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ABSTRACT Environmental mapping plays an important role in the field of robotics. Conventional
voxel-based occupancy grid models largely reduce system mapping efficiency for huge quantities of grid
cells. This paper presents an efficient method of 3D grid modeling using stereo vision based on planar
surfaces. This method first uses matching key feature points with a multi-random sample consensus
algorithm to estimate plane parameters and then clusters pre-processed point cloud data located on the
same plane. Next, a split and combining algorithm is used to generate 3D planar grid approximation
representations of the environment. The occupancy probabilities of grid cells are estimated and updated by
using the Kullback–Leibler divergence. Finally, a series of experiments including map qualitative analysis
and performance tests, are adopted to evaluate the presented method in indoor and outdoor environments.
The results of the experiments and performance evaluation illustrate the capabilities of our approach in
generating efficient 3D maps.

INDEX TERMS 3D mapping, planar surface, mobile robots, stereo vision, occupancy grid models.

I. INTRODUCTION
Environmental mapping plays an important role in the
application of robotics, such as environment exploration,
simultaneous localization and mapping (SLAM), and path
planning. The robots use sensors (e.g., 3D lasers, RGB-D
cameras, stereo vision systems, omni-directional thermal
camera, etc.) [1]–[3] to build environment maps, which
provide them essential information.

In the last few decades, with the application of 3D sensors,
especially low-cost stereo vision systems that use dispar-
ity to obtain depth information [4], many researchers have
proposed 3D mapping approaches [5]–[7] to expand robot
applications that will enable robots to adapt to complex
environments and perform other useful tasks (e.g., local
localization). The major 3D approaches for the robots are
point cloud methods and voxel-based grid methods, each
with their advantages and disadvantages. Point cloud mod-
els present higher accuracy of environment modeling than
voxel-based grid methods but involve the processing of huge
amounts of data, which greatly reduces the system efficiency.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yue Zhang.

Point cloud data are also easily influenced by noise [8].
By contrast, voxel-based occupancy grid methods discretize
the environment into voxel cells and seek to determine
whether each cell is occupied, unoccupied, or unknown. Their
computational resource and memory requirements are less
than those of point cloud models. However, when robots
work in complex or outdoor environments, the same fixed-
size voxel models greatly reduce computational efficiency
and increase memory cost. Adaptive rectangular cuboids [9]
improve mapping efficiency to a certain extent, but they use
axis-aligned combining rectangular cuboids instead of the
standard cubic grid cell assumption common to all occupancy
grid cells. If the grid cells do not follow this rule of axis
alignment (e.g., surfaces of objects in the environment are
tilted at a certain angle from the coordinate axis), it would
be incapable of dealing with such combination processing.
However, the points of the surface scanned by sensors are
located on the same planes, and if planar cells with the
same angles are used as representations, then they can be
conveniently combined and the number of cells for repre-
senting the planes will be significantly reduced. In practice,
many such objects locate in the working environment of
mobile robots, especially structured indoor environments.
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Intuitively speaking, this condition will significantly reduce
the number of cells by using planar cells to model the 3D
environment.

This paper presents a method for using planar cells
partially instead of equal-sized cubic voxels and extends
the standard occupancy for mapping a 3D environment.
Specifically, this paper contributes the following aspects:
• Instead of the cubic voxel, a planar grid with different
angles is proposed to partially represent the 3D
environment.

• A planar grid combination algorithm is proposed to
reduce the number of grid cells in the 3D environment
and effectively improve the mapping efficiency.

• A local explicit modeling space is proposed for the
occupancy grid approach. This modeling space brings
more benefits to some applications of the robot.

The remainder of this paper is organized as follows.
We first give an overview of related work in Section II. Then,
we describe the proposed planar occupancy grid mapping
method in Section III and provide a detailed explanation
for each part in subsections III-A to F. We present some
experiments to evaluate the performances of our proposed
method in Section IV. Finally, we finish with a conclusion
in Section V.

