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ABSTRACT This paper concerns structured regression problems wherein the issue of covariate shift is
addressed, which aims at reducing the discrepancy in training and test data distributions, using computation-
ally efficient and sparse optimization principles. In particular, the projection-free Frank–Wolfe optimization
algorithms are used to learn the importance weights and re-weight the training data in the context of covariate
shift. To determine the unbiased estimates of the weights, Kullback–Leibler importance estimation procedure
is used but its computational cost can be high since it is based on projected gradient optimization. Instead
of using the standard Frank–Wolfe algorithm, we adapt its variants and propose away-steps Frank–Wolfe
and pairwise Frank–Wolfe covariate shift algorithms to correct the covariate shift. The results highlight
the improved computational efficiency and sparsity achieved while learning the importance weights on
synthetic as well as benchmark datasets. Furthermore, importance weighted Sharma-Mittal twin Gaussian
process structured regression framework is proposed to incorporate the learned weights from covariate
shift algorithms, and its equations are derived for importance weighted derivatives and uncertainties. The
performance of proposed algorithms is evaluated on two applications of structured regression, namely, human
pose estimation and music mood estimation, where the benefit of handling covariate shift is demonstrated
with improved performance relative to the state-of-the-art techniques.

INDEX TERMS Covariate shift, Frank-Wolfe optimization, structured regression.

I. INTRODUCTION
Most machine learning methods make the assumption that
the training and test data are sampled independently and
identically (i.i.d.) from the same distribution. However, this
assumption is violated in many real-world applications due
to which the training data available for learning the model
is not an adequate representation of the test data on which
the learned model will be ultimately deployed. This concept
of covariate shift is defined as follows: ptr(x, y) and pte(x, y)
differ only via ptr(x, y) = p(y|x)ptr(x) and pte(x, y) =
p(y|x)pte(x), i.e. the conditional probabilities p(y|x) remain
unchanged [1]. A common technique for correcting this
covariate shift is to determine the importance weight w(x) =
pte(x)
ptr(x)

from the training and test data densities. However,
estimating these densities is known to be a hard problem as it
suffers from the curse of dimensionality and is unreliable for
high-dimensional input data [2]. It is thus desirable to learn

The associate editor coordinating the review of this manuscript and
approving it for publication was Tallha Akram.

the importance weight directly without explicitly estimating
these densities.

The problem of covariate shift is solved in an unsupervised
manner in this work using Frank-Wolfe (FW) algorithms for
structured regression framework. FW method is known to
efficiently solve constrained convex optimization problems
by considering linearization of the objective function (com-
pared to the quadratic solution in conventional gradient meth-
ods) with obtaining sparse solutions [3], [4]. Frank-Wolfe
covariate shift (FWCS) method was proposed in [5] to learn
the importance weights of the Kullback-Leibler Importance
Estimation Procedure (KLIEP) [2] by using the standard
FW algorithm. To achieve higher sparsity and computational
efficiency, we adapt the Away-steps and Pairwise variants of
the standard FW algorithm to learn the importance weights
in this work. Due to the use of Frank-Wolfe optimization
principles, the proposed covariate shift algorithms have a
low computational cost per iteration due to solving a linear
optimization sub-problem in each iteration. The convergence
rate of proposed algorithms is analyzed and an empirical
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study on benchmark applications is presented to demonstrate
the performance with statistical validity.

Structured prediction is an actively studied topic in the
machine intelligence community due to its prevalence in
real-world applications where the target variables are inter-
dependent. For example, in the field of computer vision,
3D human pose estimation [6], [7] is a challenging and impor-
tant task with several commercial applications (e.g.Microsoft
Kinect). Another example in the field of music information
retrieval is music mood estimation [8], [9] where the goal is
to estimate the 2D mood of music across valence and arousal
dimensions to automatically annotate audio clips in a given
music library and recommend relevant audio clips for specific
mood queries (e.g. Musicovery). In such cases, the output is
typically multi-dimensional and thus the goal of structured
regression is to learn the mapping f : Rdx → Rdy directly
from multivariate input features x ∈ Rdx to multivariate
target variables y ∈ Rdy and exploit the correlation between
multivariate data dimensions, rather than inaccurately esti-
mating each dimension of the target variable separately.
The structured regression framework is often formulated as
an optimization problem that is typically solved using sev-
eral well-known optimizers such as the BFGS quasi-Newton
optimizer.

