
Received May 10, 2019, accepted May 23, 2019, date of publication June 3, 2019, date of current version June 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2920482

Compressive Sensing Based Device-Free
Multi-Target Localization Using
Quantized Measurement
SIXING YANG , YAN GUO , NING LI, AND PENG QIAN
College of Communications Engineering, PLA Army Engineering University, Nanjing 210007, China

Corresponding author: Yan Guo (guoyan_1029@sina.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61871400 and Grant 61571463, and in
part by the Natural Science Foundation of Jiangsu Province under Grant BK20171401.

ABSTRACT Device-free localization (DFL), requiring no extra devices equipped with a target, is an
important field of research on the Internet of Thing (IoT). Energy efficiency issue is essential for the
development of the IoT, but seldom of the existing papers are focus on it. So we investigate this issue
with quantized data of only several bits under the compressive sensing (CS) framework, which can both
reduce the required wireless link number and the bit number in the DFL scheme. First, through exploiting
the discrete property of CS theory, we calculate the discrete measurement probability bypass computing the
complex or uncalculated measurement probability density function (pdf), which can well represent the
measurement distribution characteristic. Second, we design a unique quantization scheme for each wireless
link according to their measurement probability and build a novel DFL model by analyzing the quantization
error. Third, a new DF-QVBI algorithm is proposed to recover the target location, which can make great use
of the quantization error. Finally, numerical simulations show the superiority and robustness of the proposed
method.

INDEX TERMS Multi-target localization, device free, compressive sensing, quantization, variational EM
algorithm, energy efficiency.

I. INTRODUCTION
Nowadays, Internet of Thing (IoT) [1] has been widely
applied in people’s daily lives, especially in remote sens-
ing, smart home and so on [2]. Many papers are involved
into the researches of the target activity recognition, gesture
identification and so on [3], [4], which are all based on
the exact target localization techniques. As to improve the
service performance in IoT, localization issue is one of the
most essential techniques. Traditional localization methods
has been widely applied in IoT such as Global Position-
ing System (GPS) and so on [5], which requires relating
devices being attached with targets. However, targets in cer-
tain cases are non-cooperative or can not be equipped with
devices, making the device-based localization scheme valid.
For example, in the military field, the hostile target certainly
do not want to be detected and always try to escape from
detecting; in the emergency rescue, the human trapped can
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not be equipped with any devices beforehand; in the smart
house, the elderly is not willing to wear any devices to help
detect the falling which may influence their daily lives and
so on [6]. Above all, Device-free Localization (DFL) scheme
that requires no extra devices to be attached to target has
become a topic of great concern [7].

DFL scheme can directly utilize the wireless signals, ubiq-
uitous in our daily life, to obtain target location. Once the
targets existing into the detected domain, their surrounding
wireless signal will be influenced in a predictable way and
then we can use the changeable signal to estimate the loca-
tions [8]. DFL is firstly proposed in Paper [9], which gives
a primary introduction of the DFL framework. Paper [10]
achieves the multiple target localization by exploiting the
property of the WLAN signal. And paper [11] can simultane-
ously achieve the target counting and localization. In order to
improve the localization accuracy, more localization informa-
tion should be gathered, undoubtedly requiring a large num-
ber of wireless kinks. So paper [12] applies the Compressive
Sensing (CS) [13] theory inDFL scheme, greatly reducing the
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FIGURE 1. The illustration of the DFL scene.

required wireless links. As is shown in the Fig. 1, where each
pair of transceiver/receiver consists of a single wireless link
to measure the changed RSS. In order to save human effort
involved into the dictionary building, paper [14] proposes
a dictionary transition approach which can utilize only a
few samples to recover the complete dictionary. Paper [15]
considers a dictionary refinement approach to approximate
the RSS changes and achieve a good performance. Paper [16]
consider the elderly consideration issue and proposed a fall
detection scheme in smart home.

All the above algorithms make great contributions
into DFL, but seldom of the them take consideration of
the energy efficiency issue. Wireless signal is produced and
propagated continuously but the devices are digital-based,
undoubtedly resulting into a quantization error. Once the
available bits inside the devices are large enough to represent
the received signal, the quantization error can be ignored.
But the transceivers/receivers are all battery-powered, more
bits will unquestionably leading tomore energy consumption.
In order to save energy and resource, there are only several
bits can be used in some applications, which involves into
the quantization issue. Coming to this, quantization is a sig-
nificant technique which should be exploited in DFL to save
energy.