II. RELATED WORK
Volumetric occupancy mapping is a general approach for
3D world representation for mobile robots and is widely
used to represent distributed spatial information. It discretizes
the environment in cells with a given resolution, with each
cell represented by a probabilistic belief about its state
(e.g., free or occupied).

Some recent examples of volumetric occupancy mapping
methods can be found in [10], [11], where the authors gener-
ate 3D occupancy maps (or evidence grid) from the RGB-D
camera or stereo visual data, and a signed distance function
is used to store a distance to a surface in a discretized voxel
grid, which represents the world geometry. Occupancy maps
represent areas of occupied, free, or unknown space and
are well suited to fusing data from multiple sources. These
maps have been extensively used in robotics because of their
simplicity and suitability for decision-theoretic approaches.
However, they are not scaled well with the environment’s
dimension, which consumes too much memory to represent
high-image resolutions across all space, and their real-time
performance often requires high-performance graphics hard-
ware (e.g., GPU).

Traditional approaches of occupancy maps assume that the
occupancy probability of each cell in a map is an independent
random variable, an assumption that makes traditional meth-
ods simple and fast. Recently, a Gaussian process occupancy
mapping has relaxed this assumption [12] and has taken into
account the latent function variables of Gaussian processes,
making it desirable for producing accurate and continuous
occupancy maps. However, the computational complexity
of predicting Gaussian processes for mean and variance

is not directly applicable to large-scale environments.
Kim et al. [13] proposed a framework for building occupancy
maps and reconstructing surfaces for large-scale mapping
using a Gaussian process classification. They partitioned the
training data and the test data with a coarse-to-fine clustering
method and applied local Gaussian processes to each small
subset of data to reduce the computational time. However,
the high-storage complexity is still its main drawback.

In [14], [15], an octree-based 3D map representation
was proposed that shows the memory requirements of
the voxel grid could be greatly reduced. Octree-based
3D map representation is currently the state-of-the-art 3D
representation. The octree is a hierarchical data structure for
spatial subdivision and is a collection of nodes that discretize
a space into voxels, which are then recursively subdivided
into eight sub-volumes or child nodes until a desired reso-
lution is reached. Schauwecker and Zell [16] extended the
application of octree-based 3D maps constructed from data
captured using costly 3D laser scanners to a low-cost stereo
vision system.

Most occupancy grid approaches use cubic grid cells
for 3D representation. Khan et al. [9] presented a rect-
angular cuboid approximation framework (RMAP) for 3D
mapping. They used axis-aligned rectangular cuboids to
model the large-scale 3D environment, wherein computa-
tional and memory efficiencies were largely reduced com-
pared with those in octree-based 3D maps. Later, in [17],
they extended previous works by adding a fusion process
that modifies the resolution of grid cells in an incremental
manner. Their evaluation results show that the fusion process
effectively reduces the number of grid cells required by the
occupancy grid. However, this method does not adapt to
combining non-axis-aligned surfaces of objects.

III. SYSTEM OVERVIEW
A. ROBOTIC MAPPING SYSTEM
Our robotic mapping systems are shown in Fig. 1. The mobile
robot is equipped with a stereo camera pair and some motion
control cards. The mapping structure consists of three main
parts: stereo vision camera system, front-end visual process-
ing system, and map construct system. The stereo vision
camera system is used to scan the surrounding environ-
ment and acquire color and image pair information. The
data captured are sent to the front-end visual processing
system. A structure based on a digital signal processor (with
DM642 of Ti Comp.) is adopted as the front-end visual
processing system. The front-end visual processing system
is mainly responsible for the binocular stereo visual compu-
tation and feature (e.g., color, intensity, etc.) extraction. The
processed data are delivered to map construct system through
the network, which is performed on an Intel Core i3 CPUwith
2.40 GHz for 3D mapping.

B. APPROACH
In this paper, we propose a method using planar grid to
represent the 3D environment. Fig. 2 shows the schematic

73594 VOLUME 7, 2019



B. Guo et al.: Efficient Planar Surface-Based 3D Mapping Method for Mobile Robots Using Stereo Vision

FIGURE 1. (Top) Our mobile robot platform. (Bottom row) Binocular
visual system and DM642 image processing card.

