πσ 2
exp(− x2+y2

2σ 2
)

when n = 1. From (5), (6), and (7), we redefine log(Ri(x, y))
as follows:

log(Ri(x, y)) = log(Si(x, y))− log(Si(x, y) ∗ G(x, y)) (8)

where i is a channel of the image. Equation (8) is actually
a SSR algorithm, in order to compensate for shortcomings
of the SSR, the MSR [22] improves the color image by lin-
ear weighting fusion of multiple SSRs with different scales,
which is expressed as follows:

RMSRi (x, y)=
N∑
n=1

wn
[
log(Si(x, y))− log(Si(x, y) ∗ Gn(x, y))

]
(9)

where N is the number of scales RMSRi (x, y) is the result of
MSR processing on the ith channel, Gn(x, y) is the Gaussian
kernel function corresponding to the nth scale, and wn is the
weight corresponding to the nth scale.
Based on the research of image enhancement code

in GIMP, mean and variance are introduced in the process of
adjusting color deviation by directly starting from the quanti-
tative operation. Meanwhile, a parameter D that controls the
dynamic of the image is introduced to achieve the adjustment
of colorless deviation, which significantly improves the color
fidelity and better adaptation to a variety of images. Then the
improved MSRCR [23] is defined as follows:

Min = Mean
(
RMSRi

)
− D · Var

(
RMSRi

)
(10)

Max = Mean
(
RMSRi

)
+ D · Var

(
RMSRi

)
(11)

RMSRCRi = 255 ∗
RMSRi −Mean(RMSRi )+ D ∗ Var(RMSRi )

2∗D∗Var(RMSRi )
(12)

where Mean and Var are the functions of mean and variance,
respectively. In the GIMP source code, the researchers point
out that enhanced images have a better dynamic compression
range D with is 2∼3. We verify through experiments that
whenD is set to 2 MSRCR enhanced images can better retain
detail and restore the color of the image. For equation (12),
an overflow judgment is added to ensure that all pixel values
are between [0, 255], that is:

RMSRCRi (x, y) =


255 RMSRCRi (x, y) > 255
0 RMSRCRi (x, y) < 0
RMSRCRi (x, y)0 ≤ RMSRCRi (x, y) ≤ 255

(13)

D. SECONDARY GUIDED FILTER
The first guided filtering only takes into account the smooth
constraint on the illumination component. The result of the
final defogged image preserves the noise of the original
image and enhances the estimation error of the illumination
component. However, the secondary guided filtering takes
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into account both the smoothing constraints of the illumina-
tion component and the reflected image together, so that the
image after secondary guided filtering processing satisfies the
smoothing constraint condition and the noise in the enhanced
image is reduced. The secondary guided filter of RMSRCR,
GMSRCR and BMSRCR channels is expressed as follows:

R2GF = guided_filter(RMSRCR,RMSRCR, r, ε) (14)

G2
GF = guided_filter(GMSRCR,GMSRCR, r, ε) (15)

B2GF = guided_filter(BMSRCR,BMSRCR, r, ε) (16)

where r = 32 and ε = 0.01 , and they are determined by a
large number of experiments.

E. LINEAR WEIGHTED FUSION
The detailed fusion steps are as follows.
Step 1: According to subsection C , we can know that

RMSRCR,GMSRCR, and BMSRCR are enhanced images by multi-
channel convolutional MSRCR.
Step 2: According to subsection D, we can know that R2GF ,

G2
GF , and B

2
GF are detailed images by secondary guided filter.

Step 3: Enhanced images and detailed images are obtained
according to Step 1 and Step 2 respectively, then R, G and
B channels are fused. From the linear weighted fusion
formula [30], [31], it can be concluded that:

R (i, j) = λRMSRCR (i, j)+ (1− λ)R2GF (i, j) (17)

G (i, j) = λGMSRCR (i, j)+ (1− λ)G2
GF (i, j) (18)

B (i, j) = λBMSRCR (i, j)+ (1− λ)B2GF (i, j) (19)

it can be seen from Step 3 that the R, G, and B channels are
fused by linear weighted fusion rules, and the fused R, G and
B are synthesized into the final defogging image. We define
the final fusion image can be expressed as follows. where
λ is the weighted coefficient and 0 ≤ λ ≤ 1. In this paper,
the fusion image has a better visual effect λwith is 0.9∼0.96,
and the final λ is set to 0.95.