In fact, quantization problem has been widely considered
in the recent researches. Many papers research the quan-
tization issue in the theory field to improve the quantiza-
tion performance. Some researchers consider this issue in
the field of CS theory and propose Quantized Compressive
Sensing (QCS) [17], [18], which provide a novel idea for
other researches. In addition, 1-bit CS is more and more
popular in recent year, which can be regarded as a special kind
of quantization scheme [19], [20]. Paper [21] considers the
quantization problem in the device-based localization area,
which can achieve the target location only use several bits.
However, this progress requires knowing of the measure-
ment probability density function (pdf) and assumes the same
quantization scheme for all the sensors, which can not be
applied widely. Paper [22] researches the DFL with several
bits which is based on the binary localization model in DFL.
When coming to other occupations, several bits will not be
enough.

Above all, we consider the energy efficiency problem
in DFL using quantized data in this paper. As for quan-
tization scheme, measurement pdf is always utilized to
design the quantizer which strongly influence the localization

performance. However, on one hand, the measurement pdf
sometimes are too complex to be calculated. On the other
hand, the measurement pdf can not be calculated especially
in the experiment-based DFL whose measurements are gath-
ered by testing. Considering the issues, we exploit the dis-
crete property of the CS-based DFL and propose a discrete
approach to calculate the measurement probability instead
of pdf. Then the new algorithms DF-QVBI is proposed to
recover the location by analyzing quantization error, which
can use both fewer wireless links and bits to promise accurate
localization. The main contributions of the proposed algo-
rithm are as follows:
• The energy efficiency issue is exploited in the DFL
scheme in this paper, and only several bits are required
to achieve the target location by our proposed algorithm.

• We calculate the discrete measurement probability by
exploiting the CS-based DFL framework which avoids
to calculate the complexmeasurement pdf. And a unique
and optimal quantizer is designed for each wireless link,
which can take good advantage of the measurement.

• In order to make good use of the quantization error,
its pdf is approximated as a liner function within each
quantization interval. And then we build a newCS-based
DFL model considering the quantization error.

• Under the new DFL model, a novel algorithm called
DF-QVBI approach based on the quantization error is
proposed, which owns a better localization performance.

The rest paper is organized as follows. Section 2 presents
some related works. Section 3 shows the quantization scheme
and analyzes the quantization error. The new DFL model and
the designed algorithmDF-QVBI are both shown in details in
section 4. Numerical simulations are set in the section 5 and
section 6 gives the conclusion of the paper.

II. RELATED WORK
A. DEVICE FREE LOCALIZATION PRINCIPLE
Compared with the traditional device-based localization,
DFL estimates target location without requiring any
transceivers equipped with targets. As for DFL, although
targets do not produce the signal, they affect the wireless
signal in a predictable way which could be used to localize
target. As a result, we calculate the signal changes instead
of the received signal in the device-based localization to
localize. The most popular signals used in DFL are image
information [23], infrared signal [24], RSS signal [25] and
so on. Image information need a larger samplings and may
involve into the privacy security. And when coming to the
smog and dark sense, the image information may valid.
The infrared signal based DFL always requires the devices
owning the ability of measuring the infrared signal, greatly
limiting its development because this kind of devices are
not widely applied. Among these kinds of signals, Received
Signal Strength (RSS) been especially appreciated for the
following advantages:
• Wireless signal is ubiquitous, which has been widely
applied almost anywhere.
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• RSS value is convenient to be obtained and almost all
the devices can record the RSS information.

• RSS acts well even in the smog and dark situation where
the other signals are valid.

To calculate the RSS changes by the entering target, R0 (m)
and R1 (m) are utilized to represent the RSS when there is no
target and several targets located within the detecting area for
wireless link m, respectively. Then the RSS changes R (m) of
wireless link m caused by targets are as:

R (m) = R0 (m)− R1 (m) . (1)

There are mainly two techniques to calculate R (m), one is
the experiment-based and the other is the model-based. The
experiment-based approach gathers the RSS changes through
practically measure, making the measurement pdf can not
be calculated. Although this type of approach can suit the
certain environment well, it may be a waste of human labor
and the gathered information can not be directly applied in
other circumstance. The model-based approach can approx-
imate the signal changes by theoretical analysis, which can
be applied in many situations without collecting the signal
practically. The most utilized models are binary model [26],
elliptical model [27], saddle surface model [28] and so on.
Binarymodel is simple which can only determine whether the
objective is in the affected area of wireless links or not. Target
would be regard within the area when the RSS changes above
a certain threshold. Elliptical model designs the effected area
as an elliptical and RSS changes are only related to the
distance between the target and the wireless link. As for
saddle surface model, it also considers the distance between
the target and transceiver/receiver when compared with the
Elliptical model. Here in the paper, saddle surface model is
applied to more exactly approximate the RSS changes.