FIGURE 2. Schematic overview of our method. The system is divided into
two main modules: generating occupancy planar grid and grid combining.

representation of the presented system. The system is divided
into two main modules: generating planar grid and grid
combining. In the generating planar grid module, the main
task is to generate planar grid from point-cloud data. The
front-end works consist of three parts: acquisition of point-
cloud data, estimation of plane parameters, and estimation of
features occupancy probability. The data from the three parts
are transformed to planar occupancy grid using a suitable
combining algorithm. The estimations of plane parameters
and grid occupancy probability are based on the features
extracted from frames to reduce the computation cost. In the
grid combining module, grid cells located on the same plane
are combined into large rectangular cuboids for 3D envi-
ronment representations. The following sections describe the
illustrated parts of the system.

C. PLANE ESTIMATION
The actual 3D world is composed of many objects
with planar surface structures. However, the structures of

FIGURE 3. Coordinate system of robots. The center of the robot is taken
as the origin of the relative coordinate system.

non-axis-aligned surfaces (e.g., slope surfaces) require more
grid cells to form if the standard cubic grid representation
is used, which increases the access time. The planar grid
representation is convenient for combining most of the planar
surfaces of objects because it is located on the same plane
and reduces the number of grid cells used. The planar grid
cell can be described with a tilted angle relative to the ground
and a grid cell size. As the tilted angles of the planar grid
representation are consistent with the plane where the grid
cells are located, the angles can be obtained by estimating the
plane angle relative to the ground. The grid cell size is formed
through the division and combination of the point cloud data
(see subsection III-F ‘‘Grid Approximation and Combination
Processing’’ for further details).

As shown in Fig. 3, we set up a ground coordinate system
O-xyz and a robot coordinate system O’-x’y’z’. We consider
the starting point of the robot motion as the origin of the
ground coordinate system and the robot center as the origin of
the robot coordinate system. The ith structure of the objects’
surfaces is as follows:

fi(x, y, z) = aix + biy+ ciz+ di (1)

where ai, bi, ci, di are the parameters of the ith plane.
Plane angle relative to the ground θi can be expressed as

θi = arccos
ci√

a2i + b
2
i + c

2
i

(2)

where 0 ≤ θi < π (Fig. 3). We normalize (2) as ϑi between
(−π/2, π/2], given by

ϑi =


θi, ci > 0
0, θi = 0
θi − π, ci < 0

(3)

In (1), we adopt the multi-random sample consensus
(multi- RANSAC) algorithm [18] to estimate the plane
parameters of ai, bi, ci, and di, and the inputs can be the 3D
point cloud data. However, the large amount of data increases
the computational complexity of the algorithm. We use the
3D positions of matching key feature points (e.g., SURF)
as the input parameters to estimate the plane parameters.
The number of matching feature points is significantly less
than that of point cloud data, thereby improving the system’s
computational efficiency.
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D. OCCUPANCY PROBABILITY ESTIMATION
The 3D grid models generally use a space occupancy grid
to represent environments, and the occupancy of each inde-
pendent cell is adopted to describe the position distribution of
obstacles. Owing to their simplicity and suitability for various
types of sensors, these models are extensively used in the
field of robotics. In this section, we only discuss the static
environment. Obstacles are defined as the static objects above
the ground, such as indoor wall and table, outdoor tree, and
pillar.

Our mobile robot is equipped with a stereo vision system,
and point cloud data are first captured from the surrounding
environment and then pre-processed. The estimation of occu-
pancy probability of cells can be processed with the point
cloud. However, due to the large amount of data, we substitute
the point cloud with matching key feature points (e.g. SURF)
to estimate the occupancy probability of cells and thus lower
the computation load.

