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ABSTRACT In a distributed multiple-radar architecture, the spatial scattering properties of targets can
be utilized to counter active deception jamming effectively. When the cooperative detection is performed,
the available method to discriminate active false targets needs to know the precise jammer location, and
its performance will suffer significant deterioration with little location error. Aiming at the problem,
we propose a novel method to discriminate false targets based on Hermitian distance. The difference in
spatial scattering property leads to the difference in the Hermitian distances of different target combinations.
The Hermitian distance between two false targets is much greater than that between two physical targets
or that between a physical target and a false target, especially in high jamming-to-noise ratio. Based on
the difference, hypothesis testing is performed to discriminate false targets. The proposed method does not
require any prior information about the jamming environment and can discriminate the targets effectively in
one pulse repetition interval. Moreover, the proposedmethod can restrict the upper bound of themisjudgment
probability for physical targets. The theoretical analysis and simulation verify the feasibility and validity of
the proposed discrimination method.

INDEX TERMS Active false targets discrimination, deception electronic counter-countermeasure,
distributed multiple-radar architecture, Hermitian distance.

I. INTRODUCTION
Due to its high energy efficiency and satisfactory jamming
performance, active deception jamming has been playing an
increasingly important role in the radar electronic counter-
measure (ECM) with the development of digital radio fre-
quency memory (DRFM) technology [1], [2]. By replicating
and retransmitting the intercepted radar signal or similar radar
signal after appropriate delay and modulation, active decep-
tion jamming is to produce false targets, mixing the false and
physical targets to cheat or confuse hostile radars. As the con-
tradictory of ECM, the electronic counter-countermeasure
(ECCM) provides an important guarantee for the survival and
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approving it for publication was Guolong Cui.

operation of radars in complicated electromagnetic jamming
environment [3].

Although mono-static radar has been equipped with var-
ious ECCM techniques [4]–[10], the distributed multiple-
radar system, benefitting from the construction features and
information fusion technology, has incomparable advantages
overmono-static radar in countering deception jamming [11].
The ECCM issue in distributed multiple-radar architecture
has attracted the attentions of numerous researchers, and
many methods have been proposed to suppress or discrim-
inate the active false targets which can be classified into
two categories. The first category is based on the fusion
processing of targets’ measurements obtained in local radars.
Physical targets possess spatial geometric correlation in a
unified coordinate system, whereas it is usually the opposite
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for false targets. Based on the difference, measurement fusion
is performed in [12] and [13] to identify false targets. Beyond
the difference above, a physical target’s Doppler frequencies
are not equal generally in different receivers with different
view angles, which is Doppler diversity property of physical
targets. By contrast, taking no account of the effect of the jam-
mer’s velocity, the Doppler of false target are near-identical
in different receivers. Doppler diversity of physical targets is
exploited to counter velocity-deception jamming in [14]. But
a physical target will be judged as a false target if its Doppler
frequencymeasured bymultiple receivers is equal. According
to Doppler diversity and spatial geometric correlation prop-
erty of physical targets, the false targets are discriminated suc-
cessively in Doppler domain and range domain [15]. These
methods do not give full play to the potential of distributed
multiple-radar architecture to counter active deception jam-
ming, making no use of other useful information about targets
except measurements.

The other category mainly makes use of the difference
in signal level between physical and false targets. In a dis-
tributed multiple-radar architecture, physical targets’ echoes
are decorrelated among multiple receivers due to the spatial
variations of radar cross section (RCS) [16], [17], while the
false targets’ echoes received by multiple receivers are highly
correlated for one same signal resource, which is called as
the difference of spatial scattering property between physical
and false targets. With the same physical target’s echoes
noncoherent and partially coherent among multiple receivers,
two methods are present respectively in [18] and [19] to
discriminate false targets from fast fluctuating targets. But
these methods require echo data during several consecutive
pulse repetition intervals (PRIs). Therefore, it is essential
to perform the discrimination of false targets within one
PRI. Based on the difference in amplitude ratios of phys-
ical and false targets caused by spatial scattering property,
a clustering analysis method is proposed to discriminate false
targets within one PRI [20]. However, the clustering analysis
method requires a higher jamming-to-noise ratio (JNR) to
obtain an expected discrimination performance. A jamming
cancellation method is proposed to suppress the active false
targets based on the coherent property of jamming signal
in [21]. Besides some processing details are not dealt with,
the secondary target will be discriminated as a physical target
when it happens to have similar time delays in other receivers
according to the reference receiver.

Since all methods mentioned above make use of the infor-
mation (including themeasurements, complex amplitude, and
other information about targets) obtained by independent
detection of local radars, the detection performance in local
radars has significant effect on their practical application.
Considering a distributed multiple-radar architecture with
cooperative detection performed, Shanshan Zhao creatively
discusses a new manifestation of the difference of targets’
spatial scattering property in [22], which can be concluded
as that all signal vectors of false targets generated by one
same jammer always exist in a rank one subspace, whereas

physical targets’ signal vectors distribute randomly in the
whole space. Making use of the difference, a two-block
detection/discrimination ECCM scheme is proposed based
on the generalised likelihood ratio test. Its discrimination
performance relies on the projection matrix, called as the
jamming feature matrix, while the later depends on the pre-
cise estimation of jammer’s position. When there are location
errors, its discrimination performance will suffer significant
deterioration, which limits its practical application. Under the
same architecture, although the variance of channel energy
of a physical target is much different from the one of a false
target, the corresponding methods based on the difference of
the variances require more research considering that it is very
difficult to find the distributions of the variances.

