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ABSTRACT In electronic warfare, the conflict relationship between the radar and the jammer can be
modeled using game theory. In this paper, the strategies design problem for the monostatic radar and the
jammer is investigated within the framework of Stackelberg game and egalitarian game. The radar waveform
and the jammer power spectrum density are regarded as their strategies respectively and mutual information
criterion is used to formulate the utility function. In the Stackelberg game, Stackelberg Equilibrium (SE)
strategies of the radar and the jammer are derived based on a two-stage optimizationmethod. In the egalitarian
game, the existence condition of Nash equilibrium (NE) is investigated and the corresponding NE strategies
are also given. If the existence condition is not satisfied, it is pointed out that the SE strategies are still
acceptable as safe strategies from the perspective of game theory. The simulation results are presented and
the performances of the SE strategies are compared with other strategies.

INDEX TERMS Game theory, anti-jamming and jamming, strategy design, mutual information.

I. INTRODUCTION
Radar electronic countermeasure (ECM) and electronic
counter-countermeasures (ECCM) have been a challenging
area for a number of years. The ECM systems aim at pre-
venting the enemy’s radar from working correctly, while the
objective of ECCM systems is to protect the radar from being
jammed [1]–[3]. Traditional ECM and ECCM techniques
are designed to operate against dumb opponents, where the
opponent’s countermeasures are not taken into consideration.
For example, the spot noise is a kind of active ECM tech-
nique which is designed to jam the radar with fixed carrier
frequency [4]. However, if the radar takes countermeasures
such as frequency agility, the spot noise can not work well.
As a result, traditional ECM and ECCM techniques will be
confronted with a bigger challenge than before on account of
that the radar and the jammer are both becoming smarter.

Game theory is a kind of mathematical tool that focuses on
modeling the conflict and cooperative relationship between
rational and intelligent decision-makers [5]. It is appropriate
to apply game theory to analyze the strategies of the smart
radar and the jammer. By doing that, the opponent’s coun-
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termeasures can be taken into consideration when designing
the ECCM or the ECM techniques [6]–[8]. In [6], the radar
and the jammer are modeled as informed players in a non-
cooperative two-person zero-sum (TPZS) game. The effects
of jamming on target detection performance of the radar
with a constant false alarm rate processor are investigated,
and several important conclusions are given. The power
game between a smart statistic multiple-input multiple-output
(MIMO) radar and a smart jammer is well studied based on
mutual information (MI) in [7]. The strategies of the radar and
the jammer are studied from the perspective of hierarchical
and symmetric games, which mainly differ from whether the
decision-making process is symmetric. In [8], the work in [7]
is extended by taking the effects of clutter into consideration
and a novel two-step water-filling algorithm is proposed.

Motivated by the work in [7] and [8], we investigate the
game between the smart monostatic radar and the smart jam-
mer in this paper. In the game, the strategy of the monostatic
radar is the transmit waveform. Transmit waveform design is
of vital importance because many critical radar performance
metrics, such as the signal-to-noise ratio (SNR), the range
resolution, and so on, have a close relationship with the radar
waveform [9]. It should be emphasized that the strategy of
the radar is a spectrally designed waveform and the algorithm
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proposed in [10] can be used to acquire constant modulus
waveform. As for the jammer, power spectrum density (PSD)
is regarded as its strategy.

With regard to the radar waveform optimization, MI cri-
terion is one of the most commonly used criteria, which is
used to formulate the utility function in the game mentioned
above. In fact, MI has been used as a criterion in the radar
waveform design problem for many years. Bell points out
that target classification ability or average measurement error
will benefit from the improvement of the MI between the
received signal and the target impulse response. Based on
that, a waveform design method termed water-filling is pro-
posed in [11]. Matched waveforms design based on MI cri-
terion is investigated in [12] and the relationship between MI
and SNR is analyzed. On the foundation of the MI criterion,
two MIMO radar waveform design methods are presented
in [13] and [14]. Note that the countermeasures of the jammer
are not taken into consideration among these MI-based wave-
form designmethods. The performance of thesemethodsmay
degrade heavily since the jammer will take countermeasures
in practice.

The main contributions of this paper are summarized as
follows.

(1)The TPZS game theory model is used to characterize
the relationship between the monostatic radar and the jammer
based on the MI utility function. Two kinds of game theory
models, including egalitarian game and Stackelberg game,
are taken into consideration.

(2)In the Stackelberg game, where the radar and the jam-
mer are asymmetric, the Stackelberg equilibrium (SE) strate-
gies of the radar and the jammer are derived based on the
two-step optimization method.

(3)In the egalitarian game, where the radar and the jammer
are symmetric, the existence condition of the NE is derived
and the NE strategies are also given. In addition, if the NE
does not exist, it is pointed out that the SE strategies are still
acceptable from a game theory perspective.