RGB (i, j)

= R (i, j)+ G (i, j)+ B (i, j)

=

∑
I∈{R,G,B}

(
IR2GF (i, j)+ λ

(
IMSRCR (i, j)− IR2GF (i, j)

))
(20)

F. WHITE BALANCE
In order to eliminate the influence of illumination on the color
of the defogged image, it will obtain the color characteristics
of the surface of the object independent of the illumination.
Finlayson and Trezzi [32] proposed a Shades-of-Greymethod
by introducing Minkowski-norm into the Gray-World.
van de Weijer et al. [33] proposed the Gray-Edge hypothesis
by analyzing the color derivative distribution of images in
opposing color spaces. However, these methods do not solve
the problem better. We consider that the foggy environment
is similar to the underwater environment, our method refers
to white balance method that proposed in Ancuti et al. [34]

to correcting the color casts caused by different color illumi-
nation on the defogged image.

Therefore, in our method, the value of the illumination µI
is estimated by calculating the average of the scene µr and
the adjustment of the parameter α.

µI = 0.5+ αµr (21)

where µr is used to estimate the color of the illumination
color, and α is employed to adjust µr . Although it is simple,
this white balance method effectively eliminates the color
casts and also restores the white and grays shades of the
defogged image.

III. EXPERIMENTAL RESULTS
The proposed method is implemented on a PC-Windows
10 platform with an Intel (R) Core (TM) i9-9900K CPU @
3.6 GHz processor and 16GB RAM, and running software
is MATLAB R2014a. In this paper, natural images in foggy
conditions are randomly selected for testing, and the images
are derived from NASA’s open image, dataset and a previous
standard dataset [5], [21], [26], [29]. The analysis of the
experiment results mainly includes implementation details
and overall performance analysis of this method including
qualitative and quantitative comparisons, while outputting a
defogged image with a better natural appearance.

A. SELECT THE NUMBER OF GAUSSIAN KERNELS
In section B, we explained in detail that the key step of the
MSRCRmethod is the estimation of the illumination compo-
nent. In order to verify the effect of the enhanced performance
of MSRCR with different scales and numbers of Gaussian
kernel functions. The foggy image, defogged image, and local
amplification effect as shown in Fig. 3. The parameters and
results of the MSRCR method are shown in Table 1. In terms
of subjective analysis, the MSRCR method not only achieves
better defogging, but improves brightness and contrast as
shown in the first row of Fig. 3. When kernel ≥ 6, the
MSRCR method has good detail enhancement ability, and it
is difficult to see the difference from subjective effect with the
increase of Gaussian kernels. In terms of objective analysis,
when kernel ≥ 6, the qualitative metrics of average gradi-
ent(AG) [35], information entropy(IE) [35], and edge preser-
vation index(EPI) [36] of the MSRCR method are greatly
improved. As the number of kernel increases, the qualitative
metrics of MSRCR is rises slowly and tends to be stable,
but the running time (RT) is also increasing. The effect and
running time of MSRCR are considered comprehensively,
and kernel = 6 is finally determined.

B. MULTI-CHANNEL CONVOLUTION
In this paper, the multi-channel convolution is mainly to
extract the precise feature to estimate the illumination com-
ponent. To evaluate the performance of the multi-channel
convolution, the three scales of the MSRCR are σ1 = 40,
σ2 = 80 and σ3 = 160, respectively. And the six scales of the
MC module are σ1 = 40, σ2 = 80, σ3 = 60, σ4 = 80,
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TABLE 1. Average gradient, information entropy, edge preservation index, and running time of the MSRCR method when the number of kernels
is 3, 6, 9 and 12, respectively.

