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ABSTRACT The heterogeneous network composed of small cell base stations (SCBSs) and macro base
stations (MBSs) has been widely deployed to alleviate the load of conventional MBSs, which may also
cause severe interference and large energy consumption. The existing literature generally focus on the
heterogeneous networks either without cooperation or with cross-tier cooperation. In this paper, we introduce
a central controller and mobile edge cloud (MEC) servers and propose a heterogeneous network with SCBSs
cooperation, i.e., the intra-tier cooperation. A novel load balancing metric instead of the simple access
probability ratio is introduced. Based on the utility theory, we comprehensively evaluate several important
performance metrics such as connectivity probability, load balancing, and energy efficiency to optimize
the overall performance of the network. Moreover, in the special case of allowing partial connectivity,
the discrete stochastic optimization algorithm is proposed so that the software-defined networks (SDNs)
controller can adjust network parameters with the help of MEC servers to maximize the overall energy
efficiency. The simulation results demonstrate that our proposed approach is valid to optimize the network in
accordance with the user requirements. This paper provides a useful reference for the practical deployment
of software-defined heterogeneous networks where the energy efficiency is increasingly becoming a key
concern.

INDEX TERMS Heterogeneous networks, software-defined networks, cooperative communication, utility
theory, partial connectivity, discrete stochastic optimization algorithm.

I. INTRODUCTION
A. MOTIVATIONS
Mobile communication technology is developing rapidly in
recent decades, and the number of mobile users is also
increasing dramatically. It shows that the wireless traffic will
increase by more than 500 times from 2010 to 2020 [1].
The fifth-generation (5G) mobile communication system
requires greater system capacity, higher transmission rate,
higher energy efficiency, lower latency, and lower system
cost [2], [3]. However, traditional cellular networks con-
sisting of macro base stations (MBSs) are insufficient to
meet these requirements. Thus, the small cell base stations
(SCBSs) are deployed in the traditional cellular networks,
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forming the heterogeneous cellular networks [4]. The SCBSs
show great potential due to the benefits of small coverage,
low power, low cost, and flexible deployment [5], [6]. In the
heterogeneous networks, the SCBSs can reduce the load of
MBSs by offloading users from the congestedMBSs, thereby
providing a better service experience for users [7].

Considerable researches exist on analyzing the perfor-
mance of general heterogeneous networks. Dhillon et al.
proposed a tractablemodel for K-tier heterogeneous networks
and derive the coverage probability [8]. In [9], the coverage
and the energy efficiency are analyzed in multi-tier 5G het-
erogeneous small cell networks. Nevertheless, the challenges
such as large interference and high energy consumption still
exist in the heterogeneous networks. In-depth studies are still
required to further improve the overall performance of the
heterogeneous networks.
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Most existing studies focused on the individual perfor-
mance metric of heterogeneous networks in non-cooperative
or cross-cooperative scenarios [10], [11]. However, few of
them have taken multiple performance metrics comprehen-
sively into account to improve the overall performance of
the network. In this paper, we propose a novel heterogeneous
network scheme to improve the overall system performance
(such as connectivity probability, load balancing and energy
efficiency) with intra-tier cooperation. We derive the load
balancing and the energy efficiency based on the proposed
load balancing metric and BS power consumption model.
Moreover, most existingworks use the SDN controller to con-
trol and manage the network [12]. We propose to additionally
useMEC servers to implement the local management to make
the decisions much more timely. Furthermore, the discrete
stochastic optimization algorithm is proposed to improve the
energy efficiency of the network with partial connectivity.

B. RELATED WORKS
Due to the coexistence of multi-tier BSs and the dense
deployment of SCBSs, the performance of the heterogeneous
networks is limited to the severe interference, including intra-
tier interference and cross-tier interference. Gesbert et al.
prove that in an interference-limited dense network, multi-
cell cooperation allows the user data to be co-processed by
multiple BSs [13]. It can mitigate or utilize the interference
and significantly improve the network performance, espe-
cially the coverage performance. Tanbourgi et al. consider
that the users always select the cooperative BSs by the dis-
tance and derive the expressions of signal to interference and
noise ratio (SINR) [14]. The work in [15] extends [14] and
analyzes the coverage probability in the multi-tier heteroge-
neous networks. In the model proposed by Nigam et al. [16],
the user simultaneously connects to several cooperative BSs
with the strongest received power with cross-tier coopera-
tion, and the simulation results indicate that the cooperation
increases the coverage probability of general users and cell-
edge users by 17% and 24% respectively when compared
with the non-cooperative case. All these studies show that the
cooperation can improve the coverage performance of net-
works. However, the performance of the intra-tier cooperation
in heterogeneous networks has not been explored.

Achieving low energy consumption and high energy effi-
ciency of wireless communication systems is a main goal
of the design of the next generation of wireless networks. It
is reported that the energy consumption of the information
technology industry accounts for 10% of the total global
energy consumption, where the proportion of energy con-
sumption generated by wireless communication cannot be
underestimated [17]. The goal of the EARTH project is to
reduce the energy consumption of mobile broadband net-
works by 50% [18]. Razavi and Clausse [19] demonstrate
that the energy consumption has increased significantly by
introducing the SCBS tier. The sleeping strategy is an effec-
tive way to save energy, but it cannot necessarily improve the
energy efficiency for the reason that the energy efficiency is

affected by both throughput and energy consumption [20].
In [21], all BSs have four different operating states, namely
transmit, ready, listen, and sleep, where the BSs can adjust
their operating states according to the QoS requirements,
thereby reducing the energy consumption of the network.
Besides, Hekmat and Mieghem [22] indicate that a network
allowing part of nodes to be disconnected consumes much
lower energy than a network with all nodes connected. In the
actual scenario, not all nodes always need to be connected,
i.e., partial connectivity is allowed [23]. It is well known
that the massive Machine Type Communications (mMTC),
which is one of the three major application scenarios of 5G,
requires low transmission rate and is insensitive to delay,
which means allowing partial connectivity [24], [25]. There-
fore, we explore the approach to optimize the energy effi-
ciency in the scenario that allows partial connectivity.

