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ABSTRACT In this paper, an edge computing system for IoT-based (Internet of Things) smart grids is
proposed to overcome the drawbacks in the current cloud computing paradigm in power systems, where
many problems have yet to be addressed such as fully realizing the requirements of high bandwidth with low
latency. The new system mainly introduces edge computing in the traditional cloud-based power system and
establishes a new hardware and software architecture. Therefore, a considerable amount of data generated in
the electrical gridwill be analyzed, processed, and stored at the edge of the network. Aidedwith edge comput-
ing paradigm, the IoT-based smart grids will realize the connection andmanagement of substantial terminals,
provide the real-time analysis and processing of massive data, and foster the digitalization of smart grids.
In addition, we propose a privacy protection strategy via edge computing, data prediction strategy, and pre-
processing strategy of hierarchical decision-making based on task grading (HDTG) for the IoT-based smart
girds. The effectiveness of our proposed approaches has been demonstrated via the numerical simulations.

INDEX TERMS Edge computing, IoT-based smart grids, data prediction, artificial intelligence, data privacy
protection, cloud computing.

I. INTRODUCTION
With the supports of some new technologies, such as edge
computing, big data, the 5-th generation wireless technolo-
gies (5G), IoT, and artificial intelligence (AI), smart grids
have been regarded as important research topics. How to
apply these new technologies to conventional power systems
and establish smart grids have attracted extensive research
efforts from industries and academia [1]–[3]. Conventional
power systems mainly include power generations, power
transformations, power transmissions, and power distribu-
tions. There are various types of power terminals and sensors
in smart grids, for instance, humidity sensors, temperature
sensors, immersion sensors, vibration sensors, current leak-
age sensors, intelligent video sensors and so on, which can
support IoT based intelligent power systems [4], [5]. In this
typical scenario where IoT technologies are applied to power
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systems, key charateristics of smart grids can be significantly
improved such as data visualizations, load forecasting, failure
prediction, and self-healing. As a result the optimum power
systems operation and management can be achieved [6], [7].
Up to now, there are a number of technical challenges still to
be further studied for IoT deployment in smart grids.

1) The transformation from traditional power systems to
smart grids will encounter a large number of technical
challenges. Hence, it is necessary to achieve data stan-
dardization and data fusion for establishing a digital
transformation of power systems.

2) According to the statistics of the China Electricity
Council, mismatches between power supply and power
sales always happen in power systems, and the trans-
mission line losses are large [8]. As shown in Fig.1
and 2, from 2010 to 2017, there still exists wide gap
between power supply and power sales, and the line
losses are generally on the rise. On the basis of statistics
on the electricity consumptions of the whole society,
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FIGURE 1. Imbalance between power supply and power sales.

the electricity consumptions vary greatly among differ-
ent industries, especially between the primary industry
and heavy industry. However, the present power
systems cannot be deployed in real time to satisfy
consumer’s electricity demands [9], [10].

3) With the emergence of an increasing number of new
intelligent distributed power terminals, it is neces-
sary to achieve the plug-and-play and interoperability
among devices.

Although current cloud-based power systems can partially
solve these problems, they still cannot fully meet these
requirements, and also bring about new challenges. The main
relevant issues include:

1) The cost is high since the cloud computing should
be equipped with large data center. Meanwhile the
maintenance of centers is arduous and requires high
transmission bandwidth.

2) Traditional cloud architecture requires high-speed pro-
cessing and large-scale data storage capacities, without
effective real-time services.

3) Cloud data centers of smart girds have difficulties in
processing and analyzing tremendous data in an effec-
tive and real-time manner.

4) When a single node in a power systems fails in an
actual metering system, several problems about how
to upload data of all faulty devices to the cloud for
analyses remain unresolved. First, the resolution time is
long, but the cost is high. Second, many data need to be
uploaded which requires high transmission bandwidths
in communication networks.

Recently the general discussions discovering the relations
between big data and environmental sustainability relevant
green challenges have been provided in [11], [12], while
the relationship between big data and cyber-physical systems
(or IoT) has still been a open problem in the electricity
sector. [13]. To solve these issue, the new system mainly
introduces edge computing in the traditional cloud-based
power systems, establishing a new software and hardware
architecture. It deploys an edge computing paradigm for
smart grids, which includes control, condition monitoring,

information gathering, and application scenario of IoT-based
smart grids. With the realization of parallel processing and
analysis of data from various collection terminals, smart
devices and end-users of smart grids at the edge of network,
the distributed fast response services and edge intelligent
services such as data prediction, privacy protection, resource
allocation optimization will be provided. The advantages for
the adoption of edge computing are as follows:
• Low latency: Edge computing process the demands of
users within close proximity to the terminals, whichmay
alleviate service latency and offer intelligent decisions.

• Customization of personal needs: In the metering sys-
tem, the edge computing devices statistically analyse the
electricity consumptions of users, thereby dynamically
adjusting the power supply of each electricity consump-
tion area and formulating a reasonable economic and
energy-saving transmission and distribution scheme.

• Decentralization: In distributed power systems,
the presence of the edge computing devices alleviate
the burden on the network core nodes of the cloud
computing terminals for the power systems and weaken
their dependency on the cloud centers.