The remainder of the paper is organized as follows.
In section 2, the signal model is first presented. On this basis,
the formulation of the MI utility function is then introduced
briefly. In addition, the basic concepts of the egalitarian game
and Stackelberg game are given. In section 3, the SE strategies
are derived in detail when the radar and the jammer are in
the Stackelberg game. In section 4, the existence condition
of the NE is investigated and the NE strategies are also
given. Simulation results are shown in section 5 and then
conclusions are drawn in section 6.

II. PROBLEM FORMULATION
A. SIGNAL MODEL
The signal model, as depicted in Fig.1, is considered in this
paper. x (t) is a finite-energy deterministic waveform with
energy Ex and duration T . It is transmitted by the monostatic
radar and scattered by the extended target whose random
impulse response is h (t). The resulting signal z(t) is cor-

FIGURE 1. Block diagram of signal model.

rupted by the zero-mean addictive Gaussian noise process
n (t) with PSD Snn (f ) and the signal-independent jamming
signal j (t) released by the jammer. The total signals are
received by the radar and filtered by an ideal band-pass filter
whose impulse response is b(t).
h (t) is a finite-energy finite-duration random process and

it can be defined bymultiplying a stationaryGaussian random
process g (t) with a rectangular window function a(t) with
duration Th [12], [15]. Note that h (t) is not a true stationary
Gaussian random process and has limited energy. As a result,
its PSD is not available to describe the scattering characteris-
tic of the extended target.

However, an alternative approach can be used to do that.
If H (f ) is denoted as the Fourier transform counterpart of
h (t), then an energy spectral density (ESD) can be defined
as follows [11], [12], [15]

ξH (f ) = E[|H (f )|2], (1)

where E [•] represents the expectation operation. The mean
of H (f ) is denoted as µH (f ) = E [H (f )], then the energy
spectral variance (ESV) is given below

σ 2
H (f ) = E[|H (f )− µH (f )|2]. (2)

Generally,µH (f ) is assumed to be zero and then the ESV and
ESD functions are equivalent [11]. Note that ESV is different
from PSD and it expresses the average energy of a finite-
energy, zero-mean random process.

B. UTILITY FUNCTION
A barrage jammer, which is a common type of active
suppression jammer [4], is taken into consideration in this
paper. It is assumed that j (t) is a Gaussian random pro-
cess whose PSD is Pj (f ) and is independent of the transmit
waveform.

The observed signal y (t) can be expressed by (3). Let Tb
be the duration of the ideal band pass filter then the duration
of the convolution output y(t) is T̃ = T + Tb + Th.

y (t) = b (t) ∗ [x (t) ∗ h (t)+ n (t)+ j (t)] (3)

The MI between the received signal y(t) and the target
random impulse response h(t) given a deterministic transmit
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waveform x(t) is chosen as the utility function of the game
and it can be approximated by (4) [12]

I (h (t) ; y (t) |x (t))

= T̃
∫
W

ln

{
1+

|X (f )|2σ 2
H (f )

T̃
[
Snn (f )+ Pj (f )

]} df , (4)

where W = [f0 − W
2 , f0 +

W
2 ] is the frequency interval

to which the energy of the radar waveform is confined and
|X (f )|2 is the magnitude-squared spectrum of x (t). With the
assumption of T � Th and T � Tb, T̃ approximately equals
to T [11], [12].
Strictly speaking, x (t) is not limited in the frequency

domain but an approximate bandwidthW can be acquired by
confining the majority of the signal energy to that frequency
interval. The derivation of (4) is described in detail in [12].
The main difference between the utility function and the
approximate MI in [12] is that a signal-independent jamming
signal is incorporated in (4).

The classification performance and the measurement error
are closely related to the MI between the parameter X which
is measured and the measurement Y . According to the two
propositions in [16], it can be concluded that the greater the
MI between X and Y becomes, the better performance we can
obtain.

Just like the measurement problem mentioned above,
the performance of the radar systems is also closely related
to the MI between the received signal and the target random
impulse response. As a result, larger I (h(t); y(t)|x(t)) will
lead to a better performance in both classification and mea-
surement of the radar systems.

C. GAME THEORY BACKGROUND
In game theory, zero-sum game is a kind of competitive game
and the sum of the outcomes of all the players is equal to
zero [17]. That means the players are in a strict competitive
situation. If there are only two persons in the zero-sum game,
then the game is usually called TPZS game.

In a TPZS game, let a be the minimizer, b be the maximizer
and f (a,b) be the utility function of the game. Here the TPZS
game can be divided into egalitarian game and Stackelberg
game according to whether the domination of the players
exists [18].