The density of BSs is a pivotal factor affecting the per-
formance of wireless networks [26], which also has a cru-
cial impact on the performance of heterogeneous networks
with dense SCBSs, especially for energy efficiency [27].
Ge et al. [28] study the relationship between the density of
SCBSs and energy efficiency, and draw a conclusion that
there is a density limit of SCBSs in ultra-dense cellular
networks, but it does not give the method to solve the den-
sity limit. Cao et al. [29] determine the optimal BS density
for homogeneous networks and heterogeneous networks to
minimize network energy consumption. In order to optimize
the energy efficiency of the two-tier heterogeneous network
in a non-cooperative scenario, the best BS density ratio is
obtained in [30]. The effort of the spatial and temporal fluc-
tuation of the traffic on the performance of the heterogeneous
cellular networks is explored in [31] and [32].

The fusion of multiple technologies is the trend of the
technological development. SDN has been widely used in
the wired networks [33]. In order to achieve efficient man-
agement and control of wireless networks, many researchers
have tried to integrate SDNwith wireless networks [34], [35].
An approximate SDN structure applied to wireless networks
- SDWN is proposed in [36]. In order to combine the advan-
tages of cellular networks and WLANs, Zhang et al. [37]
design a unified wireless network structure named as SDN-
UWN and elaborate the design of the controller and network
nodes. [38] and [39] utilize SDN to improve the efficiency
and overall QoS of heterogeneous networks respectively.
In addition, Spapis et al. [40] propose a complex wireless
access cooperation scheme - SoftMobile in heterogeneous
networks based on SDN. Furthermore, an intelligent scheme
for cellular networks - SDHCN is proposed in [41] to improve
the overall performance of the network by adjusting the bias
factor values of multi-tier BSs. As a consequence, integrating
SDN into the heterogeneous cellular networks is promising to
make the network management facile.

Network synchronization is a key function in wireless
network, which can support data fusion, geolocation, target
tracking and other services [42], [45]. In order to provide
these services in a cooperative fashion, the cooperative
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BSs need to share a common clock, which requires
efficient synchronization technology to implement.
Vaghefi and Buehrer [43] and Etzlinger et al. [44] respec-
tively put forward the semidefinite programming (SDP)
relaxation method and the sequential belief propagation (BP)
algorithm to achieve cooperative synchronization and
localization, which can be effectively applied to cooperative
networks. Xiong et al. [45] propose a framework for coopera-
tive network synchronization analysis and derive closed-form
asymptotic expressions under performance limits, which is
demonstrated to be applicable to practical wireless networks
through results. These studies show that there are efficient
network synchronization techniques and algorithms suitable
for cooperative networks, and can bring significant improve-
ment in robustness, efficiency and other performance.

C. CONTRIBUTIONS
The main contributions of this paper are summarized as fol-
lows:
• We propose to integrate a central controller and multiple
MEC servers to establish a heterogeneous network with
the intra-tier cooperation. Each user choose either a
single MBS or an SCBS cooperative group that pro-
vides the highest received signal strength (RSS) as its
serving BS/BSs. The simulation results demonstrate that
the connectivity probability of the intra-tier cooperation
is better than that of the cross-tier cooperation in the
heterogeneous network with dense SCBSs.

• A novel load balancing metric as well as a BS power
consumption model considering the number of users
are proposed to analyze the load balancing and the
energy efficiency of the heterogeneous networks. Based
on the utility theory, we formulate an overall perfor-
mance optimization problem of the network. Through
the exhaustive search algorithm, we obtain the optimal
density ratio of BSs in two tiers that makes the network
reach an optimal state, i.e., simultaneously achieving
balanced load, high connectivity probability and high
energy efficiency.

• In the special case of partial connectivity, we propose
the discrete stochastic optimization algorithm that the
central controller sends proper instructions to the MEC
servers to adjust the transmit power and the operating
mode of SCBSs, thus maximizing the network energy
efficiency. The proposed approach can optimize the
network in accordance with the actual requirements of
users.

The remainder of this paper is organized as follows. The
heterogeneous network model and the dynamic BS power
consumption model are presented in Section II. The novel
load balancing metric and the energy efficiency are derived
in Section III. In Section IV, the optimization problems of
the general and the special cases of partial connectivity are
formulated, and the corresponding optimization algorithms
are proposed. Simulation results and discussions are obtained
in Section V with the conclusions drawn in Section VI.

FIGURE 1. The heterogeneous network with MEC servers and a central
controller.

II. SYSTEM MODEL
In this section, we apply SDN and cooperative communica-
tion to the framework of 5G network and propose a heteroge-
neous network model integrating MEC servers and a central
controller. SDN divides the network into a control plane
and a data plane, and the central controller make it better
to manage the whole network, resulting in higher flexibility
of the network. It can be seen from Fig. 1 that there are
bidirectional transmission of message flows on the control
plane and the data plane between the central controller, MEC
servers and the BSs. The control plane and the data plane are
separated from each other, but the control plane and the data
plane can communicate through the OpenFlow protocol.

Each MEC server is physically connected to a BS while all
MEC servers are directly connected to the central controller
or indirectly connected to the central controller via other
MEC servers. An MEC server is equivalent to a BS’s local
controller and has certain computing and control functions.
When the service requested by the user is relatively simple,
the amount of data is small, and the real-time requirement is
high, just the MEC server of the BS can satisfy the user’s
demand, and there is not large amount of data needed to
be transmitted to the central controller, thus alleviating the
load of the data center. The central controller can grasp the
users’ status information and the dynamic information such
as traffic load, transmit power, and operating mode of BSs
in real time. Under normal circumstances, the entire network
is controlled and managed so that the performance of the
system such as connectivity probability, load balancing and
energy efficiency can reach a relative optimal state. In the
special case of allowing partial connectivity, the central con-
troller may send instructions to MEC servers to adjust the
operating mode or transmit power of BSs based on the status
information of users and BSs to further improving the energy
efficiency.
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The heterogeneous cellular network is composed of an
SCBS tier and an MBS tier, which are independent of each
other. In the intra-tier cooperation model, the SCBS tier pro-
vides services for users through cooperative communication,
and the user chooses to associate with an SCBS cooperative
group or a single MBS based on the maximum received
signal strength (RSS). If the user choose an SCBS cooper-
ative group, the SCBSs not only transmit data to the user,
but also transmit the user’s status information to the central
controller through the local MEC servers, and then the central
controller sends back the feedback information, which allows
the SCBSs in the same group to share the information of the
common user, thus implementing cooperative communica-
tion. In the cross-tier cooperation model, the serving BS of
a user is a group composed of an MBS and an SCBS, the two
BSs also need to share the information of the common user to
implement cooperative communication. We assume that the
Orthogonal Frequency Division Multiple Access (OFDMA)
is used, where the intra-cell interference is ignored, and the
users are interfered by other BSs, including intra-tier interfer-
ence and cross-tier interference.