• Geographical distribution: Distributed deployment of
edge computing devices can help high-speed mobility
devices such as unmanned aerial vehicles for inspecting
transmission lines to have better communications with
each other.

• Location awareness: The edge computing devices
can promote resource management to provide local
decision-making for power transmissions.

The rest of paper is organized as follows. Section II addresses
related works about IoT-based smart grids and edge comput-
ing. Section III illustrates the architecture of edge computing
for IoT-based smart grids, which includes power distribution
surveillance system for EC-IoT based smart grids, micro-
grid system of EC-IoT smart grids, and Advanced metering
system of EC-IoT smart grid. Then, applications of edge com-
puting in IoT-based smart grids are described in section IV.
We elaborate data security and privacy protection, dynamic
pricing prediction and hierarchical decision-making based on
task grading (HDTG) in EC-IoT based smart grids. Numeri-
cal results were presented in Section V. Finally, we conclude
the paper as well as discuss the further works in Section VI.

II. RELATED WORKS
In this section, we first provide an overview of existing works
in IoT-based smart grids, and then introduce the concept of
edge computing.

A. IoT-BASED SMART GRIDS
IoT-Based smart grids are considered as the critical infras-
tructure in future [14]. With the development of 5G tech-
nologies, IoT has been of great importance to people’s daily
life. Integrating smart devices, information technologies,
communication technologies, and artificial intelligences into
traditional power systems becomes promising. At present,
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FIGURE 2. Total electricity consumptions.

the key to implement these technologies is how to build a new
network structure of power systems to meet the physical layer
construction of these new inventions. Obviously, the emer-
gence of IoT-based smart grids has opens up possibilities to
the realization of these technologies.

IoT-Based smart grids is a new form of network with deep
integration of traditional industrial technology and IoT tech-
nologies. [4], [5]. The IoT-based smart grids may include six
emblematical characteristics:

1) Plug-and-play for all kinds of terminals,
2) Wide interconnection of devices,
3) Comprehensive awareness of status of smart grids,
4) Upgraded application mode of power systems,
5) Rapid iteration of services in power systems,
6) Efficient use of electric distribution system.

The advantages of IoT-based smart grids are to realize
the comprehensive sensing, data integration and intelligent
application of the distribution network by utilizing the com-
prehensive interconnection, intercommunication and interop-
erability between devices in the system. It aims to meet the
demand for excellence in power systemmanagement and sup-
port the rapid advancement of the energy internet, as well as
achieve intelligent allocation of power resources. [15]–[17].

In order to realize the IoT-based smart grids, six funda-
mental technologies need to be developed, including model
protocols, software-defined devices, edge computing-based
application analysis, intelligent sensing technology, network
information security technology, and low-cost and a wide
coverage area local communication technologies. Among
them, edge computing is the most important core technology
to achieve real-time demand response of IoT-based smart
grids and various types of edge intelligent services. The chal-
lenges for cyber-security of cyber-physical systems (or IoT)
have been analyzed in [18].

B. EDGE COMPUTING IN IoT NETWORKS
Edge computing is a technology developed in the context
of high bandwidth and time sensitive IoT integration. In the
future, more than 50% of data need to be analyzed, processed

and stored at the edge of the network [19]. As devices access
the Internet of Things in large scale, the massive volumes
of data generated on the terminals can provide commercial
values but are very challenging in data processing. Owing to
the limited network bandwidths and the real-time response
requirements, edge computing has been considered as one
of the new technical trends for the development of IoT [20].
Edge computing, providing an information technology (IT)
service environment and extra cloud-computing capabilities,
can be deployed at the edge of radio access networks (RAN)
in close proximity to mobile subscribers [21]. The appli-
cation of edge computing has been recognized as a sig-
nificant means to achieve efficiency of network operations
and latency reduction for better end user experience. It also
satisfies the needs in terms of agile connectivity, real-time ser-
vices, data optimization, application intelligence, and privacy
protection. [22], [23].

Therefore, edge computing could be widely applied in
smart cities, intelligent transportation, health care, smart
manufacturing, smart home, and other application areas [24].
In particular, issues including smart grids related with edge
network, demand response and energy-saving transmission
have attracted heated discussions both in academics and
industries [25]–[30]. As there are numerous power sensor
nodes in the IoT-based smart grids, these devices need to
process the data sources at the edge of networks to meet the
real-time demand responses, such as real-time local electric
distributions, transmissions, and accident alarms. With edge
computing, there is no need to upload the edge data to a
remote cloud network for analysing and processing, leading
to delayed responses. In this case, an open platform for
connection, computing, storage and application is needed at
the edge of the network close to the object or data source,
which can provide edge intelligent services for the data of
the power sensor nodes. Meanwhile, considering that data
are no longer necessarily transmitted over distant networks,
the security and stability of the system is more controllable.

III. ARCHITECTURE OF EDGE COMPUTING FOR
IoT-BASED SMART GRIDS
In this section, we present the system of IoT-based smart
grids. Then we will introduce the specific services of
IoT-based smart grids supported by edge computing, which
are applied to the three main scenarios, including power
distribution surveillance systems of EC-IoT smart grids,
micro-grid systems of EC-IoT smart grids, and advanced
metering systems of EC-IoT smart grids.