R (m) =

(
1− cm
(0.5dm)2

(
pxmn

)2
−cm

(
pymn
λm

)2

+ cm

)
Em,

s.t.

(
pxmn

)2
(0.5dm)2

+

(
pymn
λm

)2

≤ 1, (2)

where Em and cm ∈ (0, 1) are the maximum RSS changes
and a constant to normalize the RSS changes of LOS path of
the midpoint for link m.

(
pxmn, p

y
mn
)
is the relative coordinates

of target n in the coordinate system constituted by link m,
where the X axis is the ligature between transceiver and
receiver. In addition, dm and 2λm are the length and the width
of ellipse of wireless link m.

B. CS-BASED DFL MODEL
In this section, we mainly introduce the CS-based localiza-
tion framework. According to the CS theory which oper-
ates the discrete signal, we divide the location area into N
grids and each target is assumed to be randomly located
at the grid point. Once the grid number that target located
at is determined, the target coordinates will be obtained by
the relationship between the grid point and the real coordi-
nate. M (M � N ) wireless links, making up by couples of

transceivers and receivers, are uniformly deployed in the area
to gather the localization information. Then the RSS changes
recorded by M wireless links are as:

y = Dx+ n. (3)

1) SENSING MATRIX D
the element Dmn shows the relationship between the target
location at the grid point n and the RSS changes received by
wireless link m. As introduced in the above subsection, it can
be calculated by experiments or model.

2) LOCATION VECTOR x
x denotes the target location, when there is single target
located at grid n, xn = 1; otherwise xn = 0. ‖x‖0 = K
represents the target number all around the detecting area.

3) MEASUREMENT VECTOR y
ym is the RSS changes of wireless link m caused by all the
K targets entering into the location domain.

4) MEASUREMENT NOISE n
n is used to approximate the environment noise.
Remark: Notice that the shadowing effect is not simply

the sum of the single one for multiple targets especially who
distort the same wireless link. So, the above equation may be
a little inappropriate in such case and now it is still an open
problem. Fortunately, the detecting area of the wireless link is
limited, making the RSS changes is independent as the targets
distort different wireless links. And in practice, the assump-
tion that any two targets are located sparsely is easy to satisfy.
Above all, most of the current DFL approaches assume that
different targets affect the measurements in an independent
way [7], [15], [25]and when multiple targets distort a same
link they are considered as one target. Following these most
widely abroad paper, we take the same operation here.

III. QUANTIZATION SCHEME
A. ANALYSIS OF THE QUANTIZATION SCHEME
Most of the algorithms assume that the measurement is
exactly precise which can be represented by unlimited bits.
However, this type of operation becomes valid where the
devices with lower performance, limited communication
bandwidth, restricted battery power and so on, especially in
the national defense and wildlife protection where only sev-
eral bits are available. So the quantization is essential. Here
in the CS-based DFL, the quantization can be represented as:

z = Q (y) , (4)

where z is the quantized values represented by the receivers,
Q is the defined quantization function which is essential to
the quantization performance.

Quantization performance is mainly influenced by the
quantization bits number and the quantization scheme. More
bits, more accurate the quantization result. The available bits
are always set before the devices deployed. So, in order to
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FIGURE 2. The possible measurement values for different wireless links.

ensure an accurate localization, the quantization principle
should be well designed.

At first, weather to choose the scalar quantization [29] or
vector quantization [30] should be considered. Scalar quan-
tization scheme operates the data independently while the
vector quantization considers all the data together. In DFL,
every wireless link disposes the received signal itself and
then transmits the localization information to the data center
without communicating with others, making the scalar quan-
tization more suitable.