In the heterogeneous network, i ∈ {m, s} corresponds to the
MBS tier or the SCBS tier respectively. The BSs in tier i have
the transmit power pi, and follow the homogeneous Poisson
point process (PPP) 8i ∈ R2 with density λi. It means that
the density and transmit power of the BSs in two tiers are
different, but the transmit power of the BSs in one tier is the
same. Assuming that a typical user is at the origin, the jth
BS in the tier i is xi,j, and the distance between the BS and
the typical user is ri,j. Users, MBSs and SCBSs are assumed
to be equipped with single antenna. We consider that the
channel fading in both tiers is Rayleigh, and the power fading
coefficient is hi,j ∼ exp(1). α is the path loss exponent,
which is the same in both tiers. The event that the typical user
accessing the MBS/SCBS tier in the intra-tier cooperation
model is Em/Es.

In our intra-tier cooperation model, the user chooses to
access an SCBS cooperative group or a single MBS based on
the maximum received signal strength (RSS). The received
power pr of the user from a MBS can be expressed as
pr = pthr−α , where pt is the transmit power of the BS. h
is the power fading coefficient, which satisfies h ∼ exp (1).
α is the distance between the user and the BS. r is the path
loss exponent. Since the transmit power of the BS is the same
in one tier, the received power is only negatively correlated
with the distance. It is obvious that the power received by the
user from the nearest MBS is the strongest received power in
the MBS tier. Similarly, in the SCBS tier, the strongest power
received by the user comes from an SCBS cooperative group
consisting of several SCBSs closest to the user.

A. CROSS-TIER COOPERATION MODEL
In the cross-tier cooperation model, a user selects the near-
est MBS and the nearest SCBS as its serving BSs, and
the MBS and the SCBS provide services for the same user
through cooperation. It is known from [46] that the statistical

characteristics of users at any location are consistent with the
statistical characteristics of typical users at fixed locations.
Without loss of generality, we choose the user at the origin as
the typical user for analysis.

The probability density functions (PDFs) of the distance
from the nearest MBS and the closest SCBS to the typical
user are respectively

frm (r1) = 2πλmr1e−πλmr
2
1 , (1)

frs (r2) = 2πλsr2e−πλsr
2
2 , (2)

where r1, r2 denote the distances between the nearest MBS
and the closest SCBS to the typical user respectively. (1) and
(2) can be obtained by the null probability of the PPP [47].

The SINR at the typical user is [16]

SINR =

∑
xi,j∈C pihi,jr

−α
i,j∑

xi,j∈Cc pihi,jr
−α
i,j + σ

2
, (3)

where C represents the set of serving BSs, which may be a
group consisting of an MBS and an SCBS in the cross-tier
cooperation model or an SCBS cooperative group/a single
MBS in the intra-tier cooperation model in this paper. Cc
denotes the set of all the interfering BSs in two tiers except
the serving BSs. The numerator is the useful signal received
by the typical user from the serving BSs. The first term in
the denominator is the interference signal received from all
other BSs except the serving BSs, including intra-tier inter-
ference and cross-tier interference, and the second term is the
additive white Gaussian noise with variance σ 2. Cooperation
transforms part of the interference in the denominator into the
useful signal in the numerator, which increases the SINR and
the coverage performance.
Theorem 1: In the cross-tier cooperation case, the connec-

tivity probability is

Pt =

∫
r1>0

∫
r2>0

exp
(
−σ 20

ϕ

)
LI
(
0

ϕ

)
×frm (r1)frs (r2)dr1dr2, (4)

where ϕ = pmr
−α
1 + psr

−α
2 . σ 2 is the variance of additive

white Gaussian noise. 0 is the SINR threshold. frm (r1) and
frs (r2) are given in (1) and (2) respectively. LI (s) is the
Laplace transform of the interference I , given by

LI (s) =
∏

i∈{m,s}

exp
(
−2πλi(spi)

2
α

∫
∞

(spi)−
1
α di

γ

1+ γ α
dγ
)
, (5)

where di denotes the distance between the nearest interfering
BS and the user in tier i, i.e., dm = r1 for the MBS tier and
ds = r2 for the SCBS tier.

Proof: The proof is in Appendix A.

B. INTRA-TIER COOPERATION MODEL
In the intra-tier cooperation model, the accessing strategy
for the user is that the user always selects the nearest MBS
or an SCBS cooperative group that provides higher RSS as
its serving BS/BSs. If the serving BS of a user is an SCBS
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cooperative group, the group is composed of k SCBSs that are
the closest to the typical user, which is B ⊂ 8s. In this way,
the user’s Quality of Service (QoS) can be improved while
the load of the two-tier BSs can be more balanced.
Lemma 1: In the intra-tier cooperation case, the probabil-

ity of accessing the SCBS tier is

As =
∫
∞

0

∫ rs,3

rs,1
· · ·

∫
∞

rs,k−1

×e−λmπ (η(r))
2
α f5(r)drs,1drs,2 · · · drs,k , (6)

where η(r) = pm/(ps
k∑
j=1

r−αs,j ). rm and rs,j denote the dis-

tances from the nearest MBS and the j-th nearest SCBS to
the typical user. r = [rs,1, rs,2, · · · , rs,k−1, rs,k ] is the set of
distances between kth closest SCBSs and the typical user. The
joint PDF of r is

f5(r) = (2πλs)ke
−λsπr2s,k

k∏
j=1

rs,j. (7)

The probability for the typical user accessing the MBS tier is
Am = 1− As.

Proof: The proof is in Appendix B.
Lemma 2: In the intra-tier cooperation model, when the

typical user connects to a singleMBS, the PDF of the distance
between the MBS and the user is

fRm (r) =
1
Am

frm (r)g(r), (8)

where frm (r) = 2πλmre−πλmr
2
and g(r) = P(pmr−αm >

k∑
j=1

psr
−α
s,j ).

Proof: The PDF of the distance between the nearest
MBS and the typical user can be obtained by the null prob-
ability of the PPP [47]. When the user connects to an MBS,
fRm (r) is a PDF given Em. Then, we have

P (Rm > r) = P (rm>r|Em) (9)

=
P (rm>r,Em)

P (Em)
(10)

=
1
Am

∫
∞

r
P
(
pmr−αm >

k∑
j=1

psr
−α
s,j

)
frm (r)dr, (11)

where Rm is the distance from the serving MBS to the user
when the user accesses the MBS tier. We can obtain equa-
tion (8) by calculating fRm (r) =

dP(rm>r|Em)
dr .