Consider pt = {p1 t , p2t , . . . , pMt } as a set of matching
feature points at time t . pit = {ℵit , dit } is defined as the
concatenation of its position ℵit = {xit , yit , zit } relative to the
robot center, and dit is its disparity. Suppose that the robotic
environment workspace W is composed of a discretized grid
cell, the occupancy state of obstacle grid cell vt is defined as
an independent random variable, and p(vt ) denotes the occu-
pancy probability of the grid cell occupied by an obstacle. Let
zt = {z1t , z2t , . . . , zNt } represent a set of image observations,
and the occupancy probability p(vt |zt , xt ) of the grid cell can
be obtained over the sensor observations zt and robot posesxt .
In particular, occupancy probability is defined as a sampled
Gaussian, and the occupancy probability p(vt |zt , xt ) can be
written as [19]

p(vt |zt , xt ) = η1 exp

[
−
1
2

(
ri − r̄
1r

)2
]

(4)

where

r̄ = (
N∑
i=1

ri)/N , 1r = (r̄/zi)1z.

N is number of features,r denotes the measurement distance
of features, η1 is the normalization factor and1z is the depth
measurement error.

For a stereo camera, the depth measurement error 1z
increases quadratically with the measured depth [19]; that is,

1z =
z2

Bf
1d

where z is the depth of feature point, and 1d is the disparity
error. In general, we get 1d = 0.5.

E. OCCUPANCY PROBABILITY UPDATE
The occupancy probability of cells can be calculated by
Equation (4). However, some key feature points may be
scanned many times when the mobile robot moves forward.
Here we use the Kullback-Leibler divergence [20] to update

FIGURE 4. Update of the occupancy probability of cells. The same key
feature points are captured in the next positions.

the occupancy probability of cells. The DKL(p||q) quantifies
the difference between two probabilities p and q, where p
and q are the occupancy probabilities of the same key feature
points in consecutive images (Fig. 4). The robot moves from
one position to the next and supposes that pit represents the
occupancy probability of the key feature points scanned at
time t and that qit+k represents thematching key feature points
in the next consecutive frames. DKL(p||q) can be written as
follows:

DKL(p||q) =
N ,M∑

i=1,k=1

pit log
pit
qit+k

(5)

where N is the number of matches of the same key feature
points in consecutive images, andM denotes the time at t+M .

In (5), pit and q
i
t+k are as follows:

pit = p(vt |zt , xt ) (6)

qit+k = η2p
i
t+kp(xt+k |xt ) (7)

where η2 is a normalization term, and xt and xt+k can be
depicted as follows:

xt+k = Rixt + Ti (8)

where Ri and Ti are the rotation and translation matrices
between two sets of matching feature points and can be
estimated by using the RANSAC [18] algorithm with the
points. The estimation process involves two steps that are
iteratively repeated. It initially selects the positions of some
matching key feature points to calculate R and T by (8)
and then checks that all other feature points are consistent
with (8). The RANSAC algorithm will iteratively repeat until
the obtainedmodel in a specific iteration has sufficient inliers.

Equation (8) describes the motion information of the
robot’s pose (Fig. 4). We assume the motion errors follow a
Gaussian distribution and model p(xt+k |xt ) as follows:

p(xt+k |xt ) = N (xt+k ;mk ,
∑

k
) (9)

where mk = Qkxt and
∑

k = Qk , Qk is the covariance of
robots’ motion error and can be obtained via experiments.

The updated probability can be written as follows:

pt+k (vt+k |zt+k , xt+k ) = η3 exp [−Et+k (vt+k )] (10)
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where

Et+k (vt+k ) =

{
abs [DKL(p||q)]+ A, pt , qt+k ≤ 0.5
abs [DKL(p||q)], others.

The A is a constant and is mainly utilized to ensure that the
probability pt+k does not become very large when both pt
and qt+k take smaller values. We obtained A = 1.07 in our
experiments. The abs[.] denotes absolute value and η3 is a
normalization term. Our motivation is that if the difference
(for p, q> 0.5) is smaller at different locations, then the occu-
pancy probability will be larger. Conversely, feature points
may be mismatched or affected by noise, and their occupancy
probability is small. If the feature point is not detected at the
next position, its occupancy probability will remain the same
as before.