As shown in Fig. 3, in the three typical scenarios of smart
grids, the applications of IoT and edge computing technolo-
giesmake intelligence and automation of power systems enter
into a new stage. parallel processing and analysis of data
from various collection terminals, smart devices and end-
users of smart grids can be realized at the edge of network via
deploying the edge computing model for the smart grids with
supporting technologies such asmicro-super-computing, data
fusion, multi-agent and deep learning, providing a distributed
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FIGURE 3. Architecture of edge computing for IoT-based smart grids.

information computing service with large volumes of data
and fast responses. Under such circumstance, this mode can
satisfy the demand of rapid responses required by devices and
users in the smart grids and provide supports for advanced
applications of smart grids such as intelligent scheduling,
intelligent maintenances, intelligent user responses, and rapid
market responses.

This paper proposes an edge computing hardware and soft-
ware architecture for power systems, which combines with
the reference architecture of industrial edge computing [31],
and consists of five layers as shown in Fig. 4 and explained
briefly as follows:

1) Device layer: Devices generally include applications,
security modules, networks, security operating sys-
tems, and core control chips.

2) Network layer: The network layer satisfy the demand
of rapid responses required by devices and users as
network security, access control, and real-time terminal
connection.

3) Data layer: The data layer mainly provides data secu-
rity, data analysis, data privacy protection, and data
fusion functions.

4) Application layer: Application layer primarily covers
application security, intelligent edge services, and edge
computing applications.

5) Cloud computing layer: Cloud computing layer
typically offers services, such as SaaS (software-
as-a-service), PaaS (Platform-as-a-service), IaaS
(Infrastructure-as-a-service), and DaaS (Data manage-
ment as a service).

Among them, edge computing devices, on the basis of the
hardware platform, mainly have a network layer, a data layer,
and an application layer. In addition, the network manage-
ment module, the computing management module, and the
memory management module are also contained. The edge
computing devices can also ensure the secure access of var-
ious terminals in the device layer and keep themselves and
cloud computing layer to work collaboratively through appli-
cation programming interfaces (API).

The power terminals and various types of sensing devices
in the equipment layer can be connected with the edge com-
puting devices through two approaches, a wireless (such as
WiFi, buletooth, ethernet, 3G/4G wireless) network and a
wired network. The reference architecture can provide edge

FIGURE 4. Edge computing reference architecture for IoT-based smart grids.
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FIGURE 5. Power distribution surveillance system of EC-IoT smart grids.

intelligent services in close proximity to users so as to achieve
digitization of power systems. In this regard, it will give
prominence to the advantages of edge computing in agile con-
nections, real-time services, data optimization, application
intelligences, cloud collaborations, and localized computing.

The power distribution surveillance system is mainly
composed of state detection and video surveillance of the
transmission and distribution networks, which plays the roles
of remote control, telemetry and remote signaling. Operation
status of the transmissions and distribution processes can be
fully mastered in time through real-time collection and dis-
play of various operating switch states and power parameters
during generations, transmissions, and conversions of power.
More importantly, faults can be found promptly, and corre-
sponding decisions can bemade and dealt with [32], [33]. The
edge computing-based power monitoring system adds edge
computing device nodes to the traditional cloud-based power
monitoring system. The device nodes can implement agile
control, data storage, and application of edge computing, and
meanwhile process some real-time response locally without
uploading data to the cloud. Moreover, other characteristics
that benefit the devices own in the system include real-time
analyses of power loads in local areas, reasonable scheduling
of power consumptions, and fast responses to the distribution
and transmission system.

The Fig. 5 mainly describes the two service applica-
tions of intelligent inspection for transmission lines utilizing
unmanned aerial vehicles and video surveillance in the power
monitoring system based on edge computing.

A. POWER DISTRIBUTION SURVEILLANCE SYSTEM FOR
EC-IoT BASED SMART GRIDS
1) TRANSMISSION LINE MONITORING BY
UNMANNED AERIAL VEHICLE
Deployed in local areas, edge computing device nodes can
perform data interactions with groups of unmanned aerial
vehicles when they fly into the regions under the control of
edge computing networks. Then, through real-time process-
ing information, offline information, end-users’ information,

parameters of electrical structure of power grids, and geo-
graphic information gathered by inspection of unmanned
aerial vehicles, preliminary judgment of the accident level
and real-time processing feedbacks can be provided. In the
event of a natural or man-made failure, it is possible to
effectively control and eliminate the adverse consequences
caused by failures in a timely manner while maintaining the
stable operations of the grid system. Simultaneously, the edge
computing devices can also aggregate the relevant conditions
and upload the situation to the cloud computing center to
realize panoramic and long-term data accident analyses.

2) VIDEO SURVEILLANCE
Deployed in substations, edge computing device nodes can
be integrated with system services such as anti-misoperation,
transmission line monitoring, power transmission and trans-
formation surveillance, electric brakes monitoring for abnor-
mality, and power dispatching automation. They support
accesses to multiple monitoring devices and can be set in
different substations as needed. Besides, the devices at the
edge of the network realize the unified terminal management
of video data, environmental data, power data and alarm data,
which ensures the warnings before events, the suppression
during events, and the reviews after events.