In this paper, also in a distributed multiple-radar archi-
tecture with cooperative detection performed, aiming at the
problem that the available method is dependent on the accu-
rate location for the jammer, the Hermitian distance, defined
as the cosine squared of the Hermitian angle between two
complex vectors, is taken as the correlation metric to measure
the mutual correlation property between two targets. It is
found that the Hermitian distance between two false targets
is much greater than that between two physical targets or that
between a physical target with a false target, especially in
high JNR. The Hermitian distance between two false targets
increases with JNR and is independent of the modulation
of false targets. Whereas, The Hermitian distance between
two physical targets and the one between a physical target
and a false target obey an identical Beta distribution which
has nothing to do with signal or jamming power but the
channel number. Based on the difference, a new discrimina-
tion method is proposed in this paper. The proposed method
does not require any prior information about the jamming
environment and can discriminate the targets effectively in
one PRI. Moreover, the proposed method can restrict the
upper bound of the misjudgement probability for physical
targets.

The rest of the paper is organised as follows. Section II
introduces the signal model for multi-radar architectures with
deception jamming. The correlation property of different
target combinations is analysed in details in Section III.
In Section IV, the discrimination method is proposed based
on the correlation difference of targets. Section V presents
the simulation results and Section VI concludes this paper.

II. SIGNAL MODEL
In this paper, a multiple-radar architecture considered con-
sists of M transmitters and N receivers distributed widely
over a given area. The transmitted signals are assumed
approximately orthogonal and maintain approximate orthog-
onality for any random time delay τ [23]∫

sm1 (t)s
∗
m2
(t − τ )dt ≈

{
1, m1 = m2 and τ = 0;
0, else

(1)

where sm1 (t) and sm2 (t) are the transmitted signals of
the m1th transmitter and the m2th transmitter, respectively.
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m1 = 1, 2, . . . ,M and m2 = 1, 2, . . . ,M . The superscript ∗
denotes the conjugate operator. The total number of physical
targets existing in the monitoring area of the multiple-radar
system is K . To protect these targets, a repeater jammer
implements deception jamming by delaying, modulating and
retransmitting the intercepted radar signals. After the process
of the jammer, false targets are generated, whose total number
is Q.
The time and phase synchronisation among multiple sta-

tions is assumed accomplished [24]–[26]. The signal received
by the nth receiver, denoted by rn(t), can be presented as

rn(t) = en(t)+ jn(t)+ nn(t) (2)

where 0 ≤ t ≤ PRT , PRT is the length of a pulse repeti-
tion interval (PRI). en(t), jn(t) and nn(t) are the echo signal
reflected by physical targets, deception jamming signal and
the internal noise respectively.The ideal physical targets echo
en(t) can be modelled as

en(t)=
K∑
k=1

M∑
m=1

αmn,ksm
(
t−τmn,k

)
exp

(
−j2π f0τmn,k

)
(3)

where τmn,k = RmTn,k/c is the time delay of the kth physical
target PTk . The term c is the speed of light and λ is the wave-
length.RmTn,k is the range along the path frommth transmitter
to nth receiver via the physical target PTk , which is the sum
of RmT ,k , the range from mth transmitter to PTk , and RTn,k ,
the range from PTk to nth receiver, namely RmTn,k = RmT ,k+
RTn,k . αmn,k = λσmn,k

√
PTmGTmGRn/(4π

√
4πRmT ,kRTn,k )

accounts for the complex amplitude of the physical target
PTk . PTm and GTm are the transmitted power and the antenna
gain of the mth transmitter, respectively. GRn is the antenna
gain of the nth receiver. σmn,k is the radar cross section (RCS)
of PTk .
The deception jamming signal jn(t) can be expressed as

jn(t)=
Q∑
q=1

M∑
m=1

βmn,qsm
(
t−τ ′mn,q

)
exp

(
−j2π f0τ ′mn,q

)
(4)

where the term βmn,q = γqλ
√
PJGRn/(4πRJn,q) is the com-

plex amplitude of false target FTq. τ ′mn,q = RmJn,q/c + 4τq
is the actual time delay of the qth false target FTq. 4τq
and γq are the jammer’s time delay modulation and complex
random amplitude modulation with unknown distribution
for the intercepted radar signals to produce the false target
FTq. Similar to the definition of RmTn,k , RmT ,k and RTn,k ,
RmJn,q, RmJ ,q and RJn,q are the range along the path from
mth transmitter to nth receiver via the jammer, the range
from mth transmitter to the jammer, and the range from the
jammer to nth receiver, respectively, when the jammer is
implementing deception jamming of false target FTq. There-
fore, RmJn,q = RmJ ,q + RJn,q.
The received signal in every receiver is firstly down con-

verted and decomposed by matched-filters, yielding totally
MN isolated transmitter-receiver channel signals. Then,
according to the same spatial region, a sample vector xwith a

dimension ofMN×1 is obtained by extracting the correspond-
ing samples in each channel. As the analyses in [22], when the
range bin is referred to the false target FTq, the sample vector
can be written as x|FT ,q = ξFT ,q+n, where ξFT ,q is the false
target signal vector of FTq

ξFT ,q =


β11,q exp(−j2π f0(R1J1,q/c+4τq))
β12,q exp(−j2π f0(R1T2,q/c+4τq))

. . .

βmn,q exp(−j2π f0(RmJn,q/c+4τq))
. . .

βMN,q exp(−j2π f0(RMJN,q/c+4τq))

 (5)

n is the noise vector, whose elements are assumed to be
independent identically distributed (i.i.d.) complex Gaussian
distribution, namely, n∼CN(0MN×1, σ 2

n IMN ). 0MN×1 is an
MN×1 all-zero vector. IMN is an MN×MN identity matrix.