Considering k = 2, α = 4 in the later simu-
lations, the result can be transformed into the follow-
ing equation by means of integral transformation and
simplification

g(r) =
∫ π

4

0

√
pm/psr−2+πλssin−1x

(cos xr−1)2
√
pm/ps

e
−

πλsr2√
pm/ps sin x dx, (12)

Lemma 3: In the intra-tier cooperation model, when the
typical user connects to an SCBS cooperation group, the PDF

of the distance between the SCBS and the user is

fRs (r) =
1
As
e−πλmη

2/α
f5(r). (13)

The proof of equation (13) is similar to equation (8).
Theorem 2: In the intra-tier cooperation model, the con-

nectivity probabilities of the typical user connecting to a
single MBS and an SCBS cooperative group are respectively

Pmc =

∫
∞

0
e−p

−1
m rασ 20LI

(
p−1m rα0

)
fRm (r)dr, (14)

Psc =

∫
0<rs,1<rs,2
···<rs,k<∞

exp
(
−σ 20

β

)
LI
(
0

β

)
fRs (r)dr, (15)

where β=
k∑
j=1

psr
−α
s,j . 0 is the SINR threshold. fRm (r) and

fRs (r) are given in (8) and (13).LI (s) is given by (5). From the
proof of (6), (8) and (13), we can obtain that forPmc, the con-
dition is dm=r, ds ≈ (ps/pm)1/αr, and for Psc, the condition
is dm = η1/α , ds = rs,k . The total connectivity probability in
the intra-tier cooperation case is Pc = AmPmc + AsPsc.

Proof: The proof is in Appendix C.

C. THE BS POWER CONSUMPTION MODEL
Recent investigations on the energy consumption of cellular
networks which consist of BSs, mobile terminals and the
core network show that the energy consumption at the BSs
accounts for more than 60% of the total energy required
for the operation [48], [49]. Therefore, we mainly focus on
the power consumption of BSs. The recognized linear BS
power model proposed by the EARTH project [50] is often
used by researchers to study the energy efficiency of wireless
networks. We reserves the concept proposed by the EARTH
project that the total power of a base station is a linear combi-
nation of static power and transmit power, i.e., the total power
is composed of static power and load-related RF power.

In our work, the SCBS is assumed to have two operat-
ing modes: working and sleeping. In the working mode, all
components of a SCBS are active, and the SCBS can provide
services for users normally. But when in the sleeping mode,
only some control components are active, and the SCBS
cannot serve users. The power consumption model of a single
SCBS is

pst=

{
pso +1sp(ps + ph)N1, if ps 6= 0 and N1 ≤ Nmax

s

psleep, if ps = 0,

(16)

where pst is the total power. pso denotes the static power.
1sp is the reciprocal of the radio frequency power amplifier
efficiency, namely, the slope of the power related to the load.
ph is the backhaul power, which is used to transmit users’
status information to the central controller. The feedback
information from the central controller ensures the exchange
of data between the SCBSs in the cooperative group. psleep
represents the power of an SCBS in the sleeping mode.

VOLUME 7, 2019 72581



T. Han et al.: 5G Software-Defined Heterogeneous Networks With Cooperation and Partial Connectivity

N1 indicates the number of users actually served by an SCBS
simultaneously. Nmax

s denotes the maximum number of users
who can be served by a single SCBS.

The MBS is assumed to have only one operating mode
which is the working mode. Its total power consumption is
still composed of static power and load-related RF power. The
power consumption model of a single MBS is

pmt = pmo +1mppmN2, (17)

where pmt, pmo, 1mp denote the total power, the static power
and the reciprocal of the radio frequency power amplifier
efficiency respectively. N2 is the number of users served by
an MBS.

III. LOAD BALANCING METRIC AND ENERGY EFFICIENCY
In this section, we propose a novel load balancing metric by
virtue of the access probability of the intra-tier cooperation
model in the heterogeneous network. In addition, based on
the proposed BS power consumption model, the expression
of the energy efficiency is obtained.

A. LOAD BALANCING METRIC
In a heterogeneous network, it is worthwhile to study whether
the load in the two tiers is balanced. It is assumed that all
users either access the MBS tier or the SCBS tier, and no
base station is overloaded. Let λu be the density of users,
the average numbers of users for each BS in the SCBS tier and
the MBS tier are Ns =

kAsλu
λs

and Nm =
Amλu
λm

. The capacity
utilization ratio of the BSs in each tier, i.e., the ratio of the
number of users actually served to the maximum number of
users, is N r

i =
Ni

Nmax
i

i ∈ {s,m}, where Nmax
i is the maximum

number of users served by a single BS in tier i ∈ {s,m}. Thus,
we define the load balancing metric as

SN =
∑

i∈{s,m}

(
N r
i −

N r
s + N

r
m

2

)2

, (18)

where SN reflects the disparity of the capacity utilization
ratios of BSs in two tiers. Therefore, (18) can be used to deter-
mine whether the heterogeneous network is load-balanced.
The smaller SN is, the closer the capacity utilization ratios
of the BSs in two tiers are, resulting in more balanced load.
When SN = 0, the capacity utilization ratios of the BSs in
two tiers are exactly the same, where the load balancing of
the heterogeneous network is optimal.

On account of the differences of the densities of the
BSs in two tiers and the ability of two types of BSs to
serve users, we have not directly used the simple two-tier
access probability ratio to measure the load balancing, which
is inaccurate, but taken SN as the load balancing metric,
which takes more factors into consideration and is more
persuasive.

B. ENERGY EFFICIENCY
Only when the instantaneous SINR of the typical user is
greater than the given SINR threshold, the connectivity

condition could be met. By taking advantage of the access
probability and connectivity probability obtained in the pre-
vious sections, we can derive the total throughput as

Ct = Cs+Cm=kPscAsλuR+ PmcAmλuR, (19)

where Cs, Cm are the throughput of each tier per square meter
per second when the user is served by the MBS tier and the
SCBS tier respectively. R = Blog2(1 + 0) is the maximum
achievable rate, and B is the channel bandwidth.