In the egalitarian game, the two players are symmetric,
which means they have no prior information about the strate-
gies of their opponent. Therefore, the two players arrive at
their strategies independently and NE is usually used to solve
the egalitarian game. At the NE point, no player can benefit
from the unilateral change of his strategy. The pure-strategy
NE (a∗,b∗) can be defined as follows [18]

f
(
a,b∗

)
≥ f

(
a∗,b∗

)
≥ f

(
a∗,b

)
. (5)

In the Stackelberg game, just opposite to the egalitarian
game, the two players are asymmetric. That is to say one
player will dominate the decision process. The player men-
tioned above is called the leader who knows his strategy will

be intercepted by his opponent. The other player will take
actions rationally to the leader’s strategy and is called the
follower [18]. With conservativeness and rationality assump-
tions, the leader will adopt a safe strategy which can avoid
the worst case and then the game will lead to a SE. When the
minimizer a is the leader, the SE strategies of a and b can
be calculated by solving (6). When the maximizer b is the
leader, the only difference is that the ‘‘minmax’’ is replaced
by the ‘‘maxmin’’ and the SE strategies can be obtained by
solving (7) [18].

min
a∈A

max
b∈B

f (a,b) (6)

max
b∈B

min
a∈A

f (a,b) (7)

In this paper, the jammer is the minimizer a and the radar is
the maximizer b. The mutual information in (4) is the utility
function f (a,b). In the following two sections, the strategies
of the radar and the jammer are analyzed when they are
involved in the Stackelberg game and the egalitarian game.
In the Stackelberg game, it should be emphasized that the SE
strategies of the radar and the jammer exist for sure because
every two-person finite game admits a Stackelberg strategy
for the leader [18] and the equilibrium strategy of the follower
is just any best response to the leader’s SE strategy.

Note that the analyses of the egalitarian game are based
on the results obtained in the Stackelberg game so the Stack-
elberg game based strategies design is first presented in
section 3.

III. STACKELBERG GAME BASED STRATEGIES DESIGN
In electronic warfare, the roles of the radar and the jammer
are asymmetric in most cases, which means the radar or the
jammer knows its strategies will be intercepted by its oppo-
nent. For example, cognitive radar has the ability of acquiring
the type and even the detailed parameters of the jammer. So in
this section, the radar and the jammer are modeled within the
framework of Stackelberg game as introduced above.

A. RADAR AS THE LEADER
For the sake of analysis, it is assumed that the jammer has
enough capability of intercepting the radar’s waveform and
the radar is aware of that. In the Stackelberg game, the radar
is the leader who wants to maximize the MI; the jammer, just
the opposite, is the follower who will take countermeasures
to the radar’s strategy to minimize the MI. The mathematical
expression can be formulated by (8) [18]

max
|X(f )|2

min
Pj(f )

T̃
∫
W

ln

{
1+

|X (f )|2σ 2
H (f )[

Snn (f )+ Pj (f )
]
T̃

}
df

s.t.
∫
W

Pj (f )df = P,
∫
W

|X (f )|2df = Ex , (8)

where P is the transmit power constraint for the jammer.
As described above, the SE strategies of the radar and the

jammer when the radar is the leader are the solutions to the
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‘‘maxmin’’ problem in (8). A two-stage optimization method
is used to solve the problem and the detailed solving process
is described as below.

Stage 1: Fix the radar waveform |X (f )|2 to reduce the
‘‘maxmin’’ problem to a minimization problem as shown
in (9).

min
Pj(f )

T̃
∫
W

ln

{
1+

|X (f )|2σ 2
H (f )[

Snn (f )+ Pj (f )
]
T̃

}
df

s.t.
∫
W

Pj (f )df = P (9)

Check the second order condition of the integrand in (9)
and it can be found that it is strictly convex with respect to
Pj (f ) [19]. As a result, the optimal jammer PSD with respect
to the given radar waveform exists, which can be solved by
the Lagrange multiplier method [20].

Based on the Lagrange multiplier method, the objective
function shown in (10) can be obtained

8
(
Pj (f ), λ1

)
= T̃

∫
W

ln

{
1+

|X (f )|2σ 2
H (f )[

Snn (f )+ Pj (f )
]
T̃

}
df

+λ1

P− ∫
W

Pj (f )df

 , (10)

where λ1 is the Lagrange multiplier and it is determined by∫
W
Pj (f )df = P.

Minimization of (10) with respect to Pj (f ) is equivalent to
minimizing the following equation.

φ
(
Pj (f ), λ1

)
= T̃ ln

{
1+

|X (f )|2σ 2
H (f )[

Snn (f )+Pj (f )
]
T̃

}
−λ1Pj (f )

(11)

Take the derivative of (11) with respect to Pj (f ) and set it
to zero. After that, the optimal solution to (9) can be obtained
and it is expressed as follows.