Next, how to quantize the data for each wireless link is
greatly essential. Uniform method quantizes the measure-
ment by dividing it into L quantization levels with the same
interval length. However, the measurement distribution is
always nonuniform, making this type of quantization cause
a higher error. Nonuniform quantization is emerged, which
takes the measurement distribution into consideration and
can well solve the issue. But the measurement pdf is diffi-
cult or unable to be estimated as stated above in some cases.
So, how to apply the nonuniform quantizing scheme without
the knowing of measurement pdf is required to be solved.

B. DESIGN OF THE QUANTIZER
To design the optimal quantizer for each wireless link,
we exploit the CS-based DFL property and propose a novel
quantization approach using discrete method without cal-
culating measurement pdf. In CS-based DFL, targets are
assumed exactly at the grid points but not everywhere in
the detecting area, providing a naturally discrete property.
Measurement values, caused by the target entering into the
detecting area, will undoubtedly hold a discrete property. This
characteristic renders us to exploit the property of the discrete
value.

Following the idea, we assume that targets, independent
with each other, are randomly located at the grid points with
equal probability 1

/
N . And target in different grid point will

cause the relative measurement with the probability of 1
/
N .

In fact, the dictionary built in the off-line step can be utilized
to approximate the measurement value of single target. That
is to say the possible measurement is just the element of the
relating rows of sensing dictionary. As is shown in Fig.2,

FIGURE 3. The discrete measurement probability values for different
wireless links.

the possible measurement values of the several wireless links
are selected, where we can find that each wireless link
process different possible measurement values, rendering a
unique quantizer for each wireless link. And then we ana-
lyze the measurement values to compute the measurement
probability.

To approximate the measurement distribution, we divide
the domain into NT intervals and calculate the relating prob-
ability values where the middle point of each interval is
assumed as the discrete measurement value. The detail has
been shown in Fig.3. When there is single target, the discrete
measurement probability of wireless link m is p (ym = ri)

p (ym = ri) =
Num (A (m, :) ∈ Ri)

N
, (r ∈ χ), (5)

where ri is the assumed measurement values in inter-
val i and Num (A (m, :) ∈ Ri) means the number of elements
of m− th row of the dictionary within the i − th interval.
χ is the set of the discrete measurement values. For multiple
targets independent with each other, the measurement proba-
bility is:

p (ym=r)=
∑
r1∈χ

· · ·

∑
rK−1∈χ

p
(
y1m=r1

)
· · · p

(
yK−1m =rK−1

)
p
(
yKm = r−r1· · ·rK−1

) . (6)

After obtain the measurement probability, the distribution
of the measurement can be approximately learned. Accord-
ingly, we design the quantizer with L levels considering the
nonuniform distribution as follows:

zm =


c1, b0 < ym ≤ b1
ci, bi−1 < ym ≤ bi
· · ·

cL , bL−1 < ym ≤ bL ,

(7)

where (bi−1, bi] is the i− th interval bound and ci is the code
value which divides the region into two equal probability part.
And considering maximum entry concept of the information
theory, we design the quantizer where in each interval the sum
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of the probability is 1
/
L:∑

ri∈(bi−1,bi]
p (ym = ri) = 1/L. (8)

Then each wireless link can operate the continuous signal
into quantized code automatically according to the designed
quantizer.

C. ANALYSIS OF QUANTIZER ERROR
To analyze quantization error, we build the CS-based DFL
model considering the quantization error as follows:

z = y+ e = Dx+ n+ e, (9)

where z is the quantized data represented by several bits and
e is the relative quantization error.

Once the original signal ym sensed by wireless link m,
it will be quantized as zm = Q (ym) according to the quan-
tized principle inside the wireless link using Eq. 7. If the
quantized measurement is achieved as ci (i = 1, 2 · · · L),
the quantization error probability will be computed as:

p (em = ε) = p (ym = ci − ε) , (ε ∈ [eml, emu)) , (10)

in which ε is the quantization error within the interval
[eml, emu) and eml = ci − bi, emu = ci − bi−1.
For each quantization zm, its quantization error is in a cer-

tain interval, providing a chance to approximately calculate
the continuous pdf referencing to discrete probability values.
Usually, these two types of probabilities hold certain rela-
tionship. Larger the value of the discrete probability, larger
the value of the pdf. Here in each quantization error interval,
a liner function is utilized to approximate the quantization
error pdf:

p (em| tm, hm) =
tmem + hm

C
, (em ∈ [eml, emu)) , (11)

where

C =
(p (eu)+ p (el)) (eu − ei)