It is a fact that the time interval the jammer generating
false targets within one PRI is so short that the movement of
the jammer in the time can be neglected. And the jamming
signals, from the same source, are fully correlated among
receivers. Considering these factors, Plugging βmn,q into (5)
and extracting the common terms, ξFT ,q can be written
approximately as

ξFT ,q = 0q · ξ J (6)

where 0q =
γqλ
√
PJ

4π exp(−j2π f04τq) is the common term
of the false target FTq in multi-channel, which is called as
characterization factor characterizing the false target FTq. ξ J
is named as jamming steering vector,

ξ J =



√
GR1/RJ1 exp(−j2πR1J1/λ)√
GR2/RJ2 exp(−j2πR1J2/λ)

. . .
√
GRn/RJn exp(−j2πRmJn/λ)

. . .
√
GRN /RJN exp(−j2πRMJN /λ)

 (7)

According to (7), ξ J depends only on the location of the
jammer and the antenna gains of the receivers but not on
the modulation of false targets, which is the reason why ξ J
is called as jamming steering vector. Based on (6), there is
a correlation between the false targets generated by a same
jammer, which will be dealt with in details in next section.

When the range bin is referred to the physical target PTk ,
the sample vector can be written as x|PT ,k = ξPT ,k+n, where
ξPT ,k is the physical target signal vector of PTk

ξPT ,k =


α11,k exp(−j2πR1T1,k/λ)
α12,k exp(−j2πR1T2,k/λ)

. . .

αmn,k exp(−j2πRmTn,k/λ)
. . .

αMN,k exp(−j2πRMTN ,k/λ)

 (8)

which can be rewritten as ξPT ,k = αPT ,k � aPT ,k . The vector
aPT ,k = [ exp(−j2π (R1T1,k/λ), exp(−j2π (R1T2,k/λ), · · · ,
exp(−j2π (RmTn,k/λ), · · ·, exp(−j2π (RMTN ,k/λ)]T is the
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steering vector of PTk . The operator � is the Hadamard
(element-wise) product. The first vector αPT ,k =

[α11,k , α12,k , · · · , αmn,k , · · · , αMN,k ]T is the amplitude vec-
tor of PTk . The physical targets’ echoes received by the
widely distributed receivers are independent from each other
due to the independence of RCS in different scattering direc-
tions. To simplify the subsequent derivation, as assumed
in [18]–[20] and [22], αmn,k is modelled as a complex Gaus-
sian distributed random variable with zero mean and variance
σ 2
PT ,k . Therefore, αPT ,k∼CN(0MN×1, σ

2
PT ,kIMN ).

III. CORRELATION PROPERTY ANALYSIS
In this section, the mutual correlation property between false
targets and the ones between physical and physical/false tar-
gets are analysed, which is the basis and prerequisite for the
target discrimination.

In an inner product space, cosine similarity is a measure
of similarity between two non-zero vectors that measures the
cosine of the angle between them. In the complex vector
space CN , the cosine of the complex-valued angle between
two complex vectors u1 and u2 is defined as [27]

cos(θC ) =
〈u1,u2〉
‖u1‖ ‖u2‖

(9)

where 〈u1,u2〉 = uH1 u2 is the Hermitian product of u1 and
u2. ‖u1‖ =

√
〈u1,u1〉 and ‖u2‖ =

√
〈u2,u2〉 are the norm

of u1 and u2, respectively. H represents the complex conju-
gate transpose operation. (9) can be written as the following
form [27]

cos(θC ) = ρ exp(−jϕ) (10)

where ρ = cos(θH ) = |cos(θC )|. 0 ≤ θH ≤ π/2 and
−π ≤ ϕ ≤ π are the Hermitian and pseudo angle, respec-
tively, between u1 and u2. The Hermitian angle between two
complex vectors will do not change when multiplying the
vectors by any complex scalars [28], which is an important
property that can be used to discriminate physical and false
targets. As analysed in the previous section, every false target
signal vector can be expressed as the multiplication of a
complex characterization factor and jamming steering vector.
Therefore, the Hermitian angle between two arbitrary false
target signal vectors will equal zero. Unfortunately, what we
can obtain is the sample vectors with noise vectors rather than
the false or physical target signal vectors, and the Hermitian
angle between sample vectors is a complex statistical prob-
lem. To deal with this issue, the Hermitian distance between
two complex vectors u1 and u2 is defined firstly, which is the
cosine squared of the Hermitian angle between u1 and u2

HD(u1,u2) = cos2(θH ) =

∣∣∣∣ 〈u1,u2〉‖u1‖ ‖u2‖

∣∣∣∣2 (11)

The reason choosing the cosine squared of the Hermitian
angle rather than the cosine of Hermitian angle is that the
statistical distribution properties of the former is easier to
derive.

Then, the Hermitian distance is taken as the correlation
metric to measure the mutual correlation property between
false targets and the ones between physical and physical/false
targets.

A. MUTUAL CORRELATION OF FALSE TARGETS VECTORS
Assume that there are two false targets, false target FT1 and
false target FT2, and their sample vectors can be represented
as

x|FT ,1 = 01 · ξ J + n1 (12)

and

x|FT ,2 = 02 · ξ J + n2 (13)

where the factors 01 = (γ1λ
√
PJ )/(4π ) exp(−j2π f04τ1)

and 02 = (γ2λ
√
PJ )/(4π ) exp(−j2π f04τ2), which charac-

terize the false target FT1 and FT2. The noise vectors n1
and n2 have the common distribution with n, namely n1 ∼
CN(0MN×1, σ 2

n IMN ) and n2∼CN(0MN×1, σ 2
n IMN ).