Pj (f ) = max

0,
√√√√[σ 2

H (f ) |X (f )|
2

2T̃

]2
+

σ 2H (f )|X(f )|
2

λ1

−
σ 2
H (f ) |X (f )|

2

2T̃
− Snn (f )


(12)

Stage 2: Substitute the result in (12) into the cost function
in (8) and then amaximization problem as shown below needs
to be solved

max
|X(f )|2

T̃
∫
W

ln

{
1+

|X (f )|2σ 2
H (f )[

Snn (f )+ Pj (f )
]
T̃

}
df

s.t.


Pj (f ) = max

{
0,

√
A(f )2 + B (f )− A (f )

−Snn (f )

}
∫
W
|X (f )|2df = Ex

,

(13)

where A (f ) =
σ 2H (f )|X(f )|

2

2T̃
and B (f ) =

σ 2H (f )|X(f )|
2

λ1
are used

for notational brevity.
After the substitution of Pj(f ) into the cost function in (13),

it can be found that the result is a strict concave function with
respect to |X (f )|2. Therefore, Lagrange multiplier method
is still applied and the following objective function can be
acquired

K
(
|X (f )|2, λ2

)
= T̃

∫
W

ln

{
1+

|X (f )|2σ 2
H (f )[

Snn (f )+ Pj (f )
]
T̃

}
df

+λ2

Ex − ∫
W

|X (f )|
2
df

 ,(14)

where λ2 is Lagrange multiplier which can be calculated by∫
W
|X (f )|2df = Ex .

Maximization of K
(
|X (f )|2, λ2

)
with respect to |X (f )|2

is equivalent to maximizing the following equation.

k
(
|X (f )|2, λ2

)
= T̃ ln

{
1+

|X (f )|2σ 2
H (f )[

Snn (f )+ Pj (f )
]
T̃

}
−λ2|X (f )|2 (15)

Substitute Pj (f ) in (12) into (15) and the following expres-
sion can be obtained.

k
(
|X (f )|2, λ2

)
= T̃ ln

1+
1√

1
4 +

T̃ 2

λ1σ
2
H (f )

1
|X(f )|2

−
1
2


−λ2|X (f )|2 (16)

Taking the derivative of k
(
|X (f )|2, λ2

)
with respect to

|X (f )|2 and setting it to zero yields the solution to (13),
which is also the solution of the radar waveform |X (f )|2 to
the ‘‘maxmin’’ problem. The result is given by

|X (f )|2 =

√√√√( 2T̃ 2

λ1σ
2
H (f )

)2

+

(
T̃
λ2

)2

−
2T̃ 2

λ1σ
2
H (f )

. (17)

Substituting (17) into (12) and simplifying the result,
the solution of the jammer PSD Pj(f ) to the ‘‘maxmin’’
problem is obtained as shown below.

Pj (f ) = max

0,
T̃
λ1
+
σ 2
H (f )
2λ2

−

√√√√ T̃
λ1

2

+

(
σ 2
H (f )
2λ2

)2

−Snn (f )


(18)

After the stage 1 and the stage 2, the solutions of |X (f )|2

and Pj(f ) to the ‘‘maxmin’’ problem in (8) are both acquired,
which are also the SE strategies of the radar and the jammer.

Note that the strategies in (17) and (18) are meaningful
in theory, however, it is not practical to implement them
in real electronic warfare. The reason is that the Lagrange
multipliers are needed but they are difficult to be calculated.
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It is obvious that a Lagrange multiplier pair {λ1, λ2} needs to
satisfy both

∫
W
Pj (f )df = P and

∫
W
|X (f )|2df = Ex at the

same time, which is a highly nonlinear system of equations
and will result in a high computational complexity.

In order to simplify the calculation of the Lagrange multi-
pliers, the first-order Taylor approximation toPj (f ) is applied
and the results are shown as follows.

Pj (f ) ≈ max
{
0,

1
2λ2

σ 2
H (f )− Snn (f )

}
(19)

The approximation in (19) is reasonable and efficient due
to the following two reasons.