2
, (12)

tm =
p (eu)− p (el)
C · (eu − ei)

, (13)

hm =
p (eu)− tmeu

C
, (14)

where eu and el are the maximum and the minimum value
of the quantization error within certain interval, respectively.
C used here to normalize probability because of the require-
ment that the whole integration of pdf should be 1. Then the
quantization scheme is summarized as follow:

IV. RECONSTRUCTION ALGORITHM USING
QUANTIZED INFORMATION
In order to recover the target location using the quantized
information, we proposed a new algorithm named Quantized
Variational Bayesian Inference algorithm for Device-Free
localization (DF-QVBI). The proposed algorithm is mainly
based on the idea of the variational Bayesian inference [31],

Algorithm 1 The Algorithm of Quantization Scheme
Require: D
1: Obtain the possible measurement values using D.
2: Calculate the measurement probability using (5) or (6).
3: Design the quantizer for each wireless link using (7).
4: Quantize the localization signal according to the

designed quantizer.
5: Calculate the relating quantization error probability using

(10).
6: Approximate quantization error using (11)-(14).

FIGURE 4. Graphical model of variables for the proposed DFL scheme.

whose recovery accuracy is guaranteed by an advanced prob-
abilistic distribution imposed on the random variables. Under
the variational Bayesian inference framework, each of the
variables is assumed a probabilistic model to promise an
accurate reconstruction. We build the DF-QVBI under the
same framework, and the illustration of the relationship
between variables are shown in Fig.4.

A. LOCATION VECTOR x
to exploit the sparsity of the location vector, a two-layer
hierarchical prior distribution is imposed on the location
vector. Compared with the stationary Gaussian distribution,
this nonstationary one assumes a variable variance which
can provide more flexibility to exploit the characteristics of
location vector. Of the first layer:

p (x|α) =
N∏
i=1

N
(
xi| 0, α

−1
i

)
=

1

(2π)N /2|A|−1/2
exp

(
−
1
2
xTAx

)
, (15)

in which α = [α1, α2, · · · , αN ] and α
−1
i is the variation of xi.

In addition, A = diag (α1, α2, · · · , αN ) is the inverse of the
covariance. However, such a model includes the variations as
much as the observations, making it unable to be worked out.
As a result, a Gamma prior distribution is imposed on α:

p (α; a, b) =
N∏
i=1

Gamma (αi| a, b)

=

N∏
i=1

1∫
∞

0 ua−1e−udu
baαia−1e−bαi , (16)

where a and b are parameters to determine α.
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B. MEASUREMENT NOISE n
in order to approximate the most widely applied noise,
the Gaussian distribution is imposed on the measurement
noise:

p (n) = N
(
n| 0, β−1I

)
, (17)

where β and I are the inverse of the variance and the unite
matrix, respectively. To make the noise be more available in
the varying environment, a Gamma distribution is assumed
for the noise inverse variance β:

p (β; c, d) =
N∏
i=1

Gamma (β| c, d), (18)

where c and d are parameters according to β.

C. QUANTIZATION ERROR e
for this type of error, we have discussed in the above section.
In each quantization error interval, its quantization error
pdf has been approximated as an liner function according
to Eq.(11).

According to Bayesian algorithms, the distribution
p (x,α, β, e| z) should be calculated when construct the
location vector. From the above analysis, location vector x,
measurement noise n and quantization error e are all appar-
ently independent, so as their depending parameters. Then the
above distribution can be represented as:

p (x,α, β, e| z) =
p (z| x, β, e) p (x|α) p (α) p (β) p (e)

p (z)
,

(19)

where according to Eq.(17):

p (z| x, β, e)=
(
2πβ−1

)−M/2
exp

(
−
β

2
‖z−Dx−e‖22

)
, (20)

where we can see that all the distributions in the numerator
can be easily calculated but for the distribution of the mea-
surement in the denominator p (z):

p (z)=
∫
p (z| x, β, e) p (x|α) p (α) p (β) p (e) dxdαdβde,

(21)

which cannot be analytically calculated.
Thus the variational inference is applied, imposing the

posterior independence among the location vector x, variance
parameters n and e :

p (x,α, β, e| z; a, b, c, d, t,h)

≈ q (x,α, β, e) = q (x) q (α) q (β) q (e) . (22)

To calculate the posterior, we recall the defined prior
probability distribution for the variables and the variational
Bayesian inference theory. Accordingly, the posterior distri-
bution of x, α, β and e are updated as follows.