Based on the proposed BS power consumption model,
we can obtain the total energy consumptions of the MBS tier
and the SCBS tier per square meter per second as

Pmt = pmoλm +1mppmAmλu, (20)

Pst = psoλs + k1sp(ps + ph)Asλu. (21)

Energy efficiency is defined as the ratio of the total
throughput to the energy consumption during a period of
time T, namely, the amount of data transmitted per unit of
energy consumed, which is measured in bps/W or bit/Joule.
The expression of energy efficiency is

E =
Cs + Cm
Pst + Pmt

. (22)

As can be seen from the definition of energy efficiency,
energy efficiency is determined by both throughput and
energy consumption, which only involves the energy cost in
the total cost of the system. We will conduct further research
on the total cost of the system in the follow-up work, and it is
necessary to consider other costs such as deployment cost at
that time.

IV. SYSTEM OPTIMIZATION
In this section, the utility model is established to quantify
the impact of different factors on the network performance.
Considering multiple performance metrics, we propose a
method for the overall performance optimization. In the
case of partial connectivity, the energy efficiency can be
improved by the proposed discrete stochastic optimization
algorithm.

A. UTILITY FUNCTION
Utility is a concept in microeconomics that indicates how
satisfied consumers are in purchasing goods. Utility theory is
the theory of how consumers distribute their income among
various goods and services to maximize satisfaction. Utility
theory can also be used in wireless communication [51]. The
utility function reflects the relationship between attribute val-
ues and utility values. We use the common Sigmoid function
as follows to study the relationship between the network’s
parameters and the performance utility.

U(x) =
1

1+ eξ (µ−x)
(ξ > 0, µ > 0), (23)

where ξ is the maximum slope of the tangent line of the curve,
and µ is the midpoint of the variation interval of attribute
values.
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B. UTILITY OPTIMIZATION
By applying the utility theory, the main influencing factors
correspond to the consumption of consumers, and the per-
formance corresponds to the consumer satisfaction. Using
the utility function (23), the load balancing, the connectivity
probability and the energy efficiency are

UN =
1

1+eξN (µN+SN )
, (24)

UPc =
1

1+eξP(µP−Pc)
, (25)

UE =
1

1+eξE (µE−E)
, (26)

where UN , UPc and UE are utility functions of load balancing,
connectivity probability and energy efficiency respectively.
Therefore, we define the total utility of the heterogeneous
network as

Ut = w1UN + w2UPc+w3UE , (w1 + w2 + w3 = 1), (27)

where w1, w2 and w3 are the weights of the three utilities in
the total utility respectively.

The capacity utilization ratio of the BSs, the connectivity
probability, and the energy efficiency of the network are all
dependent on the density ratio λs/λm. As a consequence, UN ,
UPc , UE can all be expressed as a function of λs/λm, so the
total utility can be transformed into

Ut (
λs

λm
) = w1UN (

λs

λm
)+ w2UPc (

λs

λm
)+ w3UE (

λs

λm
). (28)

Intuitively, as λs/λm increases, UN , UPc and UE will
show the trend of decreasing, increasing, increasing first and
decreasing later respectively, which can be verified in the
following simulations. Therefore, an optimal density ratio
(λs/λm)

∗ can be found to make the total utility reach a
maximum value, which means that the network can simulta-
neously achieve a more balanced load, a higher connectivity
probability as well as a higher energy efficiency. The weights
of various types of utility can be adjusted to meet different
demands, and it is significant to explore the optimal density
ratio. Thus, we can formulate the following utility optimiza-
tion problem

obj.
(
λs

λm

)∗
= arg max

λs/λm∈2
Ut

(
λs

λm

)
(29)

s.t. C1 : Ut

(
λs

λm

)
= w1UN + w2UPc + w3UE (30)

C2 : 2=
{
λs

λm

∣∣∣∣ λsλm ∈ [1, 100],
λs

λm
∈ N

}
(31)

C3 : w1 + w2 + w3 = 1. (32)

The density ratio λs/λm is a continuous value and dif-
ficult to implement for deployment. Therefore, we assume
that λs/λm is an integer on the interval [1, 100]. The
optimal density ratio and the maximum total utility
can be obtained by using a regular exhaustive search
algorithm.

C. PARTIAL CONNECTIVITY
For long-term monitoring applications such as habitat animal
behavior monitoring and climate monitoring, it is not neces-
sary to ensure full connectivity, but to save energy with high
energy efficiency. For these applications, allowing partial
connectivity will not degrade the usability of the application
and the experience of users. Instead, it can certainly reduce
the total energy consumption of the network. Therefore,
it is significant to study the relationship between the partial
connectivity and the energy efficiency of the heterogeneous
network.

Partial connectivity means that the connectivity probability
between the BS and the user can be reduced by changing
certain parameters of the network, that is to say, some BSs
are invisible to users and cannot provide normal services for
users, leaving only another part of BSs to become serving
BSs. There are two feasible ways to make the network be
partially connected: (1) changing the transmit power of BSs
(2) letting some BSs sleep.

In the case with partial connectivity, all MBSs are in
the working mode, but some SCBSs are in the sleeping
mode. In order to reduce the total energy consumption,
some SCBSs should be switched from the working mode
to the sleeping mode. If some nodes are randomly removed
from the homogeneous PPP, the remaining nodes still fol-
low the homogeneous PPP. Assuming that the actual work-
ing rate of the SCBS is δ. The density of the SCBSs that
can serve users is λ′s = δλs. It should be noted that,
the total power consumption of the SCBS tier no longer
conforms to (21) but is in accordance with the following
equation

P′st = psoδλs + k1sp(ps + ph)A′sλu + (1− δ)λspsleep. (33)

Under the condition of allowing partial connectivity,
the optimal energy efficiency of the network can be expressed
as the following discrete stochastic optimization problem

obj.1 p∗s = arg max
ps∈�p

E (L (ps)) (34)

s.t. C1 : P1 ≤ Pc ≤ P2. (35)

The optimization object 1 refers to the optimal transmit
power p∗s when the energy efficiency is maximized with
the fixed actual working rate, where L (ps) is the corre-
sponding load state information. C1 is the specific condi-
tion of partial connectivity. In each time slot, the central
controller can only obtain the load status estimated infor-
mation L̂ (ps). It is assumed that E(n, L̂(ps)) is an unbiased
estimate of E (L (ps)). Therefore, the optimization object 1
becomes

p∗s = arg max
ps∈�p

E (L (ps)) = arg max
ps∈�p

E
[
E
(
n, L̂ (ps)

)]
.