FIGURE 3. The first row is the original image, and the defogged images of MSRCR when the number of kernels is 3, 6, 9 and 12, respectively. The second
row is the local amplification effect of the red box area in the first column.

FIGURE 4. From left to right: the original images A and B, and the defogged images are obtained by MSRCR, multi-channel convolution, the local
amplification effect of the red box of the original images, the local amplification effect of the red box of the defogged images are obtained by MSRCR,
and multi-channel convolution.

σ5 = 120 and σ3 = 160, respectively. The dense fog
images A and B of two different scenes are selected as test
sample, as shown in the first column of Fig. 4. For both
A and B scenarios, MSRCR and MC module have better
defogging effects than the original image in the second and
third columns. However, the car, road surface, and trees are
clearer in the A scene of the third column, and the reflected
lights of the car are bright. The billboard and car are clearer
in the B scene of the third column, and the billboard with
better color fidelity. In terms of detail enhancement, the road
signs and words are clear and the details are prominent in
the red area of the A and B scenes of the sixth column. The
experimental results show that the MC module effectively
enhances the detail and contrast, and improves the overall
visual effect of the image.

C. SECONDARY GUIDED FILTER
In this part, in order to verify the performance of the sec-
ondary guided filter, the dense fog images A and B of two
different scenes are selected as test sample, as shown in the
first column of Fig. 5. Here, r = 32 and ε = 0.01 of
first guided filter operation and secondary guided filter, and
the detailed solution in He et al. [20]. For both A and B
scenarios, MSRCR, MC module, and secondary guided filter
have better defogging effects than the original image in the
A and B scenes of the second, third, and fourth columns.
And, the results of the MSRCR and MC operation have been
given in section B. In terms of the overall defogging effect,
it is difficult to see from the visual effect that the secondary
guided filter module is superior to the MC module. However,
in terms of detail enhancement, it can clearly see that the road
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FIGURE 5. From left to right: the original images A and B, and the defogged images obtained by MSRCR, multi-channel convolution operation, secondary
guided filter, the local amplification effect of the red box of the original images, the local amplification effect of the red box of the defogged images are
obtained by MSRCR, multi-channel convolution, and secondary guided filter.

FIGURE 6. From left to right: the original images A and B, and the
defogged images are obtained by secondary guided filter,
white balance operation.

signs and words of the eighth column are significantly better
than the sixth and seventh columns in the A and B scenes,
and the contrast enhancement of the road signs and words
are clearer in the eighth column. The experimental results
show that the secondary guided filter effectively enhances the
image detail, the noise in the enhanced image is reduced and
improves the overall visual effect of the image.

D. WHITE BALANCEING OF THE DEFOGGED IMAGES
In this part, in order to verify the performance of the white
balance, the dense fog images A and B of two different
scenes are selected as test sample, as shown in the first
column of Fig. 6. We have described the effect of Secondary
guided filter in detail in Section C, this section mainly intro-
duces the effect of white balance. In the third column of the
A scene, we can clearly see that the defogged image pro-
cessed by white balance is better eliminate red color and
improves the visual effect of the defogged image. In the third
column of the B scene, we can clearly see that the defogged
image has better visual effects and sharpness.

E. QUALITATIVE COMPARISON
We first analyze the qualitative results of the proposed defog-
ging method. The defogged images can be divided into five
categories based on different scenarios, including airport,
factory, highway, billboard and underwater.

We compare the performance of the proposed method
with state-of-the-art methods: Zhuet al. [5], Chenet al. [15],

Heet al. [20], Renet al. [27], Caiet al. [29], and
Wanget al. [26], the results are shown in Fig.7-Fig.10. It can
be clearly seen that all of these defogging methods get good
defogged results, and these fog-free images can achieve better
defogging effects, and the fog-free images achieve contrast
enhancement with more detail information. The following is
a comparison and analysis of Fig.7-Fig.11, from two aspects
of overall vision and local details, respectively.