The correlation of FT1 and FT2 is the Hermitian distance
between x|FT ,1 and x|FT ,2

HD(x|FT ,1, x|FT ,2) =

∣∣∣∣∣
〈
x|FT ,1, x|FT ,2

〉∥∥x|FT ,1∥∥ ∥∥x|FT ,2∥∥
∣∣∣∣∣
2

(14)

It is difficult to derive the exact probability distribution of
HD(x|FT ,1, x|FT ,2). However, as is proved in Appendix A,
the mean of HD(x|FT ,1, x|FT ,2) is expressed approximately
as (15), as shown at the bottom of this page, where JNR1 =
En1/σ 2

n and JNR2 = En2/σ 2
n are the average channel

jamming-to-noise ratio (JNR) of FT1 and FT2, respectively.

En1 =
|01|

2
∣∣ξ J ∣∣2

MN
(16)

and

En2 =
|02|

2
∣∣ξ J ∣∣2

MN
(17)

are the average channel energy of FT1 and FT2, respec-
tively. From (15), it is obvious that the the mean of
HD(x|FT ,1, x|FT ,2) is only associated with the jammer power
and has nothing to dowith themodulation of false targets. The
Hermitian distance between any two false targets increases
with JNR.

E
[
HD(x|FT ,1, x|FT ,2)

]
=

JNR1 ·JNR2(
JNR1 + 1

)
·
(
JNR2 + 1

) + JNR1 + JNR2 + 1

MN ·
(
JNR1 + 1

)
·
(
JNR2 + 1

) (15)
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B. MUTUAL CORRELATION OF PHYSICAL AND
PHYSICAL/FALSE TARGETS VECTORS
Assume that there are two physical targets, PT1 and PT2,
whose sample vectors can be represented as

x|PT ,1 = ξPT ,1 + n3 (18)

and

x|PT ,2 = ξPT ,2 + n4 (19)

where the vectors ξPT ,1 ∼ CN(0MN×1, σ 2
PT ,1IMN ) and

ξPT ,2 ∼ CN(0MN×1, σ 2
PT ,2IMN ) are the signal vector

of PT1 and PT2, respectively. The noise vectors n3 and
n4 have the common distribution with n, namely n3 ∼
CN(0MN×1, σ 2

n IMN ) and n4∼CN(0MN×1, σ 2
n IMN ).

The correlation of PT1 and PT2 is the Hermitian distance
between x|PT ,1 and x|PT ,2

HD(x|PT ,1, x|PT ,2) =

∣∣∣∣∣
〈
x|PT ,1, x|PT ,2

〉∥∥x|PT ,1∥∥ ∥∥x|PT ,2∥∥
∣∣∣∣∣
2

(20)

Similarly, the correlation of PT1 and FT1 is

HD(x|PT ,1, x|FT ,1) =

∣∣∣∣∣
〈
x|PT ,1, x|FT ,1

〉∥∥x|PT ,1∥∥ ∥∥x|FT ,1∥∥
∣∣∣∣∣
2

(21)

As is proved in Appendix B that the Hermitian distance
HD(x|PT ,1, x|PT ,2) and HD(x|PT ,1, x|FT ,1) have the same
distribution, HD(x|PT ,1, x|PT ,2) ∼ Beta(1,MN − 1) and
HD(x|PT ,1, x|FT ,1) ∼ Beta(1,MN − 1). Beta(1,MN − 1) is
Beta distribution with shape parameters 1 andMN−1, whose
probability density function (pdf) is

f (y) = (MN − 1)(1− y)MN−2 (22)

where 0 ≤ y ≤ 1. It is obvious that the pdf f (y) has nothing
to do with signal or jamming power. Therefore, the mean
of HD(x|PT ,1, x|PT ,2) and HD(x|PT ,1, x|FT ,1) is shown as
Eq. (23), as shown at the bottom of this page, which is very
different from the mean of HD(x|FT ,1, x|FT ,2). The variance
ofHD(x|PT ,1, x|PT ,2) andHD(x|PT ,1, x|FT ,1) is shown as (24),
as shown at the bottom of this page, which is also constant.

IV. DISCRIMINATION METHOD
Based on the difference discussed in the previous section,
we need to calculate the Hermitian distance between different
vectors. In this section, we propose a new discrimination
method by utilizing the difference of Hermitian distance, and
deal with its theoretical discrimination performance.

A. PROPOSED DISCRIMINATOR
Assume that the total number of targets detected successfully
in one monitoring is K + Q, their sample vectors being x1,
x2, . . . , xK+Q, in which the total numbers of physical targets
and false targets are K and Q respectively. To identify the
false targets, mutual correlation test between any two targets
is needed to be performed based on the Hermitian distance.
Therefore, the set of target combination can be represent as
{(xi, xj)|i 6= j,∀i, j = 1, 2, . . . ,K + Q}, and the set of
Hermitian distance is written as {HD(xi, xj)|i 6= j,∀i, j =
1, 2, . . . ,K + Q}. Considering HD(xj, xi) = HD(xi, xj),
HD(xj, xi) can be obtained directly from HD(xi, xj) with-
out calculation. The target combination (xi, xj) has three
cases, which can be expressed as a multiple hypothesis test-
ing (MHT) problem as following.
• The null hypothesis (H0): the combination is composed
of two false targets.

• The first hypothesis (H1): the combination is composed
of two physical targets.

• The second hypothesis (H2): the combination is com-
posed of a false target and a physical target.

Based on the difference of the Hermitian distances of dif-
ferent target combinations discussed in the previous section,
the combination judgement is performed as

{
if HD(xi, xj) ≥ µ : accept H0

if HD(xi, xj) < µ : accept H12
(25)

where µ is threshold, whose value will be dealt with in detail
later, and H12 stands for the combination of H1 and H2. Each
target will be tested with the number of K+Q−1.

Since the Hermitian distance has the same distribution
under the hypotheses H1 and H2, the physical and false
targets can not be discriminated under these cases. Therefore,
the discrimination principle is that a target is accepted as a
false target in the case that at least one of its K + Q − 1
correlation tests is judged as H0, otherwise, it is accepted as
a physical target.