(36)

For optimization problem (36), different methods can be
used to solve it. A solution is that for each possible transmit
power pls ∈ �p, we first determine whether it satisfies the
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Algorithm 1 : Exhaustive Search AlgorithmBasedOn Partial
Connectivity

1. Initialization
the central controller gives all the possible SCBS transmit
power to compose the set �p
for pls ∈ �p, l = 1, 2, . . . , κ do
2. Judgment and computing
feedback the load state information L(pls) to the central
controller and obtain Pc

(
L(pls)

)
if P1 ≤ Pc

(
L(pls)

)
≤ P2

the central controller computes ÊN
(
L
(
pls
))

and
insert it into the set 4
end if

end for
3. Sort
sort all ÊN

(
L
(
pls
))
∈ 4, l = 1, 2, . . . , ϑ in ascending

order, obtain ÊN
(
L
(
p1s
))
≤ ÊN

(
L
(
p2s
))
≤ . . . ≤

ÊN
(
L
(
pϑs
))

4. Output
return p∗s = pϑs , Emax=E

(
L
(
p∗s
))
, Emin=E

(
L
(
p1s
))

condition C1, and then calculate the following equation

ÊN (L (ps)) =
1
N

N∑
n=1

E
(
n, L̂ (ps)

)
. (37)

Finally we select the optimal transmit power p∗s =
arg max

ps∈�p
ÊN (L(ps)) from all possible transmit power. Accord-

ing to the law of large numbers, whenN →∞, we can obtain
ÊN (L(ps)) → E[E(n, L̂(ps))]. Therefore, we first propose
an exhaustive search algorithm based on partial connectivity,
which is shown in algorithm 1.

Obviously, algorithm 1 is too computationally intensive.
In order to reduce the computation, we propose a discrete
stochastic optimization algorithm based on partial connectiv-
ity according to [52] and [53], which utilizes the state transi-
tion probability matrix of Markov chain. The state transition
probability vector is defined to record the probability that
all possible transmit power is selected at each iteration time,
which can be expressed as

p=
[
p(1, p(1)s ), p(2, p(2)s ), . . . , p(t, p(t)s ) . . .

]T
, (38)

where p(t, p(t)s ) = (number_of _chosen p(t)s )/M ,

p(t, p(t)s ) ∈ [0, 1] and
M∑
t=1

p(t, p(t)s )=1. M is the total number

of iterations. The process of updating the state transition
probability is

p(t + 1, p(t+1)s ) = p(t, p(t)s )+$ (t+1)(D(t + 1)− p(t, p(t)s )),

(39)

where $ (t) = 1/t is the iteration step, which will decrease
with time. D (t + 1) is a vector that the t+1th element is
1 and all the other elements are 0, whose dimension is the

Algorithm 2 : Discrete Stochastic Optimization Algorithm
Based On Partial Connectivity

1. Initialization
(a) the central controller gives all the possible SCBS
transmit power to form the set �p
(b) initialize time t = 0
(c) select an initial SCBS transmit power p(1)s ∈ �p and
set p(t, p(1)s ) = 1
(d) for all ps 6= p(1)s , set p(t, ps) = 0
for t = 1, 2, 3, . . . do
2. Iteration
(a) given p(t)s and choose another p̃(t)s ∈ �p\p

(t)
s ran-

domly at iteration time t
(b) feedback the load state information L(p(t)s ), L(p̃(t)s )
to the central controller
(c) the central controller obtains Pc(L(p

(t)
s )),

Pc(L(p̃
(t)
s )), E(L(p(t)s )) and E(L(p̃(t)s ))

3. Judgment and acceptance
if P1 ≤ Pc(L(p

(t)
s )) ≤ P2 and P1 ≤ Pc(L(p̃

(t)
s )) ≤ P2

if E(L(p(t)s )) < E(L(p̃(t)s ))
set p(t+1)s = p̃(t)s

else
set p(t+1)s = p(t)s

end if
end if
4. Update state transition probabilities
compute p(t+1, p(t+1)s ) = p(t, p(t)s )+$ (t+1)(D(t+
1)− p(t, p(t)s )), and the iteration step is$ (t) = 1

t
5. Determine the maximum
if p(t + 1, p(t+1)s ) > p(t + 1, p̂(t)s )
set p̂(t+1)s = p(t+1)s

else
set p̂(t+1)s = p̂(t)s

end if
end for
6. Output
return p∗s = p̂(t+1)s , Emax=E(L(p∗s ))

same as p. The specific implementation of the algorithm is
shown in algorithm 2. Since the state transition probability is
a cumulative quantity, it first increases as the number of iter-
ations increases and then tends to be stable, algorithm 2 can
converge to the optimal value quickly. But algorithm 1 cannot
obtain the optimal value until the algorithm is completely
finished. Therefore, the convergence speed of algorithm 2 is
faster than that of algorithm 1, which can be confirmed by the
subsequent simulations.

Although algorithm 1 and algorithm 2 are proposed for
optimization object 1, which requires a fixed actual working
rate of the SCBSs, the principles of both algorithms can also
be applied to optimization object 2 as follows

obj.2 δ∗ = arg max
δ∈�δ

E (L (δ)) (40)

s.t. C ′1 : P3 ≤ Pc ≤ P4. (41)
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TABLE 1. Simulation parameters.

FIGURE 2. Comparison of connectivity probability for the cross-tier and
intra-tier cooperation cases (λs =

40
500π2 m−2, ps = 1W).

The optimization object 2 refers to the optimal actual
working rate δ∗ when the energy efficiency of the network
is maximized with the fixed transmit power of the SCBSs.
C ′1 is the specific condition of partial connectivity.

V. NUMERICAL RESULTS AND DISCUSSIONS
In this section, we evaluate the network performance through
numerical results. Based on the utility theory, the correspond-
ing BS density ratio to optimize the network performance is
obtained. Moreover, the impact of BS working rate, trans-
mit power, and connectivity on the energy efficiency is also
explored under the condition of partial connectivity. Part of
parameters for the simulations are presented in the Table I.

A. CONNECTIVITY PROBABILITY
Fig. 2 gives a comparison of the connectivity probabilities
in the cross-tier and intra-tier cooperation cases. The con-
nectivity probabilities in both cases tend to decrease as the
SINR threshold 0 increases. When fixing 0, we observe that
the connectivity probability in the intra-tier cooperation case
is always larger than that in the cross-tier cooperation case.
When 0 = 0dB, the difference between them is obvious.