Compared with the traditional cloud architecture, the edge
computing-based power monitoring system has the advan-
tages of short delays, fast local response time, data filtering
and pre-processing. It is not necessary to transmit every
original data to the cloud, which reduces the needed trans-
mission bandwidth for direct uploading to cloud and reduce
transmission costs. In addition, the system will work with the
cloud according to the amount of data and the complexity of
the architecture. For example, edge computing can be used
as a collection unit of cloud data to support big data analysis
of cloud applications, while cloud computing can feedback
the optimized information to the terminal through big data
analysis, and then makes further processing through edge
computing. Edge computing can realize the quick responses
in light of the situation scale to attain the efficient and stable
operations of the smart grids.

B. MICRO-GRID SYSTEM OF EC-IoT SMART GRID
The micro-grid system is a small-scale power distribution
system consisting of distributed power sources, energy stor-
age devices, energy conversion devices, and devices for elec-
trical load, monitoring and protection. It aims to implement
flexible and efficient application of distributed power supply
and tackle the problem of interconnection between massive
and diverse distributed power supplies. The development and
extension of the microgrids can fully promote the large-
scale access of distributed power and renewable energy as
well as achieve highly reliable supplies of multiple forms
of energy sources. This is an effective way to establish a
proactive electric distribution system, making the transition
from traditional grids to the smart grids [34]. The micro-grid
system of EC-IoT smart grids is set on the foundation of
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FIGURE 6. Micro-grid system of EC-IoT smart grids.

cloud-based renewable energy micro-grid system. Its control
center and the edge computing devices are taken as local
edge computing nodes to establish a real-time edge service
scenario on the demand side for the electricity consumptions
within the area.

Fig. 6 mainly depicts the two scenarios of edge computing
applied in smart grids, namely, power supply management
of charging points, and power balance and identification of
malicious behaviors in electricity consumptions.

1) POWER SUPPLY MANAGEMENT OF CHARGING POINTS
Charging point is a boundary point for integrating power
systems, information networks, and transportation networks.
Large-scale attacks can lead to drastic fluctuations in power
systems and traffic congestion. The local edge computing
nodes can analyze the features and the consumption mode in
consuming electricity of the charging points and memorize
the features. Besides, it can analyse the sudden fluctuations
of power consumptions, and balance the dynamic features
of local power consumptions. For sudden, malicious, and
aggressive power fluctuations, edge computing can iden-
tify them and report the results to the cloud management
center.

2) IDENTIFICATION OF MALICIOUS BEHAVIORS IN
ELECTRICITY CONSUMPTION
The edge computing devices collect the photovoltaic power
generation in real time frommicro-network central controller
and grid-connected interface controller of distributed power
supplies, and establish the electricity generation behavior
mode of each device, which is characterized by quantity of
electricity and time of the photovoltaic power generation
equipment. Correspondingly, these devices use the power
consumption behaviors of users in the micro-network as
parameters to build the electricity behavior mode and identify

FIGURE 7. Advanced Metering system of EC-IoT smart grids.

the power balance and malicious behavior of the smart
energy.

C. ADVANCED METERING SYSTEM OF EC-IoT
SMART GRID
The advanced metering system can realize automatic collec-
tion, remote transmission and storage, and pre-processing of
electricity consumption data, ensuring the reliability, unique-
ness, accuracy and continuity in the process of collecting,
transmitting, and processing these data. The advanced
metering systems for EC-IoT smart grids lay out edge
computing devices in power meter concentrators within
traditional cloud-based metering systems. Those edge com-
puting devicesmainly are equippedwith the functions of edge
computing application service analyses, data storage, and
data analyses. The system can achieve real-time responses
on the demand side in power meter concentrators based on
edge computing. The Fig. 7 mainly represents the archi-
tectural features of the system. At the metering client side,
their own power usage information is first uploaded to the
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centralized metering device with edge computing capabil-
ity through wired and wireless communication. And then
power metering service based on the edge computing service
can be implemented. For instance electricity price forecast-
ing in metering systems (dynamic pricing prediction) and
identification of malicious behaviors in electricity consump-
tions. Through collecting the information about power usage
recorded in electricity meter and then predicts the real-time
electricity price under the national pricing constraints. The
predicted price will be sent to the user through the APP
to select the power usage time. In this way, it is expected
to realize friendly interactions between power supply and
consumers. The power meter concentrators with edge com-
puting take the information of power consumption and usage
time recorded by each meter as parameters to establish the
power consumption behaviors. Also, they will identify the
sudden or phased changes in the use of electricity and eval-
uate damages towards the grids due to abnormal changes.
Finally, these data will be reported to the cloud management
center.

Compared with the traditional cloud-based metering sys-
tem, metering system of EC-IoT smart grids can realize
accurate real-time electricity price forecasting, localize real-
time analysis of application service in smart grids, optimize
resource allocation scheme, improve reading efficiency of
metering system and cut costs. In particular, in the edge com-
puting device layer, metering system can achieve terminal
compatible access, information sharing transparency, inte-
grated standard specification, and facilitate the synergy and
interoperability of information management service in power
systems. Furthermore, the system has a role play in reliable
data storage and optimization management for massive user
electricity and power grid data. As a whole, the intelligent
analyses of grid data and accessory decision supports can be
improved by means of fully exploiting the potential values of
information.