CONTRIBUTIONS
The contributions of this work are three-fold:

a) The Away-steps and Pairwise variants of the standard
Frank-Wolfe algorithm are adapted for correcting the
covariate shift based on KLIEP to learn the impor-
tance weights and two algorithms, namely Away-steps
Frank-Wolfe Covariate Shift (AFWCS) and Pairwise
Frank-Wolfe Covariate Shift (PFWCS), are proposed.
The update equations for FWCS,AFWCS, and PFWCS
algorithms are also derived. The PFWCS algorithm
results in sparser iterates and computationally efficient
optimum solutions as demonstrated on synthetic aswell
as benchmark datasets.

b) After estimating the importance weights, we modify
the Sharma-Mittal Twin Gaussian Process (SMTGP)
structured regression formulation [10] to handle the
covariate shift. Its optimization equation, derivatives,
and the uncertainty parameter are updated to incor-
porate the weights of the training data resulting in
importance weighted SMTGP (IW-SMTGP).

c) The performance of the proposed covariate shift
algorithms and IW-SMTGP is demonstrated on two
benchmark applications of structured regression by
considering various covariate shift scenarios:
(i) Human Pose Estimation and (ii) Music Mood
Estimation.

The rest of this paper is organized as follows: Section II
reviews related work on covariate shift, advances in Frank-
Wolfe optimization methods and structured prediction.
Section III briefly describes the KLIEP method and its cor-
rection with the standard FW algorithm followed by the

proposed FW variant algorithms and their illustrative results.
In Section IV, the SMTGP framework is modified to handle
the learned weights for covariate shift. Experimental results
are presented in Section V using benchmark datasets under
various covariate shift scenarios. Finally, the conclusion is
given in Section VI with a summary of the contributions.

II. RELATED WORK
A comprehensive overview of dataset shift in classifica-
tion problems is presented in [1] illustrating the concept of
covariate shift along with its causes and applications. The
issue of covariate shift is clearly evident when the learned
model on training dataset generalizes poorly to novel data.
Several techniques are proposed in the literature to solve
this problem of covariate shift, e.g. importance estimation
based on Kullback-Leibler divergence (KLIEP) [2], least
squares importance fitting (LSIF) [11], relative unconstrained
LSIF (RuLSIF) [12], KLIEP with Gaussian mixture models
(GM-KLIEP) [13], etc.While LSIF and RuLSIF use a closed-
form solution that can be analytically obtained, its resulting
estimates can be biased [12]. These techniques are primarily
unsupervised as they require only the features to estimate the
importance weight without depending on the target. In this
work, KLIEP is used as the base technique for correcting
the covariate shift since its optimization problem is convex
resulting in a unique global solution, it has an unbiased
estimate, and it can be efficiently solved with FW algorithms.

The FW algorithm typically solves problems of the form
ming∈GF(g) where the function F : G → R is convex and
continuously differentiable and G is a closed and bounded
convex set equipped with inner product 〈·, ·〉. The standard
FW algorithm is shown in Algorithm 1 where starting with
an initial point g0 ∈ G, the algorithm finds the feasible
point st ∈ G that minimizes the linearization of F at the
current point gt . The next iterate gt+1 is then updated as a
convex combination of gt and st with a suitable step-size
ρt obtained via line-search. This algorithm converges at an
O(1/T ) rate where T is the number of iterations required to
achieve convergence of the objective function, and can even
achieve anO(1/T 2) rate when both the objective function and
the constraint set are strongly convex [14].

Algorithm 1 Standard Frank-Wolfe
Input: g0 ∈ G , Output: Optimum g

1: procedure StandardFW
2: for t = 0, 1, . . . do
3: if gt is a stationary point, then return gt
4: Compute st ← argmin

s∈G
〈s,∇F(gt )〉

5: Update: gt+1 = (1−ρt )gt+ρtst , for ρt ∈ [0, 1]
6: end for
7: end procedure

Jaggi et al. in [15] demonstrated several properties of the
FW algorithm and its variants to prove linear convergence
rates even under relaxed assumptions regarding convexity
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of the objective function. The away-steps variant of
FW algorithm was proposed in [16] motivated by remov-
ing the influence of ‘‘bad’’ visited vertices, and was shown
in [17] to converge linearly by relaxing the strongly convex
assumption on the objective function. FW algorithms were
applied for matrix factorizations in [3] and convergence was
shown using duality gap certificates (i.e. approximation qual-
ity). A stochastic version of the FW algorithm was proposed
in [18] for non-convex optimization problems with improved
convergence rates using variance reduction techniques. The
optimization problem for image and video co-localization
was formulated as a FW problem in [4] leading to increased
computational efficiency. In the context of structured predic-
tion, FW method was applied to structured support vector
machine (SSVM) in [19] with a block-coordinate setting
where the FW duality gap was shown to be equivalent to the
Lagrange duality gap of SVM algorithm. In the context of
covariate shift, the standard FW algorithm was used in [5]
to improve the performance of KLIEP and Kernel Mean
Matching (KMM) techniques for estimating the importance
weights. To achieve a computationally efficient and sparser
solution ofKLIEP, we extend this line of workwith the known
variants of FW algorithm.