B. THEORETICAL PERFORMANCE ANALYSIS
To simplify the analysis, SPT is defined as the physical target
set consisting of all K sample vectors of physical targets.
Similarly, SFT is the false target set consisting of allQ sample
vectors of false targets. The event Ak is defined as following

Ak : HD(xi, xk ) < µ (26)

where xi ∈ SPT and xk is the kth vectors of the set {SPT \ xi}.
\ is the set subtraction operation. The event Bq is defined as

E
[
HD(x|PT ,1, x|PT ,2)

]
= E

[
HD(x|PT ,1, x|FT ,1)

]
=

1
MN

(23)

D
[
HD(x|PT ,1, x|PT ,2)

]
= D

[
HD(x|PT ,1, x|FT ,1)

]
=

MN − 1

(MN )2 (MN + 1)
(24)
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following

Bq : HD(xi, xq) < µ (27)

where xi ∈ SPT and xq is the qth vectors of the set SFT .
According to the discrimination principle, the discrim-

ination probability of a physical target, denoted by PPT ,
is defined as the probability of accepting a physical target as
a physical target, which can be written as

PPT , P{accepted as a PT| a PT}

= P{all correlation tests are judged as H12}

= P{A1A2 · · ·AK−1B1B2 · · ·BQ} (28)

Considering that the sample vectors of physical targets are
mutually independent and independent from the ones of false
targets, (28) can be rewritten as

PPT = P{A1A2 · · ·AK−1}·P{B1B2 · · ·BQ}

= P{B1B2 · · ·BQ}·[P{H12|H1}]K−1 (29)

Although all false target signal vectors belong to a same
vector space, PB = P{B1B2 · · ·BQ} is a complex issue with
the effect of the random noise vectors. It is not easy to derive
the exact expression of PB, which is related to some unknown
factors, such as JNR, the false target number. According to the
JNR, the lower bound and the upper bound of PB are given as
PB,lb and PB,ub, respectively.{

PB,lb = P{B1}P{B2} · · ·P{BQ},with low JNR
PB,ub = P{B1} = · · · = P{BQ}, with high JNR

(30)

Therefore, the lower bound PPT ,lb and the upper bound
PPT ,ub can be obtained as

PPT ,lb = [P{H12|H2}]Q ·[P{H12|H1}]K−1

= [8Beta(µ)]K+Q−1 (31)

and

PPT ,ub = P{H12|H2}·[P{H12|H1}]K−1

= [8Beta(µ)]K (32)

respectively. 8Beta(·) stands for the cumulative distribution
function (CDF) of Beta distribution Beta(1,MN − 1) [29]

8Beta(µ) = Iµ(1,MN − 1) (33)

where Iµ(1,MN −1) is the regularized incomplete beta func-
tion.

The misjudgement probability of a physical target, denoted
by P′PT , is defined as

P′PT , P{accepted as a FT| a PT} = 1− PPT (34)

Corresponding to PPT ,lb and PPT ,ub, the upper bound P′PT ,ub
and the lower bound P′PT ,lb are

P′PT ,ub = 1− PPT ,lb

= 1− [8Beta(µ)]K+Q−1 (35)

and

P′PT ,lb = 1− PPT ,ub

= 1− [8Beta(µ)]K (36)

respectively. Because K and Q cannot be known in advance,
PPT ,ub is more suitable in the practice than PPT ,lb. With
the cumulative distribution function 8Beta precisely known,
PPT ,lb and P′PT ,ub can be obtained for a given µ, and vice
versa. In other words, the discriminator proposed can restrict
the upper bound of the misjudgement probability for phys-
ical targets. For a given expected misjudgement probability
P′PT ,ub, µ can be calculated by

µ = 8−1Beta

((
1− P′PT ,ub

)1/(K+Q−1)) (37)

where8−1Beta(·) is the inverse cumulative distribution function
of the Beta distribution Beta(1,MN − 1).
Before discussing the discrimination probability of false

targets, some definitions are given firstly. The event Ck is
defined as following

Ck : HD(xi, xk ) < µ (38)

where xi ∈ SFT and xk is the kth vectors of the set SPT . The
event Dq is defined as

Dq : HD(xi, xq) < µ (39)

where xi ∈ SFT and xq is the qth vectors of the set {SFT \ xi}.
The discrimination probability of a false target, denoted by

PFT , is defined as the probability of accepting a false target
as a false target, which can be written as

PFT , P{accepted as a FT| a FT}

= P{at least one of K+Q−1 correlation

tests is judged as H0}

= 1− P{C1C2 · · ·CKD1D2 · · ·DQ−1}

= 1− P{D1D2 · · ·DQ−1}·[P{H12|H2}]K

= 1− P{D1D2 · · ·DQ−1}·[8Beta(µ)]K (40)

where the probability P{D1D2 · · ·DQ−1} is determined by
the distribution of HD(xi, xj) under H0 and the JNR of false
targets, similar to PB. However, considering the distribution
of HD(xi, xj) under H0 is unknown, the exact expression of
PFT is not given.
The discrimination method proposed is summarized as

follows.
1) Threshold set: according to the (37), the threshold µ

is set to restrict the upper bound of physical target
misjudgement probability P′PT ,ub.

2) Correlation test: calculate the Hermitian distances of all
the target combinations, and make judgement for every
combination based on the (25).

3) Target discrimination: a target will be accepted as a
false target in the case that at least one of its K +Q− 1
correlation tests is judged as H0, otherwise, it will be
accepted as a physical target.
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TABLE 1. Distributed multiple-radar architecture.