The first is that the complexity of solving the Lagrange
multipliers λ1 and λ2 is greatly reduced by the simplification
operation. By doing that, the influence of λ1 is eliminated and
only a one-dimensional search method is needed to obtain λ2.
Then λ2 is substituted into (17) and the same method can be
used to acquire λ1.
The second is that the characteristic of the jammer PSD

Pj (f ) remains the same after the simplification operation.
Examine the SE strategies and it can be found that both the
radar waveform |X (f )|2 and jammer PSD Pj (f ) get larger
as σ 2

H (f ) gets larger. That is to say, the radar and the jammer
are willing to ‘‘pour’’ more energy to the frequency interval in
which the target ESV is large.With respect to the approximate
Pj (f ), it will also become larger with the increase of σ 2

H (f ).
As a result, it can be concluded that the characteristic of the
jammer PSD is not changed.
In addition, it should be highlighted that the solution pair
{|X (f )|2,Pj (f )} to (8) may not be unique, meaning that the
SE strategies of the radar and the jammer may also not be
unique. This is due to the fact that it is difficult to determine
whether the solutions to the nonlinear system of equations
mentioned above are unique. However, the MI value will be
the same even if there are multiple SEs.

B. JAMMER AS THE LEADER
Let the radar have enough capability of sensing the existence
of the jamming signal and the jammer knows that. Therefore,
the jammer is the leader and the radar is the follower. The
jammer wants to minimize the MI while the radar is just the
opposite. The mathematical expression of the above process
is given by (20) [18]. Similar to the case in which the radar is
the leader, the SE strategies of the radar and the jammer are
the solutions to the ‘‘minmax’’ problem expressed in (20).

min
Pj(f )

max
|X(f )|2

T̃
∫
W

ln

{
1+

|X (f )|2σ 2
H (f )[

Snn (f )+ Pj (f )
]
T̃

}
df

s.t.
∫
W

|X (f )|2df = Ex ,
∫
W

Pj (f )df = P (20)

The two-stage optimization method is still used to solve
the problem. The detailed solution procedure is the same as
section 3.A so it is ignored and only some important results
are given below.

Stage 1: The‘‘minmax’’ problem is reduced to a ‘‘max’’
problem by fixing the jammer PSD Pj (f ) and the maximiza-
tion problem is given by

max
|X(f )|2

T̃
∫
W

ln

{
1+

|X (f )|2σ 2
H (f )[

Snn (f )+ Pj (f )
]
T̃

}
df

s.t.
∫
W

|X (f )|2df = Ex . (21)

Examine the second-order condition and we can verify
that the integrand of (21) is strictly concave with respect to
|X (f )|2. Applying Lagrange multiplier method, the optimal
radar waveform can be acquired in (22)

|X (f )|2 = max

(
0,

T̃
λ3
−

[
Snn (f )+ Pj (f )

]
T̃

σ 2
H (f )

)
, (22)

where λ3 is determined by
∫
W
|X (f )|2df = Ex .

Stage 2: By substituting the optimal radar waveform into
the cost function in (20), a minimization problem is obtained
as shown below.

min
Pj(f )

T̃
∫
W

ln

{
1+

|X (f )|2σ 2
H (f )[

Snn (f )+ Pj (f )
]
T̃

}
df

s.t.


|X (f )|2 = max

(
0,

T̃
λ3
−

[
Snn (f )+ Pj (f )

]
T̃

σ 2
H (f )

)
∫
W
Pj (f )df = P

(23)

Solve (23) with Lagrange multiplier method and the result,
which is also the solution of the jammer PSD Pj(f ) to the
‘‘minmax’’ problem, can be obtained as shown in (24)

Pj (f ) = max
{
0,

1
λ4
− Snn (f )

}
, (24)

where λ4 is determined by
∫
W
Pj (f )df = P. Substitute the

solution in (24) into the optimal radar waveform in (22)
and then the solution of the radar waveform |X (f )| to the
‘‘minmax’’ problem can be acquired in (25).

|X (f )|2 = max

0,
T̃
λ3
−

max
{
Snn (f ) , 1

λ4

}
T̃

σ 2
H (f )

 (25)

As for the Lagrange multipliers, λ4 can be calculated using
the one-dimensional searchmethod.When λ4 is obtained, it is
substituted into (25) and the samemethod is applied to get λ3.
Until now, the solutions to the ‘‘minmax’’ problem previ-

ously mentioned, which are also the SE strategies of the radar
and the jammer, have been solved.

The SE strategies of the radar and the jammer are both
water-filling solutions. Taking the SE strategy of the radar
as an example, the explanation for that is given as follows.
The constant term T̃

λ3
in (25) provides the upper boundary
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of the solution and the term
max

{
Snn(f ), 1

λ4

}
T̃

σ 2H (f )
gives the lower

boundary of the solution. The energy of the radar waveform
is filled in the area formed by the lower boundary and the
upper boundary in the same way in which water distributes
itself in a vessel. As a result, the SE strategy of the radar is a
water-filling solution and so is the SE strategy of the jammer.