IV. APPLICATION OF EDGE COMPUTING IN
IoT-BASED SMART GRIDS
In this section, we will present the typical applications and
the related advantages brought by the architecture based on
the three scenarios of the EC-IoT grid system. Depending
on features of edge computing, users’ data privacy can be
protected, meanwhile dynamic power price forecasting in
advanced metering systems can be provided. Furthermore,
hierarchical task real-time processing response strategies will
be achieved for electricity users’ timely demand response.

A. DATA SECURITY AND PRIVACY IN
EC-IoT BASED SMART GRID
Privacy is information that individuals and institutions are
unwilling to be known by others. In general, it refers to sensi-
tive data, such as illnesses, bank card numbers, and so on. The
user privacy of the advanced metering system is mainly pre-
sented by their personal information, such as the ID number,

FIGURE 8. Attack model of interactive data access.

contact information, and electricity-consumption habits.
In IoT-based smart grids, some people with ill-intentions
can obtain user privacy through data mining technologies.
In order to solve this problem, on account of the features of
edge computing, we propose a differential privacy data dis-
tortion technique based on Laplace mechanism and Gaussian
mechanism.

The proposed technology is implemented by edge com-
puting devices, in which artificial noises are added to the
power consumption data of each smart meter, thus hiding the
electricity behavior model and avoiding leakage of privacy.
We first introduce the Laplace differential privacy mecha-
nism before elaborating on the Gaussian differential privacy
mechanism, both of which can be used for data privacy
protection. Differential privacy protection protects sensitive
data by adding artificial noises, while ensuring that the data
retains the same statistical characteristics as the original data
set after adding the artificial noises, making the published
data meaningful and facilitating data mining [35].

We establish an attack model of interactive data accesses as
shown in Fig. 8. Eve is the attacker and Alice is the publisher
of a database. First, Eve is disguised as the legal identity and
initiates a request for querying the database to Alice. After
Alice implements the privacy protection towards the query
result, she sends it to Eve. Hypothesizing that the attacker Eve
gets the original sensitive data set that are very similar to the
real data set owned by Alice (in the worst case, for example,
the data set of attacker Eve are only different from the real
data set in one piece of information), the privacy protection
method still needs to ensure that the attacker Eve cannot
obtain sensitive content of this information regardless of what
are the adopted methods. According to the attack model,
the mathematical definition of differential privacy is: A ran-
domized algorithmH with domainN|χ | is (ε, δ) differentially
private if for all T ⊆ Range(H ) and for all x, y ∈ N|χ |such
that ‖x− y‖1 6 1 :

Pr[H (x) ∈ T ] ≤ exp(ε) Pr[H (y) ∈ T ]+ δ (1)

where ε stands for privacy budget as security indicator. The
smaller the indicator ε is, the higher the security level will be.
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Algorithm 1 Laplace Mechanism
Input: a private database X, an adaptively chosen stream of

sensitivity l1 queries g1...gj.
Output: an adding noise database X̂.
1: LM (x, {gi}, ε, σ ).
2: Calculate the 11g, using formula (2).
3: Calculate the scale parameter b = 11g

/
ε.

4: Calculate the noise N = 1
2 (1+ sgn(x)(1− exp( |x|b ))).

5: Calculate the adding noise database X̂ = X + N .
6: Output: X̂.

1) LAPLACE MECHANISM
Wefirstly define sensitivity, an essential concept in thismech-
anism. Specifically, it refers to the degree of impact on the
results of our query after the artificial noise is added to the
data set that needs privacy protection.

The l1 sensitivity of a function g: N|χ |→ Rk is:

11g = max
x, y ∈ N|χ |
‖x − y‖1 = 1

‖g(x)− g(y)‖1 (2)

The Laplace distribution is the distribution with probability
density function:

Laplace(x|b) =
1
2b

exp(−
|x|
b
) (3)

Given any function g(x) :N|χ |→ Rk , the Laplace mechanism
is defined as:

ML(x, g(x), ε) = g(x)+ (Y1, . . . ,Yk ) (4)

where Yi are independent and identically distributed (i.i.d.)
random variables drawn from Laplace(11g/ε). This mecha-
nism preserves (ε, 0) -differential privacy. Algorithm 1 imple-
ments a privacy protection method based on the Laplace
noise mechanism, which uses sensitivity l1 and the query
function, gj(x). After the queries of users, scale parameter b,
the artificial random noise of Lap(b), is added to the feedback
result and generated X̂, thereby achieving differential privacy
protection for in the privacy data of set X .