For the location vector x, we have the following result:

ln q (x) = 〈ln p (z, x,α, β, e)〉q(α)q(β)q(e) + C

= 〈ln p (z| x, β, e) p (x|α)〉q(α)q(β)q(e) + C

=

〈
−
β

2
(z− Dx− e)T (z− Dx− e)−

1
2
xTAx

〉
+ C

=−
〈β〉

2

(
xTDTDx− 2xTDT z+ 2xTDT

〈e〉
)

−
1
2
xT 〈A〉 x+ C

=−
1
2
xT
(
〈β〉DTD+〈A〉

)
x−xT 〈β〉DT (z−〈e〉)+C

= −
1
2
xT6−1x−1 − xT6−1µ+ C, (23)

where it is apparent that q (x) obeys Gaussian distribution
with q (x) ∼ N (x|µ, 6) and its mean µ and covariance
matrix 6 are calculated as follows:

µ = 〈β〉6DT (z+ 〈e〉) . (24)

6 =
(
〈β〉DTD+ 〈A〉

)−1
. (25)

Considering that the inversion for matrix is a high complex
operation, which can increase the calculate complexity of
the above equations. So, we transfer the Eq.(25) into the
following form:

6 = 〈A〉−1 − 〈A〉−1DTE−1D〈A〉−1, (26)

where 〈A〉 is a diagonal matrix whose inversion is easy to
obtain. And for E = 〈β〉−1I + DT 〈A〉−1D, it is M × M
dimensions (M � N ), greatly reducing the complexity form
O
(
N 3
)
to O

(
M3
)
.

Then by assuming that the q (α) is only depend on α,
we have the following equation:

ln q (α) = 〈ln p (z, x,α, β, e)〉q(x)q(β)q(e) + C

= 〈p (x|α) p (α)〉q(x) + C

=
1
2

M∑
m=1

lnαm−
1
2

M∑
m=1

αm

〈
x2m
〉

+

(
a−

1
2

) M∑
m=1

lnαm−
M∑
m=1

bαm + C

= (a− 1)
M∑
m=1

lnαm−
M∑
m=1

(
b+

1
2

〈
x2m
〉)
αm + C

= (̂a− 1)
M∑
m=1

lnαm−
M∑
m=1

b̂αm + C, (27)

which informs that the above distribution is the product of
M independent Gamma distribution:

q (α) =
N∏
i=1

Gamma
(
αi| â, b̂

)
, (28)
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where the relative parameters are given as follows:

â = a+
1
2
. (29)

b̂m = b+
1
2

〈
x2m
〉
. (30)

For q (β) according to the measurement noise n, its poste-
rior distribution is as follows:

ln q (β) = 〈ln p (z, x,α, β, e)〉q(x)q(α)q(e) + C

= 〈ln p (z| x, β, e) p (β)〉q(x)q(α)q(e) + C

=
M
2

lnβ −
〈
β

2
(z− Dx− e)T (z− Dx− e)

〉
+ (c− 1) lnβ − dβ + C

=

(
c+

M
2
− 1

)
lnβ

−

(
d + 1

2

(
‖z− Dµ‖22

)
+ tr

(
D6DT

)
−2〈e〉T (z− Dµ)+

〈
eT e

〉 )
β

= (̂c− 1) lnβ − d̂β + C, (31)

where it is obvious that q (β) follows a Gamma distribution
with the defined parameters as follows:

ĉ = c+
M
2
. (32)

d̂ = d +
1
2

(
‖z− Dµ‖22

)
+ tr

(
D6DT

)
− 2〈e〉T (z− Dµ)+

〈
eT e

〉
. (33)

And then, we update the posterior distribution of quantiza-
tion error q (e) as follows:

ln q (e) = 〈ln p (z, x,α, β, e)〉q(x)q(α)q(β) + C

= 〈ln p (z| x, β, e) p (e)〉q(x)q(α)q(β) + C

=

〈
ln
[
exp

(
−
β

2
‖z− Dx− e‖22

)
p (e)