As for the radar, although its SE strategy is a water-filling
solution, it is different from [11] because the countermea-
sures of the jammer are taken into consideration. As for the
jammer, if Snn (f ) is constant for all f ∈W , the jammer’s PSD
is also constant and the Lagrange multiplier λ4 simply equals
to W

P+WSnn(f )
. If Snn (f ) is not constant, then the jammer’s

PSD is also not constant. However, the power of the jamming
signal at the radar receiver is usually far larger than the noise
power so the effect of Snn (f ) can be negligible.

Different from the case in which the radar is the leader,
the SE strategies of the radar and the jammer under this
circumstance are unique. As we can see from (24), the SE
strategy of the jammer is only decided by λ4 and once it is
obtained, the SE strategy of the radar can be obtained by λ3.
Therefore, the SE strategies here are unique.

IV. EGALITARIAN GAME BASED STRATEGIES DESIGN
In the previous section, the game in which the players are
asymmetric is investigated. With the assumption of conserva-
tion and rationality, the players will not regret their strategies
when the game is over [18]. But if they are involved in the
egalitarian game, meaning that they arrive at their strategies
independently, the SE strategies are not the best strategies.
If the NE exists, the radar and the jammer prefer to the NE
strategies rather than the SE strategies [5], [18].

In this section, the existence condition of the egalitarian
game is investigated. If the NE condition is satisfied, the NE
strategies of the radar and the jammer are given. However,
if the NE condition is not satisfied, the possible safe strategies
are also presented.

According to the proposition 5 in [7], the NE of a TPZS
game on a continuous space is the saddle point of their utility
function. That is to say (a∗,b∗) must satisfy the following
equation(
a∗,b∗

)
= arg min

a∈A
max
b∈B

f (a,b) = argmax
b∈B

min
a∈A

f (a,b) .

(26)

Denote {X r ,Prj } as the solution of (8) and {X j,Pjj} as the
solution of (20). I (X ,Y ) is the value of the MI between the
received signal and the target random impulse response if the
radar adopts the strategyX and the jammer adopts the strategy
Y. Here X and Y belong to the set {X r ,X j} and {Prj ,P

j
j},

respectively.
Based on (26), if the NE exists, I (X r ,Prj ) must be equal to

I (X j,Pjj). Therefore, the NE existence condition is equivalent

to the condition that I (X r ,Prj ) is equal to I (X
j,Pjj). According

to whether the target ESV is constant in the given band-
width, two kinds of situations are taken into consideration

and we investigate whether the equality condition holds in
each situation.

Situation 1: The target ESV is not a constant number.
In this situation, strict inequality I (X r ,Prj ) < I (X j,Pjj) holds
so the saddle point does not exist. That means the NE of the
egalitarian game does not exist. Here the proof is given below.

The inequality (27) is first proven.

I (X r ,Prj ) < I (X r ,Pjj) (27)

Given the radar waveform X r , Prj is the optimal solution
to the minimization problem as described in the stage 1 of
section 3.A, which results in I (X r ,Prj ) ≤ I (X

r ,Pjj). In section
3.A, it is pointed out that the integrand in (9) is strictly convex
with respect to Pj(f ). That means if the strategies of the
jammer Prj and P

j
j are not equal, I (X

r ,Prj ) < I (X r ,Pjj) will
hold. In situation 1, the target ESV is not constant so the
strategies of the jammer Prj and P

j
j are not equal obviously.

As a result, strict inequality I (X r ,Prj ) < I (X r ,Pjj) holds.
Then the following strict inequality is proven.

I (X r ,Pjj) < I (X j,Pjj) (28)

Given the jammer PSD Pjj, X
j is the optimal solution to the

maximization problem as described in the stage 1 of section
3.B, which leads to I (X r ,Pjj) ≤ I (X j,Pjj). As mentioned
above, the integrand in (21) is strictly concave with respect
to |X (f )|2. With the target ESV not constant in the given
bandwidth, the radar strategies X r and X j are also not equal.
As a consequence, I (X r ,Pjj) < I (X j,Pjj) holds.
Therefore, it can be concluded that strict inequality

I (X r ,Prj ) < I (X r ,Pjj) < I (X j,Pjj) holds. The saddle point,
which requires the value of ‘‘minmax’’ to equal to the value
of ‘‘maxmin’’, does not exist.

Situation 2: The target ESV is a constant number. In this
situation, I (X r ,Prj ) = I (X j,Pjj) holds and the NE exists. The
proof is given below.

From the above analyses in situation 1 we can know that
the equality of Prj and Pjj leads to I (X r ,Prj ) = I (X r ,Pjj).