All the occupancy grid cells are a priori initialized as free
space and will be updated if cells are in the field of view
of the camera. If the feature points are in a free space or an
unknown space, then the occupancy probability will be cal-
culated according to (4). Next, if some feature points remain
in the field of view of the camera at the next robot locations,
then these points are updated according to (10).

F. GRID APPROXIMATION AND PROCESSING
Standard grid mapping uses cubic volume to represent the
objects in an environment. Grid combination helps signif-
icantly reduce the number of grid cells and improve the
computational efficiency in some robots’ applications, such
as localization, navigation, and exploration.

Our method of grid approximation is based on point clouds
obtained by the stereo vision system equipped on the robot.
As the scene scanned by the vision system contains more
information, we mainly aim at modeling the objects above-
ground in the environment, and the visual point cloud data
should be preprocessed to remove the ground information
ahead of grid approximation. Our method makes two impor-
tant assumptions: one is that the structures of objects in an
environment contain planar surfaces, and the other is that the
ground data of point cloud are removed. The first assumption
is easy to satisfy, especially in structured indoor environ-
ments. While outdoor environments contain non-structured
objects, many objects, however, such as buildings and stone
steps, consist of planar surfaces. Removed ground data in
the second assumption help further reduce the number of cells
and improve the computational efficiency.

The standard occupancy grid representation is composed
of occupied, free, and unmapped cells, as shown in Fig. 5(a).
All grid cells inside the field of view of the cameras are
considered as free or occupied, and the outside are unmapped
areas. Free space assumption [9] significantly improves the
computational and memory efficiency of mapping, specifi-
cally for large-scale mapping. In this assumption, all space is
considered as free, except for obstacles, as shown in Fig. 5(b).
However, it does not differentiate free and unknown space,
and this may be a problem for some robotic applications, such
as path planning and navigation.

FIGURE 5. Mode of occupancy grid representation. (a) Standard
occupancy grid representations are composed of occupied, free, and
unmapped grid. (b) Variable grid representations are composed of
occupied and free grid. (c) Our combination grid mode is composed of
occupied, free, and unmapped grid, and the unknown grid is usually
produced by the visual occlusion of obstacles.

FIGURE 6. Example of clustering planar point cloud data splitting,
merging, and grid forming. (a) The point cloud data are clustered and first
split into four parts; if the splitting density threshold is not reached,
the splitting will take place, as shown in the red lines. (b) The split parts
are first merged along the horizontal direction of the plane and then the
vertical direction. The merged parts are shown in the blue box. (c) The
merged parts extend a certain size along the planar normal direction and
form three grid approximations.

The current study proposes an occupancy grid approach
with a local explicit modeling space, as shown in Fig. 5(c).
All space a priori is initialized as free, but the grid cells inside
the field of view of the cameras are marked as free, occu-
pied, or unknown. The unknown cells are usually produced
by the visual occlusion of obstacles. These unknown spaces
inside the field of view of the camera are added to the map
when robot mapping is carried out. If a robot trajectory is
given for such amap duringmapping, then themapwith some
unknown space will bring more benefits to some applications
of the robot compared with the free space assumption.

Fig. 6 illustrates the grid approximation and combination
processing. The proposed approach initially uses multi-
RANSAC algorithm [18] to estimate the plane parameters
and then clusters the point cloud data located on the same
plane. With the noise measured by the sensors considered,
the following equation is used to extract these planar point
cloud data:

|aixi + biyi + cizi + di|√
a2i + b

2
i + c

2
i

≤ |dT | (11)

where dT is a distance threshold and can be obtained by
experiments. dT = 0.05 in our experiments. (ai, bi, ci, di) are
the planar parameters as (1), and (xi, yi, zi) are the positions
of point cloud data.
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FIGURE 7. Example of non-planar point cloud splitting and grid forming.
(a) Non-planar point clouds are split based on their center. (b) The split
parts form four grid cells, which may have small partially overlapping.
However, the overlaps are not located on the surfaces of objects but
inside.