FIGURE 3. The load balancing metric for different λs/λm and ps
(0 = 5dB).

FIGURE 4. The utility of load balancing for different λs/λm and ps
(0 = 5dB).

In the following discussions, we focus on other performance
metrics and the utility optimization problems.

B. NETWORK UTILITY OPTIMIZATION
Fig. 3 and Fig. 4 show the load balancing metric and the
load balancing utility trend with BS density ratio respectively.
As λs/λm or ps increases, the load balancing metric tends to
increase, and the speed of ascending is getting slower. At the
moment of λs/λm=1, the capacity utilization of the SCBSs is
already larger than that of the MBSs in our scenario. When
the SCBSs are deployed more densely or the transmit power
becomes greater, the signal received by the user from the
SCBS cooperative group is enhanced. As a result, a large
number of users will no longer access the MBS tier, but
will access the SCBS tier, causing that N r

s increases while
N r
m decreases. Therefore, SN gets larger, which means that

the load balancing metric becomes bigger. Combined with
equation (26), we can easily understand the trend shown
in Fig. 4. We can draw the conclusion that if the SCBSs are
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FIGURE 5. The utility of connectivity probability and energy efficiency
with different λs/λm (ps = 1W, 0 = 5dB).

FIGURE 6. The utility of the whole network for different λs/λm and
weights (ps = 1W, 0 = 5dB).

deployed too densely, it will lead to a serious imbalance in
the load. Thus, it is crucial to set λs/λm reasonably.

The effect of the BS density ratio on the connectivity
probability and energy efficiency is shown in Fig. 5. Through
simulations, we know that under any SINR threshold, the con-
nectivity probability of the SCBS tier is always bigger than
that of the MBS tier, i.e., Psc > Pmc (the simulation diagram
is not given here). When λs/λm increases, more users will
access the SCBS tier, and the load offloading speed gets
slower. Finally, it will reach As → 1,Am → 0. From
Pc = AmPmc+AsPsc, we can learn that the total connectivity
probability will ascend, and the growth rate will gradually
descend. With the growth of λs/λm, the energy efficiency
increases first and then decreases. Since energy efficiency
is determined by both throughput and energy consumption.
In the early period, the increase in throughput is faster than
the increase in power consumption, but it is reversed later.

Fig. 6 depicts the total utility as functions of the BS density
ratio for different weights. Although the weights are differ-
ent, all of the total utilities show a trend of rising first and
then decreasing. There is always a maximum value, but the

FIGURE 7. Comparison of the energy efficiency for different δ and ps
(λs =

50
5002π

m−2, psleep = 8W).

corresponding optimal λs/λm is different. The optimal den-
sity ratio and the maximum utility value can be obtained by
a regular exhaustive search algorithm. By comprehensively
considering the three utilities, it is not difficult to draw a
conclusion that the optimal density ratio (39 or 37) when the
weight of UN or UE is the largest is smaller than the optimal
density ratio (47) when the weight of UPc is the biggest.
Therefore, we can adjust the weights of UN , UPc and UE to
meet different actual needs.

C. PARTIAL CONNECTIVITY
The five different conditions are (1) δ = 70%, ps = 1.5w
(2) δ = 90%, ps = 1.5w (3) δ = 100%, ps = 1.5w (4)
δ = 100%, ps = 1w (5) δ = 100%, ps = 0.5w respectively,
where the first three cases and the last three cases are two
sets of comparison items. As can be seen from Fig. 7, when
any SINR threshold is fixed, the energy efficiency satisfies
(2)>(3)>(1) and (4)>(3)>(5) while the connectivity proba-
bility satisfies (1)<(2)<(3) and (5)<(4)<(3) (the simulation
diagram is omitted). It indicates that appropriately reducing
the working rate or transmit power of SCBSs which results in
partial connectivity can indeed be used to improve the energy
efficiency. However, if the rate and transmit power of SCBSs
are blindly reduced to pursue low energy consumption, it will
result in a decrease in energy efficiency, which is inexpedient.
Therefore, the central controller and the MEC servers should
make suitable changes to the SCBSs in accordance with the
user requirement to improve the energy efficiency.

When the SINR threshold is fixed to -10 dB, a number of
(Pc,E) pairs characterizing the relationship between the con-
nectivity probability and energy efficiency can be obtained
by fine-tuning the transmit power of SCBSs. In Fig. 8, it can
be seen from the blue curve of δ=1 when the connectivity
probability is reduced from 99.2% to 93.5%, the energy
efficiency ascends first and descends later, but it is always
no less than the energy efficiency when the connectivity
probability is 99.2%. The green and red curves of δ=0.9 and
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FIGURE 8. Relationship between connectivity probability and energy
efficiency for different m (λs =

50
5002π

m−2, psleep = 8W, 0 = −10dB).

FIGURE 9. Run of algorithm 2: Energy efficiency of the network for the
chosen transmit power versus iteration numbers with the fixed actual
working rate of SCBSs. (δ = 90%, λs =

50
5002π

m−2, psleep = 8W,
0 = −10dB, P1=0.95, P2=0.99).

δ=0.8 have the same tendency as the blue curve. And there is
always a maximum value. Therefore, when the users’ service
is allowed to be partially connected, the central controller will
send instructions to the MEC servers to make some adjust-
ments to δ and ps, thereby improving the energy efficiency.

In Fig.9, we consider the performance of algorithm 2 to
select the optimal transmit power of the SCBSs that maxi-
mizes the energy efficiency of the heterogeneous network,
where the actual working rate of the SCBSs is fixed at
δ = 90%. In each iteration of algorithm 2, the trans-
mit power is randomly generated. It can be seen from
the red curve that algorithm 2 adaptively converge to the
optimal transmit power, and the maximum and minimum
energy efficiency obtained by both algorithms are corre-
spondingly approximately equal, indicating that algorithm 2
is effective. The optimal transmit power and energy effi-
ciency obtained by the two algorithms are almost the same,
which are p∗s = 1.1W, E(L(p∗s )) = 5.1 ∗ 104 bits/Joule.

FIGURE 10. Run of algorithm 2: Energy efficiency of the network for the
chosen actual working rate versus iteration numbers with the fixed
transmit power of SCBSs. (ps = 1.5W, λs =

50
5002π

m−2, psleep = 8W,
0 = −10dB, P3=0.95, P4=0.99).