V. SIMULATION
In this section, a distributed multiple-radar architecture con-
sisting of M = 2 transmitters and N = 5 receivers is
considered. The positions of transmitters ZmT and receivers
ZnR are set in kilometers as in Table 1. The carrier frequency
is f0 = 1GHz. The transmitting power of the transmitters is
assumed as same. The antenna gains of all transmitters and
receivers are also assumed as same.

There are a radar target, locating at (1, 50, 10)km, and a
repeater jammer, locating at (1.1, 51, 10)km in the monitor-
ing area. To protect the target, the jammer generates two false
target around the target by implementing deception jamming.
The jammer is also considered as a physical target. The
focus of the section being on the analyses of the proposed
discrimination method, so it is assumed that all the targets,
including two physical targets and two false targets, have
been successfully detected.

A. HERMITIAN DISTANCES OF DIFFERENT TARGET
COMBINATIONS
In the subsection, the difference is verified firstly between
Hermitian distances of different target combinations by
Monte Carlo simulation.

As discussed in the Sec. III, the statistical characteristics
of the Hermitian distance is related to the signal/jamming
power. Therefore, some definitions are given firstly to make
the presentation concise and easy to understand. The signal-
to-noise ratio (SNR) of the physical target PTk is defined
as SNRk = σ 2

PT ,k/σ
2
n . The JNR of the false target FTq is

defined as the ratio of the jamming power to the noise power
in the first transmit receive channel, denoted by JNRq =∣∣0q · ξ J {1}∣∣2 /σ 2

n , where ξ J {1} is the first element of the
vector ξ J . The JNR in other channels can be obtained by
the bi-static radar equation respectively. SNRk (k = 1, 2) and
JNRq (q = 1, 2) are assumed as same, denoted by SNR.

In Fig. 1,the simulation results and theoretical values of the
Hermitian distances under three hypotheses H0, H1 and H2
are given versus different SNR. At each data point, the middle
of the vertical bar is the simulation mean of the Hermitian
distance, and the vertical bar stands for the standard deviation.
Monte Carlo simulation is performed with 106 trials for each
value of SNR.

It is obvious that the simulation mean of the Hermi-
tian distance under the hypothesis H0 gradually tends to

FIGURE 1. Hermitian distances under three hypotheses H0, H1 and H2
(a) mean and standard deviation of Hermitian distances under three
hypotheses (b) pdf of Hermitian distances under hypotheses H1 and H2.

its theoretical value with the rise of SNR, and its variance
becomes smaller and smaller. The means of the Hermitian
distances under the hypotheses H1 and H2 coincide with
the the theoretical ones, and their means and variances are
constant. Moreover, in Fig. 1b, the simulation results under
H1 and H2 are consistent with the theory pdf, which validate
the derivation in Sec. III. From the simulation results, the Her-
mitian distance under H0 distinguishes clearly from the ones
under H1 and H2. And the higher SNR is, the larger the
difference is. Therefore, it is feasible to discriminate physical
targets and false targets based on the difference.

B. PERFORMANCE OF THE PROPOSED DISCRIMINATION
METHOD
The difference used to discriminate targets having been val-
idated in the previous subsection, this subsection will prove
the feasibility and superiority of the discrimination method
proposed.

In the scenario assumed at the beginning of the section,
the performance of the proposed method is firstly dealt with
by simulations. In Fig. 2, the discrimination probabilities
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FIGURE 2. Discrimination performance of the proposed method
(a) Discrimination probability of physical target PPT (b) Discrimination
probability of false target PFT .

of targets PPT and PFT are given as a function of SNR.
The curves correspond to different expected misjudgement
probability P′PT ,ub, where P

′
PT ,ub = 1×10−3, 5×10−4 and

1×10−4. All performance curves are obtained by averaging
over 106 independent Monte Carlo runs at each value of SNR.

From the simulation result, the proposed method can dis-
criminate the physical targets and false targets effectively.
Under the condition P′PT ,ub = 1× 10−3, the threshold is
calculated as µ ≈ 0.5892 based on (37). Therefore, the the-
oretical lower bound and upper bound of the discrimination
probability of physical target are PPT ,lb = 1 − P′PT ,ub =
0.999 and PPT ,ub ≈ 0.9993, respectively. For P′PT ,ub =
1×10−3, as shown in Fig. 2a, the discrimination probability
of physical target PPT fluctuates around the theoretical lower
bound PPT ,lb at low SNR. With the increasing of SNR, PPT
gradually approaches and fluctuates around the theoretical
upper bound PPT ,ub. The simulation misjudgement proba-
bility of physical targets is approximately in the range [1 −
PPT ,ub,P′PT ,ub]. And so are the cases with other values of
P′PT ,ub. Coinciding with the theoretical analysis in Sec. IV,
the proposed method can restrict the upper bound of the

misjudgement probability for physical targets. The difference
between the lower bound and the upper bound of probability
PPT decreases with the decreasing of probability P′PT ,ub.
With a lower P′PT ,ub, the proposed method can obtain an
approximate constant misjudgement probability for physical
targets. In Fig. 2b, for a same P′PT ,ub, the higher SNR is,
the greater the discrimination probability of false targets PFT
is. This is because the difference between physical targets and
false targets becomes larger with SNR. At low SNR, the higher
P′PT ,ub, the smaller the thresholdµ, the greater the probability
PFT . From the simulation results, for P′PT ,ub = 1× 10−3,
the probability PFT has been much bigger than 0.95 when
SNR = 8dB and almost reaches to 1 when SNR = 10dB. It is
needed a little higher SNR for other values of P′PT ,ub to obtain
the same probability PFT . For a smaller probability P′PT ,ub,
the proposed method still obtains accepted discriminate prob-
ability for false targets, especially for the case with SNR larger
than 12dB.
As a contrast, the simulation results of the method in [22]