The clustering point cloud data located on the same plane
are split and merged to approximation representations as
shown in Fig. 6(a). These data split the plane point cloud data
into four equal parts based on their center along the plane
direction, which can be obtained by (3) until the areas of parts
satisfy a certain threshold. The split parts are preferentially
merged into a larger rectangle toward the horizontal direction
of the plane and then continue to merge in the vertical direc-
tion, as shown in Fig. 6(b). The merged parts extend a certain
size along the normal (back) of the plane and form rectangular
cuboid approximations, as shown in Fig. 6(c). In the example
of Fig. 6, three planar rectangular cuboid approximations are
formed.

The remaining point cloud data not in the same plane are
repeatedly processed as planar point cloud data to be split
into four equal parts based on their center until they reach the
given threshold. The split parts finally extend a certain size
along the normal (back) of the plane, which is formed from
the point cloud boundary, and produce rectangular cuboid
approximations, as shown in Fig. 7(a). Unlike the split parts
of the plane point cloud, these parts do not merge into larger
rectangular cuboid approximations. In some cases, these grid
approximations may have small partial overlapping, such as
with objects that have large curved surfaces. However, this
overlaps have little effect on the application of robots because
they occur inside the objects, as shown in Fig. 7(b).

The pseudocode of the grid approximation and mergence
algorithm is shown in Fig. 8. The input parameters contain
pre-processed point cloud data, which removed the ground
points, and some threshold vectors, T = (DT , WT , HT ).
DT , WT , and HT are the thresholds of density, width, and
height of split units, respectively. The output parameters con-
tain a set of grid approximations S(s1, s2, . . . , sn).

This algorithm first checks whether the input data
contain planar point cloud data. Given these data, it adopts
Equation (11) to cluster planar point cloud data and deter-
mine the bounding of planar and non-planar data. The
algorithm then computes unit split density and determines
whether or not it will split down further. If the unit split
density is less than the specified threshold, then the unit will
be further split into four parts. After the split is complete,
the units where the planar point cloud is located process the
mergence. It first merges the adjacent cells in the horizontal
direction of the plane and then processes these cells in a
vertical direction. The horizontal mergence only operates on

FIGURE 8. Grid approximation and combination pseudocode.

adjacent cells with equal widths and equal length only for the
vertical direction. For the units where the non-planar point
cloud is located, the split continues until the size of the split
cell reaches the specified threshold; however, these units do
not merge. Finally, merged or split units extend a certain size
to form the 3D approximation along the normal (back) of unit
planes.

The occupancy probability of grid is substituted with that
of matching key feature points, which are located in this grid.
Here, we take their average as the probability estimate of this
grid. If the grid does not contain matching key feature points,
then the average occupancy probability of adjacent grid cells
is used as its probability estimate.

IV. EXPERIMENT RESULTS AND ANALYSES
In this section, we perform a series of experiments to evalu-
ate the proposed method. The experiments are conducted in
indoor and outdoor environments and are further divided into
two main subsections: map qualitative analysis and perfor-
mance evaluation. The robot platform is shown in Fig. 1. The
installation of cameras is hc = 370 mm, which is used to
capture the visual data of the environment.

In our experiments, SURF [21] is used to estimate the plane
parameters and occupancy probability as it is a robust feature
extractor that works in environments with dense or sparse
features. Given the computational efficiency, these feature
extraction and matching processes are implemented on the
DM642 card of the robot platform.
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FIGURE 9. Example of erroneous artifacts produced by our method and
standard grid approximation. Left view shows the erroneous artifacts
produced by the standard grid approximation (red grid cells). Right view
shows that most of the erroneous artifacts are removed in our method
(red grid cells). The occupied grid cells are represented with color for easy
viewing.