2) GAUSSIAN MECHANISM
Gaussian noises are very commonly used in modeling com-
munication systems. Similarly, we can also implement pri-
vacy protection by adding artificial Gaussian mechanism
noises, but, if this mechanism is adopted, we need to have
some conditional restrictions, and to broaden the definition
of differential privacy. Again, in the same way as Laplace,
we first define the sensitivity, here the l2 sensitivity is applied:

The l2 sensitivity of a function g: N|χ |→ Rk is:

12g = max
x, y ∈ N |χ |

‖x − y‖1 = 1

‖g(x)− g(y)‖2 (5)

The Gaussian distribution is the distribution with probability
density function:

Gaussian(x|µ, σ 2) =
1

√
2πσ 2

exp(−
(x − µ)2

2σ 2 ) (6)

Given any function g(x): N|χ | → Rk , the Gaussian mecha-
nism is defined as:

ML(x, g(x), ε) = g(x)+ (Y1, . . . ,Yk ) (7)

where Yi are i.i.d. random variables drawn from Gaussian
distribution N (x|0, σ 2), c2 > 2 ln( 1.25

δ
), and σ> c12g

ε
. This

mechanism preserves (ε, δ)-differential privacy. Algorithm 2
implements a privacy protection method based on the Gauss-
sian mechanism, which uses sensitivity l2 and the query func-
tion, g(x). After the queries of users, the normal distribution
random noise of the scale parameter N (0, σ ) is added to the
feedback result and generated X̂, thus achieving differential
privacy protection for (ε, δ= 0) in the privacy data of set X.
The values of ε and c are strictly defined, otherwise the
differential privacy cannot be satisfied.

Algorithm 2 Gaussian Mechanism
Input: a private database X, an adaptively chosen stream

of sensitivity l2 queries g1...gj. Privacy budget ε, δ, σ ,
constant c.

Output: an adding noise database X̂.
1: GM (X , {gi}, ε, δ, σ, c).
2: Let 12g, using formula (5).
3: If 0 < ε < 1.
4: If c2 > 2 ln(1.25/δ).
5: Let σ ≥ c12(g)/ε.
6: N = 1

2 (1+ sgn(x)(1− exp( |x|b ))).
7: Let X̂= X + N .
8: Else halt.
9: End if.

10: Else halt.
11: End if.
12: Output X̂.

B. DYNAMIC PRICING PREDICTION IN EC-IoT BASED
SMART GRIDS
Whether the power supply and power sales can achieve the
optimal supply and demand relationship is an unresolved
issue of the power grid company nowadays. Similarly, it is
also important for power consumers to be informed that how
they can exploit reasonable power consumption schemes to
meet daily expenses and achieve cost savings. To satisfy these
demands, edge computing-based real-time data prediction
algorithms can be adopted.

Whatever a power consumer or a power grid company is,
all power consumption is generated in time series. According
to the prediction of the time series, the electricity consump-
tion will vary in line with the influence of the time period. For
these time series, there is some correlation in a certain sense.

74096 VOLUME 7, 2019



S. Chen et al.: IoT-Based Smart Grids Supported by Intelligent Edge Computing

It is necessary to find an algorithm suitable for the EC-IoT
based smart grids framework to predict the consumption data
of the user. On one hand, this enables power supplier to timely
understand the needs of the consumer and reasonably adjust
relationship between supply and demand. On the other hand,
the forecast information of acceptable price will be given to
help consumers choose the electricity consumption period
efficiently. Therefore, the dynamic pricing prediction plays
an important role in smart grids. Generally, for forecasting
the electricity prices there are many different approaches like
Auto Regressive Integrated Moving Average (ARIMA) mod-
els, simpler Auto Regressive (AR)models modern techniques
such as ANN, Fuzzy logic [36]. In this paper, considering
the current demands in smart grids, we propose a real-time
data prediction algorithm based on long short term mem-
ory (LSTM), which could deal with long term information
dependency. LSTM is a special case of Recurrent Neural Net-
work (RNN) [37]. However, unlike traditional RNN, LSTM
will selectively remember or delete a piece of information
based on whether it is useful or not. The LSTM is used in
this study to forecast the price because this method has high
capability to learn the complicated relationship between the
input and output through a supervised training process with
historical data. LSTM adds 3 gates, forget gates, input gates,
and output gates respectively on the ground of RNN to avoid
long-term dependency problem [24].
Mathematical Model:
Dataset:

{x1, x2, · · ·, xt } → yt

where xk means the input of time k , and the length of time
series is t . Correspondingly, yt is the surveillance information
at time t .
Forget gate layer:

ft = σ (Uf · ht−1 +Wf · xt ]+ bf ) (8)

Input gate layer:

it = σ (Ui · ht−1 +Wi · xt ]+ bi) (9)

Ct = tanh(Uc · ht−1 +Wc · xt + bc) (10)
∧

Ct = ft ∗ Ct−1 + it ∗ Ct (11)

Output gate layer:

ot = σ (Uo · ht−1 +Wo · xt + bo) (12)

ht = ot ∗ tanh(
∧

Ct ) (13)

yt = soft max(ht ) (14)

Computing of cross-entropy loss:

min
θ
J (θ ) =

m∑
j=1

loss(
∧
yt , yt )

θ = [Uf ,Wf ,Uc,Wc,Uo,Wo, bf , bi, bc, bo] (15)

where σ sigmoid function is an activation function that con-
verts the output value to a value of 0− 1, thus retaining parts

FIGURE 9. The LSTM unit.

of information. xt inputs vector to the LSTM unit, ht outputs
vector of the LSTM unit. W ,U , b weight matrices and bias
vector parameters which need to be learned during training.
Tanh is an activation function that converts the output value
ranging from −1 to 1.