In term of overall vision, the results of the defogged
images are shown in the Fig.7 (a-h). The images defogged by
He et al. [20] and Cai et al. [29] are shown in the
Fig.7 (d) and (f). It can be observed that the enhanced images
have color distortion and halo artifacts. Fig.7 (b) is defogged
image result by Zhu et al. [5]. It can be seen that the defog-
ging effect is bad and the defogged image detail informa-
tion is missing. Fig.7 (c) and (e) are defogged images by
Chen et al. [15] and Ren et al. [27]. It can be seen that the
dark channel over-enhancement occurs and the image detail
information is missing. Fig.7 (g) and (h) are defogged images
by Wang et al. [26] and our method. It can be observed
that these methods achieved better defogging effect, effec-
tively suppressing halo artifacts and enhancing color, but the
Wang et al. [26] has a slightly worse defogging effect on the
airport’s prospect area. Fig.7 (h) show the image defogged
by the proposed method, which is clear and removes color
distortion phenomenon. In terms of local detail, the road sign
is clearer, colorful, and the contrast between the light and dark
areas is more obvious by our method. It can be seen that the
image defogged by the proposed method shows more detail
information compared to Wang et al. [26].

In Fig.8, the images defogged by Zhu et al. [20],
He et al. [20], and Cai et al. [29] are shown in the
Fig.8 (b), (d) and (f). It can be seen that the enhanced images
have color distortion and halo artifacts. Fig.8 (c) and (e) are
defogged images by Chen et al. [15] and Ren et al. [27]
methods. It can be seen that these methods have better defog-
ging effect, but the fog was not completely removed in the
forest area, and the defogging result is bad in the factory
area of Fig. 8 (f). Fig.8 (g) and (h) are defogged images by
Wang et al. [26] and our method. It can be seen that
these methods can effectively suppressing halo artifacts and
enhancing color. However, our method has better color
fidelity, and the defogging effect of our method is superior

72498 VOLUME 7, 2019



W. Zhang et al.: Single Image Defogging Based on MC MSRCR

FIGURE 7. Qualitative comparison of the proposed method with six other methods. (a) Input hazy image. The defogged images are obtained by
(b) Zhu et al. [5], (c) Chen et al. [15], (d) He et al. [20], (e) Ren et al. [27], (f) Cai et al. [29], (g) Wang et al. [26], (h) Proposed method, respectively.

FIGURE 8. Qualitative comparison of the proposed method with six other methods. (a) Input hazy image. The defogged images are obtained by
(b) Zhu et al. [5], (c) Chen et al. [15], (d) He et al. [20], (e) Ren et al. [27], (f) Cai et al. [29], (g) Wang et al. [26], (h) Proposed method, respectively.

to Wang et al. [26] in the forest area. In terms of local detail,
the building contour is clear, the forest is colorful, and the
contrast between the bright and dark areas in more obvious
by our method. It can be seen that the image defogged by our
method has more detail information and better visual effects
than other methods.

In Fig.9, the image defogged by Chen et al. [15] and
He et al. [20] are shown in the Fig.9 (c) and (d). It can be
seen that the dark channel over-enhancement occurs and the

image detail information is missing. Fig.9 (b) and (f) are
defogged images by Zhuet al. [5] and Cai et al. [29]. It can
be observed that the defogging effect of these methods is not
significant, but Cai et al. [29] is better than the Zhu et al. [5].
Fig.9 (e), (g) and (h) are defogged images by Ren et al. [27],
Wang et al. [26] and our method. It clearly shows that
these methods can effectively remove fog, and the contrast
of images Fig. (g) and Fig. (h) is significantly improved
compared to Fig. (e). In terms of local detail, the car, road

VOLUME 7, 2019 72499



W. Zhang et al.: Single Image Defogging Based on MC MSRCR

FIGURE 9. Qualitative comparison of the proposed method with six other methods. (a) Input hazy image. The defogged images are obtained by
(b) Zhu et al. [5], (c) Chen et al. [15], (d) He et al. [20], (e) Ren et al. [27], (f) Cai et al. [29], (g) Wang et al. [26], (h) Proposed method, respectively.