In building a map, we use (8) to locate the robot because
accurate mapping depends on localization. Key points in the
continuous frame are initially used to estimate the rotation
matrix and the translation matrix, and then the position of
the robot in the map is calculated by using the estimated
parameters. When the robot moves to the next positions,
it uses the matching key feature points to create registrations
in the frames and then updates and merges the data. The new
data structure can be stored in files to enable the robot to
perform any tasks. We use the labels 00, 01, 10, and 11 to
represent free, occupied, unknown, and inner node with child,
respectively. These labels are encoded as a bit stream and
saved as files.

In our experiments the mobile robot’s speed is limited to
v ≤ 0.5m/s.

A. MAP QUALITATIVE ANALYSIS
In our map building experiments, the SURF visual features
are used to cluster the planar point cloud data. The clustering
of a large number of planar point cloud data is beneficial to
discard some isolated error point cloud data and improve the
mapping accuracy. As shown in Fig. 9, planes A and B are
mapped using our method and the standard grid approxima-
tion. The standard grid method produces some erroneous arti-
facts (red grid cells) for some error point cloud data, as shown
in the left view of Fig. 9. However, most of the erroneous
artifacts are removed in our method, and the mapping quality
is higher than the standard grid approximation, as shown in
the right view of Fig. 9.

Fig. 10 is a part of an indoor corridor 3D grid map
constructed by using our method, where the dashed line
and arrow describe the path and moving direction of the
mobile robot, respectively. The size of the minimum grid is
0.1 m × 0.1 m × 0.1 m, and the maximum size is 2.2 m ×
0.7 m × 0.1 m. Owing to the occlusion of objects, when the
robot is mapping along the corridor, some areas with gray
will not update; these areas are marked as unknown, as shown
in Fig. 10(b), which is the 2D projection view of Fig. 10(a).
From this view, these unknown areas (with gray color) can be
distinguished clearly.

Fig. 11 is an example of an outdoor 3D grid map created
with our approach; the size of the scene is about 30m× 10m.
Some structured objects, such as buildings, walls, and steps,

FIGURE 10. Indoor corridor 3D grid map with the size of minimum grid
cell and maximum grid cell are 0.1 m × 0.1 m × 0.1 m and 2.2 m × 0.7 m
× 0.1 m, respectively. 10 places (circles) along the robot motion path
direction are selected for performances evaluation. The occupied grid
cells are represented with color for easy viewing. (a) Corridor 3D map.
(b) The 2D projection view of the 3D map and the fields of gray represent
the unknown.

FIGURE 11. Outdoor 3D map with the minimum and maximum grid cell
sizes of 0.1 m × 0.1 m × 0.1 m and 0.7 m × 0.3 m × 1 m, respectively.
10 places (circles) along the robot motion path direction are selected for
performances evaluation. The occupied grid cells are represented with
color for easy viewing.

are contained in the scene, as well as some non-structured
objects, such as trees, stone columns, and iron pillars, and
are marked in the map. Taking into account the complexity
of the outdoor environment, the tree leaves may be a variable
because of the effect of the wind; we limited the height of
trees, only leaving the trunks with no leaves in the created
map. The dashed line and arrow are the path and moving
direction of the mobile robot. The unknown areas are not
shown in the figure for ease of visualization.

B. PERFORMANCE EVALUATION
In this section, we evaluated our method in terms of grid
quantity, erroneous artifacts, andmemory efficiency in indoor
and outdoor environments. The scenes of indoor and out-
door environments are as shown in Figs. 10 and 11, respec-
tively. Given the inconvenience of huge number of grid cells,
10 places along the robot motion path direction (circles
in Figs. 10 and 11) and 10 frames at each selected location
were carefully selected to evaluate these performances. In our
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FIGURE 12. Comparison of grid combination efficiency in indoor and
outdoor environments for RA and PA; these results take the standard grid
as reference. The minimum grid cell size represents the minimum voxel
size.

comparative experiments, our method (PG) was compared
with the standard grid (SG), octree grid (vision-based) (OG)
and rectangular cuboid approximation (RA) methods.