The LSTM has three main phases to controll three gates as
shown in Fig. 9. First, for the previous node ht−1, xt , selective
forgetting content is generated through function 8 calculat-
ing ft , in which 0 stands for completely discard, and 1 com-

plete reservation. Next,
∧

Ct = ft ∗ Ct−1 + it ∗ Ct is to update

the cell from Ct to
∧

Ct . Finally, our final output is confirmed
by the function. Algorithm 3 can predict the electricity price
of the next moment in the light of the power consumption
information in time series, and provide users with the power
consumption information for the next period, hence reducing
the power supply pressure, and also encouraging off-peak
power use.

C. PREPROCESSING STRATEGY OF HIERARCHICAL
DECISION-MAKING BASED ON TASK GRADING (HDTG)
IN EC-IoT BASED SMART GRIDS
There are a large number of intelligent terminals in the power
systems, and their demand responses are different. For exam-
ple, some terminals need to respond to application service
in real time, and some coordinate with cloud computing to
analyse massive information to achieve global situational
awareness. Besides, some devices need timely interactive
communications to provide real-time edge computing intelli-
gent services. In these services, it is an open problem how to
evaluate the service level and offer a reasonable service pro-
cessing strategy and network structure. To solve this problem,
we propose an algorithm of preprocessing strategy of hierar-
chical decision-making based on task grading. First, the user
initiates a service request, and then edge computing devices
evaluates results according to the service demands, such as
assessments for real-time demand service responses, task
computational complexity, security levels, storage spaces,
application demands, and data volumes.

Subsequently, the edge computing devices, in accordance
with the task grading made by the access device, selects the
corresponding policy method, which is mainly categorized
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Algorithm 3 LSTM for Dynamic Pricing Prediction in
EC-IoT Based Smart Grids
Input: the data-set X and learning rate lr .
Output: the prediction model F(x).
1: Data processing.
2: Normalization of data X = X−mean(X )

var(X ) .
3: Establish the training dataset Xtrain.
4: Establish the test dataset Xtest .
5: Defining neural network variables and establishing the

original LSTM model.
6: Calculate the Forget gate, using formula (8).
7: Calculate the Input gate, using formula (9,10,11).
8: Calculate the Output gate, using formula (12,13,14).
9: Initialize variables U ,W , b.

10: Model creation was completed.
11: Using the training set to train the model.
12: Calculating the loss function according to cross entropy.

13: min
θ
J (θ ) =

m∑
j=1

loss(
∧
yt , yt ).

14: Using Adaptive moment estimation to optimize algo-
rithm.

15: Getting the optimal solution when learning rate is lr .
16: Updating parameter U ,W , b.
17: Setting prediction model F(x).
18: Output prediction model F(x).

into four levels, (1) real-time processing in devices close to
the user, (2) partial storage in the side of edge, (3) uploading
for processing, and (4) deletion.

The rating is expressed as

level[N ] =
4∑
i=1

n∑
j=1

1
2n
|sgn[Ti − fj(x)]− 1| (16)

where Ti represents every evaluation basis, fj(x) is every
evaluation function. Evaluation levels and results are shown
below.

Algorithm 4 establishes a pre-processing level evaluation
method suitable for the EC-IoT based smart grids.

V. NUMERICAL SIMULATIONS
In order to verify the feasibility of the above theory, we per-
formed numerical simulations on data prediction, privacy
protection, and transmission consumption with edge comput-
ing and cloud computing framework.

A. DATA PREDICTION
We use hypothetical data sets to simulate electricity prices
in a urban area. In order to validate the effect of numerical
simulation, we make the data set have a fluctuating trend
with time. We have adopted algorithm 3, and respectively set
the number of hidden layers as 10, the learning rate 0.0006,

Algorithm 4 Pre-Processing Level Evaluation Mechanism
Input: a message x, an adaptively chosen testing function

fj(x), and Ti is threshold for every evaluation level.
Output: the level of access devices Level[N].
1: GM (X , fj,T1,T2,T3,T4,Level[N ]).
2: The sensor sends task demand information to the edge

computing nodes.
3: The setting of Ti determines the standard of the scores of

each test item, and can appropriately adjust the respective
scoring benchmarks considering the importance of each
test item.

4: For i=1 to 4.
5: For j=1 to n.
6: If fj(x) > Ti, the edge computing node gives the

evaluation result according to the item of the test. Among
them, Ti is evaluation criterion of the item.

7: This item scores 1.
8: Else.
9: This item scores 0.
10: End if.
11: End for.
12: End for.
13: Output the sum of the individual evaluation items is

counted. If the sum is 0 or 1, the level is 1. If the sum
is 2, the level is 2. If the sum is 3, the level is 3. If the
sum is 4, and the level is 4.

FIGURE 10. Data prediction.

the training data set 3800, the test data set 2000, and the
optimal solution iteration times 30 times in the simulation.
The simulation results are shown in Fig. 10. It can be seen
that this algorithm can accurately make predictions. As time
passes, the results of prediction curve is more and more
matched with the real values. The accuracy of the algorithm
has been demonstrated.

The simulation results have shown that the LSTM
algorithm can be used to predict the power price at the
edge computing devices. Meanwhile, the consumer can
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FIGURE 11. Differential privacy.

adjust the electricity consumption behavior in a reasonable
way in accordance with predicted electricity price by edge
computing devices. For example, when electricity price is
high during the peak hours, the consumer can choose to avoid
power consumption in the peak period as much as possible.