]〉
+ C

= ln
[
exp

(
−
〈β〉

2

(
‖e−(z−Dµ)‖22
+tr

(
D6DT

) ))
p (e)

]
+C,

(34)

where we can conclude that the posterior of the quantization
error q (e) is the product of a Gaussian distribution and its
prior distribution. For the Gaussian distribution, its relative
parameters are as follows:

µ̂ = z− Dµ, (35)

σ̂ 2
= 〈β〉−1, (36)

where µ̂ and σ̂ 2 are the mean and the variance, respectively.
As stated above, the quantization error em for wireless link

m has been approximated as a liner distribution, making the
posterior distribution q (em) be the product of the truncated
Gaussian distribution and the liner function. According to the
paper [32], the first and the second moment for quantization
error are given as follows:

〈em〉 =
tmξ2 + hmξ1
tmξ1 + hm

, (37)

〈
e2m
〉
=

tmξ3 + hmξ2
tmξ1 + hm

, (38)

in which the ξi (i = 1, 2, 3) is calculated as follows:

ξi =

i∑
j=0

(
i
j

)
σ̂ jµ̂i−jm Pj, (39)

where g (γm) is a standard normal distribution pdf andG (γm)
is its distribution function and Pj can be calculated as :

P0 = 1

P1 = −
g (γm)− g (χm)
G (γm)− G (χm)

Pj = −
γ
j−1
m g (γm)− χ

j−1
m g (χm)

G (γm)− G (χm)
+ (j− 1)Pj−2,

(40)

in which

γm =
(eml − µ̂m)

σ̂

χm =
(emu − µ̂m)

σ̂
. (41)

Above all, the update for all the variables has been given.
Then, the DF-QVBI algorithm is summarized in algorithm 2:

Algorithm 2 The Algorithm of DF-QVBI
Require: D, p (e),t, kmax, τmax, δ.
Ensure:
1: Compute p (e) according to algorithm 1.
2: Initialize the relative parameters.
3: Compute 〈e〉(0) and

〈
eT e

〉(0) according to (11)-(14).
4: Set Iteration number τ = 1.
5: while τ < τmax and 1r > δ do
6: Update α(τ ) using (28)-(30).
7: Update β(τ ) using (31)-(33).
8: Update 〈e〉(τ ) and

〈
eT e

〉(τ ) using (37)-(41).
9: Update x(τ ) using (23),(24),(26).
10: Compute the reduction using 1τ =∥∥α(τ ) − α(τ−1)

∥∥
2

/∥∥α(τ )∥∥2;
11: Update the Iteration number τ = τ + 1.
12: end while
13: Output the current distribution mean of x as the estimate.

Coming to initializing the relative parameters, we set
a = b = c = d = 10−6 to promise a good result according
to the variational Bayesian inference algorithm. Additionally,
1τ = 104, δ = 10−4 and themaximum iteration τmax = 500.

V. NUMERICAL SIMULATIONS
In this section, we test our proposed DFL scheme by sim-
ulations. The DFL detecting area with size 14m × 14m are
divided into N = 196 point grids. To sense the signal
changes, M = 32 wireless links are uniformly deployed as
is shown in Fig.1 and K targets are randomly distributed at
the grid points. In order to model the signal changes caused
by target appearing, the saddle surface DFL model is applied.
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FIGURE 5. Average quantization error via different quantization schemes.

FIGURE 6. Average quantization error via different noise.

Additionally, in order to test the performance of the proposed
recovery algorithm, the most widely applied CS recovery
algorithms are utilized, such as Basis Pursuit (BP) [33], Greed
Matching Pursuit (GMP) [34], Orthogonal Matching Pursuit
(OMP) [35], Bayesian Compressive Sensing (BCS) [36].

In this paper, we design a discrete approach to approxi-
mate the measurement distribution instead of computing the
complex or incomputable pdf. As to test the quantization
scheme, the uniform quantization is utilized to be an compare.
Here the average quantization error for the location vector is
represented by AvgEq, which is given as follows:

AvgEq =
1

S · N

S∑
i=1

∥∥∥xi − x̂i
∥∥∥
1
, (42)

where S and i are the total simulation number and the current
simulation number. x and x̂ are the real location vector and the
estimated location vector with N dimensions, respectively.