are given in the same scenario. As mentioned in Sec. I,
the location precision for the jammer has a significant effect
on the performance of the method in [22]. In the Cartesian
coordinate system, the three-dimensional location errors for
the jammer are assumed to be independent identical Gaussian
distribution N (0, σ 2

e ). In Fig. 3, the discrimination probabil-
ities of targets PPT and PFT are given as a function of SNR
with different location errors. The misjudgement probability
of false target is set 1× 10−3. The curves correspond to
different location error σe, where σe = 0, 0.5λ, λ, 10λ. In this
simulation, λ = 0.3m.
As shown in Fig. 3a, the location error has no effect on the

discrimination probabilities of physical target PPT . Although
the location error for the jammer leads to the estimation error
of the jamming feature matrix A, the characteristics of the
physical target signal vector ξPT ,k determines that the rela-
tionship AξPT ,k 6= 0 never changes with A. Therefore, PPT
won’t be impacted at all. However, comparing Fig. 3a and 2a,
the performance of the proposed method possesses better
performance than the available method. And in Fig. 3b, when
there are location errors, the discrimination performance for
false targets deteriorates drastically with the increase of loca-
tion errors and SNR. Location errors make the relationship
AξFT ,q = 0 not hold, which will lead to the energy residue of
false targets after projection. The greater the location errors
and SNR, the more the energy residue, and the greater the
probability of judging false targets as physical targets. It’s
almost intolerable that PFT is below 0.5 when SNR ≥ 2dB
and σe = 10λ.
Compared with the method in [22], firstly, the proposed

method does not require any prior information about the
jammer, which makes the proposed method more practical.
Secondly, the proposed method can restrict the upper bound
of the misjudgement probability for physical targets, which is
extremely important for that the cost of misjudging physical
targets is much higher than that of misjudging false targets.
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FIGURE 3. Discrimination performance of the method in [22]
(a) Discrimination probability of physical target PPT (b) Discrimination
probability of false target PFT .

C. INFLUENCE OF CHANNEL NUMBER AND FALSE
TARGET NUMBER
As discussed in Sec. III and Sec. IV, the Hermitian distances
of different target combinations are affected by the channel
number and the theoretical performance of the proposed
method is related to the false target number. Therefore, this
subsection deals with their influence on the performance by
simulation.

In Fig. 4, the discrimination probabilities of targets PPT
andPFT are given as a function of SNRwith different numbers
of receivers. The expected misjudgement probability of phys-
ical target is set P′PT ,ub = 1×10−3. The curves correspond to
different numbers of receivers N , where N = 3, 4, 5. When
N = 3, the first three receivers (i.e. Z1

R , Z
2
R , and Z

3
R) are used,

and when N = 4, the first four receivers are used except Z5
R .

As shown in Fig. 4a, the channel number has little impact
on the discrimination probabilities of physical targets. Actu-
ally, according to (31) and (32), the probability PPT is deter-
mined by the function8Beta(µ) for given K and Q. However,
for different channel numbers, the function Iµ(1,MN ) has
little difference when the probability P′PT ,ub = 1× 10−3.

FIGURE 4. Discrimination performance of the proposed method with
different numbers of receivers (a) Discrimination probability of physical
target PPT (b) Discrimination probability of false target PFT .

From Fig. 4b, it is obvious that the larger the channel num-
ber, the greater the discrimination probability of false targets
PFT . According to (15) and (23), although both Hermitian
distances under H0 and H12 decrease with the increase of
channel number, the Hermitian distance under H12 reduces
more than that under H0. Besides, the Hermitian distance
under H0 has lower bound due to the first term on the right
hand side of (15). In other words, the difference between the
Hermitian distances of different target combination becomes
greater in a higher-dimensional space.

In Fig. 5, the discrimination probabilities of targets PPT
andPFT are given as a function of SNRwith different numbers
of false targets. The expected misjudgement probability of
physical target is also set P′PT ,ub = 1× 10−3. The curves
correspond to different numbers of false targets Q, where
Q = 2, 5, 8.
It is apparent in Fig. 5a that the upper bound of the discrim-

ination probability for physical targets PPT ,ub increases with
false targets numberQ. The lower bound PPT ,lb = 1−P′PT ,ub
is same for all cases with different Q for a given expected
misjudgement probabilityP′PT ,ub. According to (37) and (32),
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FIGURE 5. Discrimination performance of the proposed method with
different numbers of false targets (a) Discrimination probability of
physical target PPT (b) Discrimination probability of false target PFT .

the more the false targets, the greater the threshold, thus
the greater the upper probability PPT ,ub. In Fig. 5b, a bet-
ter discrimination performance for false targets is obtained
with more false targets. The more the false targets, the more
mutual correlation tests performed, the greater discrimination
probability for false targets.

VI. CONCLUSION
The difference of targets’ spatial scattering property has a
new manifestation in the distributed multiple-radar archi-
tecture, which is that the Hermitian distance between any
two false targets generated by a same jammer is larger than
that between any other target combinations. Based on the
difference, a discrimination method is proposed to discrim-
inate physical targets and false targets. The theoretical anal-
ysis and simulation verify the feasibility and validity of the
discrimination method proposed. Compared with the avail-
able methods, the proposed method does not require any
prior information about the jamming environment and can
discriminate the targets effectively in one PRI. Moreover,

the proposed method can restrict the upper bound of the
misjudgement probability for physical targets.

However, the proposed discrimination method is based on
the difference in Hermitian distances of different target com-
binations, and the Hermitian distance between two physical
targets and the one between a physical target and a false
target have a same distribution as analyzed in Sec. III, which
means that the false target cannot be discriminated in the case
with only one false target. Therefore, the proposed method is
applicable to the case with two or multiple false targets. How
to discriminate the false target in one false target case will be
the subsequent work.