FIGURE 10. Qualitative comparison of the proposed method with six other methods. (a) Input hazy image. The defogged images are obtained by
(b) Zhu et al. [5], (c) Chen et al. [15], (d) He et al. [20], (e) Ren et al. [27], (f) Cai et al. [29], (g) Wang et al. [26], (h) Proposed method, respectively.

surface, and trees are clearer by our method, the defogging
effect of our method is superior to Wang et al. [26] in the
prospect area.

In Fig.10, the images defogged by Zhu et al. [5],
Chen et al. [15], He et al. [20], and Ren et al. [27] are shown
in the Fig.9 (b-e). It can be seen that these methods have
poor defogging effect, the dark channel of Fig. 10 (c) and
Fig. 10 (e) over-enhancement and the image detail infor-
mation is missing. Fig.10 (g) and (h) are defogged images

by Wang et al. [26] and our method. It can be seen that
these methods can effectively suppressing halo artifacts and
enhancing color, but the red color distortion in Fig. 10 (g).
However, our method better suppresses red distortion,
the words are clearer by our method, the defogging effect of
our method is superior to Wang et al. [26] in the billboard
area. However, our defogged image also has shortcomings.
For example, our method cannot effectively remove fog from
the sky, and the words are blurred at the signpost.
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FIGURE 11. Qualitative comparison of the proposed method with six other methods. (a) Input hazy image. The defogged images are obtained by
(b) Zhu et al. [5], (c) Chen et al. [15], (d) He et al. [20], (e) Ren et al. [27], (f) Cai et al. [29], (g) Wang et al. [26], (h) Proposed method, respectively.

In Fig.11, the images defogged by Zhu et al. [5],
He et al. [20], and Cai et al. [29] are shown in the
Fig.11 (b), (d) and (f). It can be seen that these methods have
poor defogging effect and the enhanced images have color
distortion and halo artifacts. Fig.11 (c) and (e) are defogged
images by Chen et al. [15] and Ren et al. [27] It can be
observed that the method has better defogging effect, but
it has color distortion and dark channel over-enhancement.
Fig.11 (g) and (h) are defogged images by Wang et al. [26]
and our method, they all have better defogging and visual
effects. However, in terms of local detail, the needles of
seaweed are clear, with better color fidelity and the con-
trast between the bright and dark areas is obvious by our
method.

Generally, the qualitative comparisons in Fig.7-Fig.11 show
that the proposed can effectively remove fog from various
types of fog images and obtain more detail information of
defogged images. Moreover, our method has also achieved
good results for underwater image enhancement.

F. QUANTITATIVE COMPARSION
In this section, we first introduce quantitativemetrics and then
provide an analysis of the defogging images.

1) QUANTITATIVE METRICS
In order to avoid the bias caused by qualitative analysis,
we qualitatively evaluate analyze our method and six other
methods. In terms of quantitative evaluation, we compare
different methods from three objective metrics: AG, IE, and
EPI. AG reflects small changes in the details of the image,
and the richness of the image information. For an input

image F (i, j), AG is defined as follows.

AG

=
1

(M−1) (N−1)

M−1∑
i=1

N−1∑
j=1

√
(∇xF (i, j))2 + (∇yF (i, j))2

(22)

where ∇xF (i, j) and ∇yF (i, j) are the difference of F (i, j)
along the x and y directions,M andN represent the width and
height of the input image, respectively. Therefore, the larger
the value of the AG that more detail information is obtained
for the defogged image.
IE reflects the average amount of information, which can

quantitatively describe the richness of image color. When an
image is not uniform, the probability of any gray-scale value
in the image is equal, that is to say, the dynamic range of the
image is broader. Therefore, the value of IE is the maximum,
but in areas where the fog and grayscale are consistent,
the value of IE is minimal. IE is defined as follows.