Through simulations, we observe that the time spent by
algorithm 2 is significantly less than that of algorithm 1,
which is consistent with the theoretical analysis in the 8th
paragraph of Section IV, part C. Since the operation of the
algorithm 2 requires a short amount of time, the previous
optimal transmit power of the SCBSswill not change until the
central controller calculates the next one, that is, the transmit
power between the two decisions remains unchanged, which
is in line with the actual fact. We can draw a conclusion that
algorithm 2 is more suitable for our network scenario.

In Fig.10, we consider the performance of algorithm 2
to choose the optimal actual working rate of the SCBSs
maximizing the energy efficiency of the heterogenous
network with the fixed transmit power of the SCBSs,
which is ps = 1.5W. The optimal actual working rate and
the maximum energy efficiency obtained by algorithm 1 and
algorithm 2 are correspondingly approximately the same,
which are δ∗ = 87%, E(L(δ∗)) = 5.0∗104 bits/Joule.

VI. CONCLUSIONS
In this paper, a heterogeneous network model integrating a
central controller and MEC servers is proposed. The central
controller is used to implement intra-tier cooperation between
SCBSs and dynamicmanagement of the whole networkwhile
MEC servers are used for the power control and operating
mode management of base stations. A novel load balancing
metric and a BS power consumption model which takes the
number of users into consideration are presented to analyze
the load balancing and energy efficiency of the network.
According to the utility theory, we propose a method for
the overall optimization of the network, where multiple per-
formance metrics are considered. In addition, in the special
case of partial connectivity, the central controller can send
instructions to adjust transmit power or operating mode of the
SCBSs to obtaining the maximum energy efficiency through
the discrete stochastic optimization algorithm. Simulation
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results indicate that the proposed method can optimize the
communication system according to actual requirements of
the users.

APPENDIX A
PROOF OF THEOREM 1
The connectivity probability refers to the probability that
the SINR actually received by the typical user is greater
than the given SINR threshold 0. Therefore, in the cross-tier
cooperation model, the connectivity probability is

Pt = Pr

(
pmhm,1r

−α
1 + pshs,1r

−α
2

I + σ 2 >0

)
(a)
= Pr

(
h>

(I + σ 2)0

pmr
−α
1 + psr

−α
2

)
(b)
= Er1,r2

[
exp

(
−σ 20

ϕ

)
· LI

(
0

ϕ

)]
=

∫
r1>0

∫
r2>0

exp
(
−σ 20

ϕ

)
LI
(
0

ϕ

)
×frm (r1)frs (r2)dr1dr2, (42)

where ϕ = pmr
−α
1 + psr

−α
2 . (a) is due to the hypothesis

hi,j ∼ exp(1), while (b) takes advantage of the Laplace
transform of the interference I , LI (s)=e−sI .
The Laplace transform of I can be derived as

LI (s) = EI [e−sI ]

(c)
= E

[
e
−s

∑
8Ii

∑
i∈{m,s}

pihi,jr
−α
i,j
]

(d)
=

∏
i∈{m,s}

E
[∏
8Ii

1

1+ spir
−α
i,j

]
(e)
=

∏
i∈{m,s}

exp
(
−λi

∫
R2

(
1−

1
1+ spir−α

)
dr
)

(f )
=

∏
i∈{m,s}

exp
(
−2πλi(spi)

2
α

∫
∞

(spi)−1/αdi

γ

1+ γ α
dγ
)
,

(43)

where 8Ii is the set of all interfering BSs in tier i. (c) is
because the interference I consists of all BSs except xm,1
and xs,1 in two tiers. (d) makes use of the expression of
the moment generation function for the exponential random
variable hi,j. (e) follows from the probability generation func-
tional (PGFL) that for any function f (x) conforming to x ∈ 8,

we have E
[ ∏
x∈8

f (x)
]
= exp

(
−λ

∫
Rd (1− f (x))dx

)
. (f ) uses

the variable substitution γ α = (spi)−1rα . The calculation is
an integral from di to ∞ in tier i, where di is the distance
between the nearest interfering BS and the user in tier i.

APPENDIX B
PROOF OF LEMMA 1
When the RSS at the typical user from an SCBS cooperative
group is greater than that from a single MBS, the user will

access the SCBS tier, so the probability is

As = P
( k∑
j=1

psr
−α
s,j > pmr−αm

)

= E
[
P
(
rm >

(
pm/

(
ps

k∑
j=1

r−αs,j

)) 1
α)]

=

∫
0<rs,1<rs,2
···<rs,k<∞

P
(
rm > (η(r))1/α

)
f5(r)dr . (44)

It is a well-known theorem that the null probability of
PPP with density λ in the region A is P(N(BS) = 0) =
exp(−λS(A)), where N(BS), S(A) denote the number of the
BS and the area of the region respectively. rm > (η(r))1/α

means that there is no MBS in the circle with radius (η(r))1/α

in the MBS tier. Thus, we can obtain the following equation

P
(
rm >

(
pm/

(
ps

k∑
j=1

r−αs,j

)) 1
α)
=e−λmπ (η(r))

2
α
. (45)

The joint PDF of the distances between the two nearest BSs
and the user has been given in [54]. Similarly, the PDF of rs,j
in the intra-tier cooperation model can be obtained by using
the null probability theorem and the Bayes formula as

f5(r) = (2πλs)ke
−λsπr2s,k

k∏
j=1

rs,j. (46)

APPENDIX C
PROOF OF THEOREM 2
Only when the actual SINR received by the typical user is
greater than the given threshold0, the serving BS can provide
services for the user. Therefore, in the intra-tier cooperation
model, the derivation process of equation (14) is as follow:

Pmc = Pr
(
pmhm,1r−αm
I + σ 2 >0

)
= Pr

(
hm,1 > p−1m rαm0(I + σ

2)
)

(g)
= Erm

[
exp

(
−p−1m rαm0σ

2
)
LI (p−1m rαm0)

]
=

∫
∞

0

(
exp(−p−1m rαm0σ

2)LI (p−1m rαm0)
)
fRm (r)dr,

(47)

where (g) takes advantage of the laplace transform of I ,
LI (s)=e−sI . LI (s) can be found in (5).
The proof of equation (15) is similar to equation (14).
Due to the complexity of the proposed intra-tier coop-

eration model, the analytical expressions we obtained can
no longer be further simplified. Although the expressions
contain several integrals, it is worth noticing that we can use
the integral tools provided by Matlab to solve them easily.
Therefore, we can clearly evaluate the impact of important
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parameters on network performance through the simulation
results.
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