APPENDIX A
DERIVATION OF (15)
The mean of the correlation between FT1 and FT2 is

E
[
HD(x|FT ,1, x|FT ,2)

]
= E

∣∣∣∣∣
〈
x|FT ,1, x|FT ,2

〉∥∥x|FT ,1∥∥ ∥∥x|FT ,2∥∥
∣∣∣∣∣
2


= E


(
xH
|FT ,1x|FT ,2

)H (
xH
|FT ,1x|FT ,2

)
(
xH
|FT ,1x|FT ,1

) (
xH
|FT ,2x|FT ,2

)


=
|01|

2
|02|

2
∣∣ξ J ∣∣4 + σ 2

n |01|
2
∣∣ξ J ∣∣2(

|01|
2
∣∣ξ J ∣∣2 +MNσ 2

n

) (
|02|

2
∣∣ξ J ∣∣2 +MNσ 2

n

)
+

σ 2
n |02|

2
∣∣ξ J ∣∣2+MNσ 4

n(
|01|

2
∣∣ξ J ∣∣2+MNσ 2

n

) (
|02|

2
∣∣ξ J ∣∣2 +MNσ 2

n

) (41)

Noticing that |01|2
∣∣ξ J ∣∣2 is FT1’s total energy of all MN

transmitter-receiver channels, which can be simplified as
|01|

2
∣∣ξ J ∣∣2 = MN ·En1. En1 is the average channel energy of

FT1. Similarly, |02|2
∣∣ξ J ∣∣2 = MN ·En2 is FT2’s total energy

and En2 is its average channel energy. Therefore, (41) can be
rewritten as

E
[
HD(x|FT ,1, x|FT ,2)

]
=

MN ·JNR1 ·JNR2 + JNR1 + JNR2 + 1

MN ·
(
JNR1 + 1

)
·
(
JNR2 + 1

) (42)

where JNR1 = En1/σ 2
n and JNR2 = En2/σ 2

n are the average
channel jamming-to-noise ratio (JNR) of the false target FT1
and FT2, respectively.

APPENDIX B
THE DISTRIBUTION OF HERMITIAN DISTANCE UNDER H1
AND H2
Since the vectors ξPT ,1, ξPT ,2, n3 and n4 are independent
complex Gaussian vectors, x|PT ,1 ∼ CN(0MN×1, (σ 2

PT ,1 +

σ 2
n )IMN ) and x|PT ,2 ∼ CN(0MN×1, (σ 2

PT ,2 + σ
2
n )IMN ). The

normalized vectors SMN = x|PT ,1/‖x|PT ,1‖, S1MN =

x|PT ,2/‖x|PT ,2‖ and S2MN = x|FT ,1/‖x|FT ,1‖ locate on the
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MN − 1 dimensional unit complex sphere SMN−1. It is sat-
isfied that

HD(x|PT ,1, x|PT ,2) = HD(SMN ,S1MN )

=

∣∣∣〈SMN ,S1MN 〉∣∣∣2 (43)

and

HD(x|PT ,1, x|FT ,1) = HD(SMN ,S2MN )

=

∣∣∣〈SMN ,S2MN 〉∣∣∣2 (44)

If Y ∼ CN(0n×1, In), then Sn = Y/‖Y‖ will uniformly
distribute on the n − 1 dimensional unit complex sphere
Sn−1, which is an extension to complex value case of [30].
Therefore, SMN uniformly distribute on the unit complex
sphere SMN−1. For an arbitrary point S′MN on the unit com-
plex sphere SMN−1,

〈
SMN ,S′MN

〉
=

〈
F1 ·SMN ,F1 ·S′MN

〉
=

〈F1 ·SMN , e1〉 is satisfied for the rotational invariance prop-
erty. e1 = [1, 0, 0, . . . , 0]T is the first coordinate unit vector,
and F1 is the transformation matrix to rotate S′MN to e1. SMN
distributing uniformly on the unit complex sphere SMN−1,
it will still distribute uniformly after any rotation, namely
F1 · SMN distributes uniformly on the unit complex sphere
SMN−1. Therefore, 〈F1 ·SMN , e1〉 has the same distribution
with 〈SMN , e1〉. Meanwhile, it is obvious that the distribution
of S′MN has no effect on the distribution of

〈
SMN ,S′MN

〉
. Hence,

HD(x|PT ,1, x|PT ,2) and HD(x|PT ,1, x|FT ,1) have the same dis-
tribution with HD(SMN , e1).
HD(SMN , e1) is theHermitian distance between SMN and e1

HD(SMN , e1) = |〈SMN , e1〉|2 = |h1|2 (45)

where h1 is the first element of SMN . The probability

P (HD(SMN , e1) ≤ y) = P
(
|h1|2 ≤ y

)
=
Ah
AS

(46)

where AS is surface area of the MN − 1 dimensional unit
complex sphere SMN−1 [31] is

AS =
2πMN

2MN (MN − 1)!
(47)

and Ah is the area of the spherical cap formed by the intersec-
tion of the subspace |h1| <

√
y [31] is

Ah =
2πMN

2MN (MN − 1)!

(
1− (1− y)MN−1

)
(48)

Therefore,

P (HD(SMN , e1) ≤ y) = 1− (1− y)MN−1 (49)

Then, the pdf of HD(SMN , e1) is obtained by differentiating
P (HD(SMN , e1) ≤ y) given by

f (y) = (MN − 1)(1− y)MN−2 (50)

which happens to be Beta distribution Beta(1,MN − 1).
Therefore, HD(x|PT ,1, x|PT ,2) and HD(x|PT ,1, x|FT ,1) obey

a same Beta distribution, HD(x|PT ,1, x|PT ,2)∼Beta(1,MN −
1) and HD(x|PT ,1, x|FT ,1)∼Beta(1,MN − 1).
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