IE = −
255∑
i=0

p(i) log2 p(i) (23)

where i is the pixel value, p(i) is the probability of the occur-
rence of pixels with a pixel value of i in the entire picture.
Hence the larger the IE value, the richer the color information
contained in the image, that is, the better the visual effect of
the image.
EPI reflects the change in the gradient at the edge,

which can quantitatively describe the sharpness of the edge
of the image. EPI represents the ability of an enhanced
image to maintain the horizontal or vertical edges of the
original image. Therefore, the higher the value of EPI,
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TABLE 2. AG, IE, and EPI of the proposed algorithm with six other algorithms in Fig. 7, 8, 9, 10 and 11.

the better the edge preservation capacity. EPI is defined as
follows.

EPI =

m∑
i=1
|F1 − F2|filter

m∑
i=1
|F1 − F2|original

(24)

where m is the number of pixels of the image, F1 and F2
are the grayscale values of the left and right or up and down
adjacent cells, respectively.

2) EVALUATION RESULTS AND ANALYSIS
The three quantitative metrics of the defogged images
in Table 2. As shown in Table 2, we can clearly see that the
three quantitative metrics of Zhu et al. [5], He et al. [20],
Ren et al. [27], Cai et al. [29], Wang et al. [26], and
our method are higher than the original images. Although,
the three quantitative metrics after Fig. 7 (c), Fig. 8 (c),
Fig. 10 (c), and Fig. 11 (c) are enhanced by Chen et al. [15]
are larger than the original image, the three quantitative met-
rics are slightly lower than the original image in Fig 9 (c).
The results show that Chen et al. [15] is not suitable for
application to images with rain and fog. In subsection E, it can
clearly see that themethods of Zhu et al. [5] and Cai et al. [29]
have poor defogging effect and the defogged images have
color distortion and halo artifacts. Since information entropy
is determined by the richness of the colors, the information
entropy of these two methods is generally lower than other
methods. He et al. [20] and Ren et al. [27] have better
defogging effect, but in terms of quantitative metrics is lower
than Wang et al. [26]. In order to improve the color fidelity
of enhanced images, MSRCR introduces color restoration
based on MSR. This paper employs quantization operation to
restore color and increase overflow judgment. Our proposed
method is higher thanWang et al. [26] in terms of three objec-
tive metrics. In a word, our method has a great improvement
on the average gradient, information entropy and sharpness
of the original image, and is superior to other methods. These
results show that our method has good defogging ability.

G. RUNNING TIME
Running time is an important indicator for the real applica-
tion of a method. The running time for each method from
the beginning to the end of defogging is shown in table 3.

TABLE 3. Time consumption with zhu et al. [5], chen et al. [15],
he et al. [20], ren et al. [27], cai et al. [29], and wang et al. [26],
and our method.

Our method is much faster than Chen et al. [15],
Ren et al. [27], Cai et al. [29], and Wang et al. [26], and
is slightly slower than Zhu et al. [5], and He et al. [20].
Chen et al. [15] introduced Gradient Residual Minimiza-
tion, which required multiple iterations to obtain the opti-
mal solution, so the running time is longer. Ren et al. [27]
and Cai et al. [29] are deep learning methods. When
the model parameters are well trained, their tested time
still has no advantage. Wang et al. [26] introduced bilat-
eral filtering, which results in a longer running time.
With the increase of image resolution, the running time
of Chen et al. [15], Ren et al. [27], Cai et al. [29], and
Wang et al. [26] increases significantly, while the running
time of Zhu et al. [5], He et al. [20], and our method increases
slowly. However, the defogging effect of our method is better
than Zhu et al. [5] and He et al. [20].

IV. CONCLUSION
In this paper, a single image defogging method based on
multi-channel convolutional MSRCR proposed. Our method
mainly consists of four parts: illumination component esti-
mation, guided filter operation, reconstruction of fog-free
images, and write balance operation. The proposed method
not only ensures the quality of the illumination component,
but also the noise in the enhanced image is reduced. In par-
ticular, our method improves both qualitative and quantitative
performances when compared with the six state-of-the-art
methods. However, our method also has two shortcomings.
1) The complexity of the method is increased due to the
introduction of multi-channel convolution and guided filter.
2) Since the colors of the fog and the sky are similar, it is
difficult to remove fog effectively in the sky area. These
issues will be our future work.
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