In situation 2, the strategies of the jammer Prj and P
j
j are both

constant in the given bandwidth because of the constant target
ESV. If the given jammer transmit power is the same, Prj and

Pjj are equal, leading to I (X r ,Prj ) = I (X r ,Pjj). Similarly,
with the target ESV a constant number and the same radar
waveform energy, X r and X j are also the same and then
I (X r ,Pjj) = I (X j,Pjj) holds. Therefore, it can be concluded

that I (X r ,Prj ) = I (X j,Pjj) holds and the NE exists.
On the basis of the analyses in situation 1 and situation 2,

the following conclusion can be drawn.
Conclusion:
(1) When the target ESV is constant, the NE exists and the

NE strategies of the radar and the jammer are just distributing
the energy or power evenly in the given bandwidth.

(2) When the target ESV is not constant, the NE does not
exist and no NE strategies are available.
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FIGURE 2. Target ESV.

Although the NE does not exist when the target ESV is
not constant, the SE strategies are still acceptable for both
the radar and the jammer no matter who the leader is. From
the perspective of game theory, the explanation is given
below.

Actually, I (X j,Pjj) is the loss-ceiling [18] of the jammer.

It means that I (X j,Pjj) is the upper bound of the MI no matter
what strategies the radar adopts with the jammer strategy
fixed by Pjj. I (X

r ,Prj ) is the gain-floor [18] of the radar. That
is to say that this strategy provides a lower bound of the MI
whatever strategies the jammer takes if the radar keeps X r

as its strategy. In a word, SE strategies guarantee the radar
and the jammer safe strategies under the conservativeness and
rational assumption. So in this view, the SE strategies are still
acceptable.

V. NUMERICAL RESULTS
In this section, simulation results are provided and the basic
simulation parameters and assumptions are given below. It is
assumed that there is a monostatic radar equipped with an
antenna whose gain G is 30dB. The carrier frequency of
the radar is f0 = 1GHz and the bandwidth of the transmit
waveform is W = 10MHz. Hence, the radar frequency
interval isW = [f0− W

2 , f0+
W
2 ] = [0.995GHz, 1.005GHz].

The duration of the radar waveform is T = 10ms and its
energy can be expressed by Ex = PxT , where Px is the
average transmit power of the radar. The target, which is
R = 10km away from the radar and in the main lobe of
the radar, is equipped with a self-screening jammer whose
antenna gain is 10 dB.

The ESV, as shown in Fig.2, is given by

σ 2
H (f ) = β exp

{
−α(f − f0)2

}
, (29)

where α and β are constants that describe the characteristics
of the target ESV. α is related to the radar bandwidth and
it describes how fast σ 2

H (f ) decreases as |f − f0| increases.
β characterizes the magnitude of the target ESV and it rep-
resents how much the ratio, the received power PR to the
transmit power PT of the radar, changes when there is a 1m2

change in the radar cross section (RCS) [11]. β can be defined

FIGURE 3. SE strategies of the radar and the jammer when the radar is
leader. (a) Radar waveform

∣∣X (
f
)∣∣2 for radar average transmit power

Px = {1KW , 10KW , 100KW } and jammer transmit power P = 10W .
(b) Jammer PSD Pj

(
f
)

for radar average transmit power Px = 10KW and
jammer transmit power P = {1W , 10W , 100W }.

as follows

β =
1PR
PT
=

A2e1σ
4πλ2R4

, Ae =
Gλ2

4π
, (30)

where λ is the wavelength of the radar, R is the distance
between the radar and the target,1σ = 1m2 represents a 1m2

change in the RCS and Ae is the effective aperture. When the
bandwidth is 10MHz, α is set to 10−13s2 according to [11].
By (30), β can be obtained and it is equal to 4.5354× 10−14.
Here the receiver noise is addictive white Gaussian noise
and the PSD of the noise Snn equals to kTs, where k is the
Boltzmann’s constant and Ts = 300K is the effective noise
temperature.

A. STACKELBERG GAME BASED STRATEGIES DESIGN
1) RADAR AS THE LEADER
In this subsection, the SE strategies are shown in Fig.3 when
the radar is the leader.

The radar’s strategies are given in Fig.3(a). Here the jam-
mer transmit power P is fixed and the radar average trans-
mit power Px is changed. The jammer’s strategies are given
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in Fig.3(b) with the radar average transmit power Px fixed
and the jammer transmit power P changed.
It can be seen from Fig.3(a) and Fig.3(b) that the amplitude

of the radar waveform and the jammer PSD will increase
with the increase of the radar average transmit power Px and
jammer transmit power P, respectively. Compared with the
target ESV in Fig.2, it is obvious to find that both the radar
and the jammer will allocate more energy in the frequencies
with larger target ESV.

2) JAMMER AS THE LEADER
In this subsection, the SE strategies of the radar and the
jammer are illustrated in Fig.4 when the jammer is the leader.