At first, we test the quantization performance by compar-
ing the average quantization error via different quantization
schemes. As is shown in the Fig.5, the quantization error
decreased with the increasing of the bit number for both the
quantization schemes. In details, the proposed quantization
scheme always holds better quantization performance. And
we notice that as the bit number goes up to 7 bits, the error
is almost the same for both the quantization scheme. This
result is reasonable for that more quantization levels makes
the quantization more approximal to the real values.

Then, in order to test the robustness of the quantization
scheme, we compare the two schemes with K = 2 and
3bits by varying the SNR. We can see from the Fig.6 that

FIGURE 7. The illustration of the recovered location vectors by different
algorithms.

both schemes can obtain convergence when the SNR is
above 35dB. However, the proposed optimal quantization
scheme always performs better no matter how the noise
changes.

A. LOCALIZATION PERFORMANCE
In fact, our proposed algorithm is utilized to obtain localiza-
tion. So, the average localization error AvgEl is applied to
measure the localization performance, which is given as:

AvgEl =
S∑
i=1

K∑
k=1

1
K · S

√(
x ik − x̂

i
k

)2
+
(
yik − ŷ

i
k

)2
, (43)

where (x, y) and (̂x, ŷ) are the real and the estimated target
location, respectively. S and K are the total simulation num-
ber and the target number. In order to testify the localization
performance, we perform the following simulations.

First, we compare the different location vectors recovered
by the existing CS recovery algorithms. Set target number
K = 2 and M = 32 respectively, the result is shown in
the Fig.7. We can see that the recovered location vectors are
different, compressible or sparse, for the different recovery
theory. The GMP and OMP are absolutely sparse, making
the target locations are exactly the relative grid points of the
non-zero elements. And for BP, BCS andDF-QVBIwhich are
the compressible vector, only K largest elements are chosen
to determine the target location. So although the recovered
vectors by GMP and OMP may has the most similar style to
the original location vector, they may not obtain the better
localization performance.

Secondly, we illustrate the localization result of different
recovery algorithms in Fig.8. We can see that all most all
the algorithms can localize the targets, however, the OMP
algorithm has a lower recovery accuracy. We should note that
this figure is just the result of one simulation. So, we perform
more simulations to test the localization accuracy.

Thirdly, the robustness of the proposed algorithms are
tested via different noise. As is shown in Fig.9, the localiza-
tion error decreased as the SNR varies from 5dB to 40dB.
The OMP algorithm always has the highest localization error
while the newly proposed DF-QVBI holds the most lower
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FIGURE 8. The localization result by different algorithms.

FIGURE 9. The localization performance of different recovery algorithms
via different SNR.

FIGURE 10. The localization performance of different recovery algorithms
via different bit number.

localization error. The simulations shows that the DF-QVBI
has better performance to defence the noise.

Then in order to test the effect of the quantization length for
the localization, the length is varied from L = 21 to L = 28.
Fig.10 shows the localization error via different bit num-
ber and algorithms. With the increasing of the quantization
length, all algorithm can obtain lower quantization error. And
once the quantization length reaches L = 5, the localization
error obtains convergency. Compared with other algorithms,
our proposed DF-QVBI can achieve the best localization
accuracy.

At last, we both test the quantization performance and
the localization performance via different algorithms and
different bit number. As is shown in the Fig.11, on one hand,

FIGURE 11. The localization error via different algorithms and different
bit number.

the AvgEl for the optimal quantization scheme is always
lower than the uniform quantization scheme according to
the same recovery algorithm. On the other hand, we can see
that our proposed algorithm DF-QVBI has better localization
performance when compared with other recovery algorithms
using the same quantization scheme. All in all, our proposed
DF-QVBI always performs better when compared with other
algorithms.

VI. CONCLUSION
In this paper, We studied the CS-based DFL utilizing the
quantized information, extending the application of the DFL
especially in the energy and resource constrained scene.
Firstly, through exploiting the discrete property of CS theory,
we calculate the discrete measurement probability bypass
computing the complex or uncalculated measurement pdf.
Secondly, we design the optimal quantizer for each wireless
link according to the calculated measurement probability.
Thirdly, the quantization error pdf in each interval is approxi-
mated as a liner function and considered in the new CS-based
DFL model. Then, a novel algorithm DF-QVBI is proposed
to reconstruct the location vector. Finally, simulations show
that the proposed scheme outperforms the state-of-the-art
CS-based DFL algorithms.
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