We first conducted comparison experiments of combina-
tion efficiency and computational cost. The experiments of
combination efficiency were evaluated in indoor and outdoor
environments, and the standard grid was used as reference
in the evaluation results. Combination efficiency η is defined
based on

η = 1− (Nf /AS )

where ASand Nf are the number of combination grid cells
and the total number of standard grid cells in some position,
respectively. The results are shown in Fig. 12. The minimum
grid cell size on the horizontal axis indicates the size of
the voxel. The figures show the combination efficiency with
different minimum grid cell sizes between 0.1 and 0.5 m.
The results reveal that PG is more efficient than RA in
combination efficiency mainly because RA only combines
axis-aligned grid cells, whereas PGs can also combine planar
objects that do not follow the rule of axis alignment. The
structured indoor environment has higher combination effi-
ciency than the outdoor environment, thereby significantly
reducing the number of grid cells.

Evaluating all the mapping errors is a highly difficult
task. 10 specific locations (as shown in Figs. 10 and 11) are
selected to compute their mapping error and take the number
of standard grid cells as reference. Here, the mapping error e
is defined based on

e = (Ne/AS)× 100%

whereNe and AS are the number of erroneous artifacts and the
total number of standard grid cells in some position, respec-
tively. When the robot moves to a specified position, we take
the occupied grid in a small range near the robot to calculate
the erroneous artifacts against the ground truth. The experi-
ment results are shown in Fig. 13. These figures clearly show
that mapping erroneous artifacts produced by our method
(PG) are significantly less than in the SG and rectangular

FIGURE 13. Evaluation of mapping error in indoor (left) and outdoor
(right) environments. The plots were generated from 10 places marked on
the trajectory of a robot with little circles in Fig. 10 and Fig. 11.

FIGURE 14. Evaluation of memory consumptions (left) indoor and (right)
outdoor. The plots were generated from 10 places marked on the
trajectory of the robot with little circles in Figs. 10 and 11. The minimum
grid cell size represents the minimum voxel size.

cuboid approximation method (RA), and the mapping errors
outdoor are higher than indoors.

In terms of memory consumption, we also compared our
method (PG) to the standard grid (SG)čoctree grid (OG) and
rectangular cuboid approximation (RA) methods in indoor
and outdoor environments. In our experiments, the memory
consumption is recorded when the robot moves to several
specified positions. On average over all test runs, we eval-
uated the memory performance with different minimum grid
sizes between 0.1 and 0.5 m (Fig. 14). These figures show
that our method consumes less memory compared to the
other twomethods, especially in an indoor structured environ-
ment. Owing to the complexity of the outdoor environment,
unstructured objects usually cause low grid combination effi-
ciency and increase the memory. However, in our method
(PG), the combination efficiency was high and only the sur-
faces of objects were mapped; the memory consumptions
are still lower than those used by the standard grid (SG),
octree grid (OG) and rectangular cuboid approximation (RA)
methods.

V. CONCLUSION
This paper presents an efficient method for 3D grid
modeling based on planar surface. Conventional voxel-
based occupancy grid models largely reduce system mapping
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efficiency for huge quantities of grid cells. Although some
methods, such as rectangular cuboid approximation models,
improve the mapping efficiency using grid combination algo-
rithm, the non-axis-aligned surface of objects still have to
be mapped by using voxel occupancy grid and cannot be
merged. This study uses planar grid, substitutes voxel grid,
causes easier combination for the non-axis aligned grid cells,
and further improves the mapping efficiency. In our method,
matching key feature points are initially used to estimate the
plane parameters, and then pre-processed point cloud data
located on the same plane are clustered. In the next, a split
and combining algorithm is used to generate 3D planar grid
approximation representations of the environment. The occu-
pancy probabilities of grid is obtained from those of matching
key feature points to reduce the computation loads. Finally,
a series of experiments that include map qualitative analysis
and performance tests is adopted to evaluate the presented
method in indoor and outdoor environments.
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