When the jammer is the leader, the radar SE strategy is a
water-filling solution and more energy will be allocated to
the frequencies with larger target ESV as show in Fig.4(a)
and Fig.4(b). With the increase of the jammer transmit power,
the radar tends to allocate its energy in a narrower frequency
interval as shown in Fig.4(a). With the increase of the radar
average transmit power, just the opposite, the radar is will-
ing to allocate more energy in a wider frequency as shown
in Fig.4(b).

The jammer SE strategy is also a water-filling solution and
the PSD of the jammer is constant in the radar bandwidth as
depicted in Fig.4(c).

B. EGALITARIAN GAME BASED STRATEGIES DESIGN
1) SITUATION 1
Fig.5(a) and Fig.5(b) show the MI for different radar average
transmit power and jammer transmit power when the radar
and the jammer are the leader, respectively. In section 4, it is
proven that the NE does not exist in situation 1, meaning that
Iminmax is always greater than Imaxmin as shown in Fig.5(c).

As discussed before, SE strategies provide the gain-floor
for the radar and the loss-ceiling for the jammer. In order
to give a further explanation, the following experiments are
conducted. Two other strategies except the SE strategies are
used as a comparison. One is the uniform strategy which
distributes the energy or power uniformly in the radar fre-
quency bandwidth. The other one is the random strategy
which distributes the energy or power randomly in the radar
frequency bandwidth.

(1) When the radar is the leader, it is assumed that the radar
always adopts the SE strategy and the jammer will take the SE
strategy, uniform strategy and random strategy respectively.
As shown in Fig.6(a), the SE strategy indeed provides a lower
bound, which is called gain-floor in game theory.

(2) When the jammer is the leader, it is assumed that the
jammer always adopts the SE strategy and the radar will
take the SE strategy, uniform strategy and random strategy
respectively. An upper bound, called loss-ceiling in game
theory, is guaranteed by the SE strategy as shown in Fig.6(b).

In fact, any strategies can be used and the conclusion
remains unchanged. Here the two strategies are just taken as
an example.

FIGURE 4. SE strategies for the radar and the jammer when the jammer is
leader. (a) Radar waveform

∣∣X (
f
)∣∣2 for radar average transmit power

Px = 10KW and jammer transmit power
P = {10−4W , 10−2W , 1W , 100W }. (b) Radar waveform

∣∣X (
f
)∣∣2 for radar

average transmit power Px = {1KW , 10KW , 50KW , 100KW } and jammer
transmit power P = 1W . (c) Jammer PSD Pj

(
f
)

for radar average transmit
power Px = 10KW and jammer transmit power
P = {10−4W , 10−2W , 1W , 100W }.

2) SITUATION 2
Here the constant target ESV, which can be expressed as
σH (f ) = C, f ∈ [f0 − W

2 , f0 +
W
2 ], is used in the experiment.

The same as Fig.5(a) and Fig.5(b), I (X r ,Prj ) and I (X
j,Pjj) for

different radar average transmit power and jammer transmit
power are presented in Fig.7(a) and Fig.7(b) respectively.
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FIGURE 5. MI and their difference with respect to different Px and P in
situation 1. (a) Imaxmin. (b) Iminmax . (c) Iminmax − Imaxmin.

FIGURE 6. Gain-floor and loss-ceiling for the radar and the jammer
respectively. (a) Gain-floor for radar. (b) Loss-ceiling for jammer.

The result of I (X j,Pjj) − I (X r ,Prj ) is shown in Fig.7(c).

Obviously, the difference between I (X r ,Prj ) and I (X
j,Pjj) is

zero and the NE exists.

FIGURE 7. MI and their difference with respect to different Px and P in
situation 2. (a) Imaxmin. (b) Iminmax . (c) Iminmax − Imaxmin.

VI. CONCLUSION
In this paper, the strategies design problem for the mono-
static radar and the jammer is investigated by modelling
the interaction between them using game theory. According
to whether the players are symmetric, two kinds of games
including Stackelberg game and egalitarian game are con-
sidered. The MI between the received signal and the target
impulse response is used as the utility function. Based on the
MI utility function, the radar waveform and the jammer PSD
are chosen as the strategies to be designed.

In the Stackelberg game, the radar and the jammer are
asymmetric and the SE strategies are derived analytically.
When the radar is the leader, it is concluded that their SE
strategies both prefer to allocate more energy in the frequen-
cies with larger target ESV. When the jammer is the leader,
their SE strategies are both water-filling strategies.

In the egalitarian game, it is proven that if the target ESV is
constant in the given bandwidth, then the NE exists. The NE
strategies of the radar and the jammer are both distributing the
energy or the power evenly. If the target ESV is not constant,
the NE does not exist. However, from the perspective of game
theory, we point out that the SE strategies, which provide the
gain-floor for the radar and the loss-ceiling for the jammer,
are still meaningful.
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