B. DATA PRIVACY PROTECTION
We have performed numerical simulations of two privacy
protection mechanisms and compared the two mechanisms.
We have used Matlab to randomly generate a private data
set that needs to be protected. Then we have built the attack
model according to Fig. 3. For the convenience of numerical
simulations, it is assumed that the value of l1 sensitivity and
l2 sensitivity of the attackers query function all are equal 1.
The artificial noises are added to the query results of the
attacker by algorithm 1 and 2, which is Laplace noise and
Gaussian noise respectively. The mean squared error (MSE)
and root mean squared error (RMSE) are taken as the avail-
ability evaluation, and ε the privacy budget. Then, the data
set and the original data after the noise addition have been
compared and analyzed. The smaller the privacy ε, the higher
the privacy of the data, but lower the availability of the data.

The simulation results are shown in the Fig. 11. First,
the two curves, with the increase of ε, the MSE and RMSE
value all show a downward trend, indicating that the avail-
ability of the data is gradually improved when the privacy
budget is reduced. Second, with the changes of ε from 1 to 10,
we have found that the noise curve based on Laplace is under
the Gaussian mechanism curve in general, showing that the
overall performance of the noise of the Laplace mechanism
is better than that of the Gaussian mechanism. Based on the
performance results, we prefer to using the Laplace mecha-
nism for privacy protection, while the Gaussian mechanism
can be used as an alternative.

C. PREPROCESSING OF HIERARCHICAL
DECISION-MAKING BASED ON TASK GRADING(HDTG)
It is assumed that 100 to 1000 power terminal devices are
connected to the EC-IoT based smart grids, and task level

FIGURE 12. The preprocess by edge computing.

evaluation is performed at the edge computing devices. The
evaluation level is classified into four levels, and the num-
ber of devices at each level is counted. The simulation
involves 2 steps. At first, we useMatlab to randomly generate
the amount of 100-1000 device vectors. The vector owns
4 dimensions. The dimension value is evaluation score from
1 to 100 that are randomly generated. Then the algorithm 4 is
applied to establish edge computing-based task scoring and
grading strategy. Finally, setting T1,T2,T3,T4, and the value
of each them is 60. As shown in Fig. 12, the simulation results
have manifested that, in the case of different access devices,
the edge computing devices grade the decision results for the
services demand of 100-1000 devices by algorithm 4. Next,
according to the task grading of access terminals made by
edge computing devices with the purpose of ranking the task
level, we have obtained the result from first level to the fourth
level.

The demand response task of the access terminal is pre-
processed by the edge computing devices. As a result, they
perform corresponding processing on different task levels.
For example, the edge computing devices locally process the
low-level service requirements, but the tasks with higher-
level response requirements which edge computing is inca-
pable of processing should be uploaded to the cloud and
processed in conjunction with cloud computing. This is how
to reduce the amount of transmission data to be uploaded
to the cloud. In the second simulation, it is assumed that
the four bandwidths for uploading service demand responses
is 5, 10, 15, 20 ∗ 104 bits per second and their transmission
distance is different. Among them, the transmission distance
of service demand responses that the grid architecture with
cloud center require is much longer than that of the architec-
ture edge computing deployed. The results of the hierarchical
response of a large number of accessed devices are given by
the last numerical simulation.

The simulation results are shown in Fig. 13 and Fig. 14,
which mainly include four points:

1) The transmission bandwidth required by the traditional
cloud-based grid is rising with the increase of the
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FIGURE 13. The need of bandwidth.

FIGURE 14. The time delay.

number of devices compared with EC-IoT based smart
grids.

2) The requirement for transmission bandwidth of frame-
work with edge computing is always smaller than that
of cloud.

3) It is demonstrated that a power system with an edge
computing architecture has the advantage of reducing
transmission bandwidth.

4) Delay and bandwidth are two indicators of quality of
service (QoS). From numerical simulation of band-
width and delay, it can be seen that the QoS perfor-
mance of the edge computing architecture is better than
the cloud-centric smart grids.

VI. CONCLUSION
In this paper, we have mainly focused on solving the prob-
lems caused by the IoT-based smart grids, such as the rapid
response for user’s requirement, intelligent scheduling, intel-
ligent maintenances, intelligent response for consumers, and
rapid market responses. Here, we have proposed an architec-
ture introducing edge computing into IoT-based smart grids.

Moreover, in the three major scenarios of power systems that
power distribution, Micro-grid, advanced metering systems,
application of edge computing are well represented. Whether
it is real-time response or edge computing-based service, both
of them fully reflect its advantages in comparison with tra-
ditional cloud-based power systems. Subsequently, we have
proposed algorithm strategies, data privacy protection, data
prediction, and task grading strategies appropriate to the new
architecture. From numerical results, we have concluded that
our proposed strategy can effectively protect the data privacy
in the system and bring new opportunities for the realization
of IoT-based smart grids. In future work, we will implement
edge computing into power grids to support applications in
reality. In addition, the business value of edge computing
applied in power systems will be manifested and practical
feasibility of our algorithm will be verified as well.
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