In the case of discrete outputs (classification), significant
work is reported in the literature for structured prediction, e.g.
structural SVM [19], conditional random fields (CRF) [20],
Markov random field models [21], etc. Though it is possible
to convert regression problems to classification ones, it can
lead to loss of information since there is no clarity on the
number of classes to be used. Twin Gaussian process (TGP)
was first introduced in [22] to solve the structured regression
problem by minimizing the Kullback-Leibler (KL) diver-
gence (KLTGP) between the input and output marginal Gaus-
sian Processes (GP) and exploiting the dependencies between
multi-dimensional structured output. TGP was applied to
human pose estimation andwas shown to perform remarkably
well relative to conventional GP regression and K -nearest
neighbors regression techniques. Since the KL divergence
is not a symmetric measure, inverse KLTGP (IKLTGP) was
also proposed in [22] to measure the inverse KL divergence
between the output and inputmarginal GPs. A generic version
of TGP was proposed in [10] that measures the Sharma-
Mittal (SM) divergence between the marginal GPs. KL diver-
gence is a limiting case of the general SM divergence and
a closed-form solution of SM divergence for multivariate
Gaussian distributions was derived in [23]. Sharma-Mittal
TGP (SMTGP) was shown to outperform KLTGP for the
application of human pose estimation while having the same
quadratic computational complexity as that of KLTGP. In this
work, we thus modify the SMTGP framework to incorporate
the importance weights and handle various covariate shift
scenarios.

III. FRANK-WOLFE COVARIATE SHIFT ALGORITHMS
In this section, the KLIEP importance estimation proce-
dure is discussed briefly along with its adaptation by the

Frank-Wolfe concept, i.e. FWCS (Frank-Wolfe Covariate
Shift) proposed in [5]. We propose two new algorithms for
estimating weights due to covariate shift based on the variants
of the Frank-Wolfe concept, namely Away-steps (AFWCS)
and Pairwise (PFWCS) algorithms, and analyze their conver-
gence rates. The performance of these algorithms is demon-
strated on a synthetic dataset.

A. IMPORTANCE ESTIMATION PROCEDURE AND ITS
FRANK-WOLFE ADAPTATION
A popular covariate shift method, namely KLIEP (Kullback-
Leibler Importance Estimation Procedure) proposed in [2]
determines the importance estimate w(x) = p̂te(x)/ptr(x)
such that the Kullback-Leibler (KL) divergence from the true
density pte(x) to its estimate p̂te(x) is minimized without
explicitly computing the densities. The weights are param-
eterized as mixtures of Gaussians and modeled as (1), where
α = [α1, . . . , αnte ]

ᵀ are the mixing coefficients, κ(·) is the
kernel function, ntr and nte are the number of training and
testing data samples, respectively, and [·]ᵀ denotes vector
transpose. The training samples are re-weighted by w(xtr)
to reduce the discrepancy between the training and test data
distributions.

w(xtr) =
nte∑
l=1

αlκl(xtr) =
nte∑
l=1

αl exp

(
−‖xtr − xtel ‖

2

2σ 2

)
(1)

The optimization problem of KLIEP is given by (2), which
is convex resulting in a unique global solution obtained by
the projected gradient method [2]. When the number of test
samples nte is high (e.g. in the cases of large-scale data),
the authors propose to use only a subset of testing data as
Gaussian centers to reduce the computational cost of finding
the projections. Additionally, likelihood cross-validation can
be used for model selection of the optimum σ value, however,
this results in biased estimates under covariate shift. Thus,
to determine the σ parameter used in the kernel function of
KLIEP, the unbiased importance weighted variant of cross-
validation (IWCV) [24] is used.

max
α

F(α) =
nte∑
j=1

log

( nte∑
l=1

αlκl(xtej )

)

s.t.
ntr∑
i=1

nte∑
j=1

αjκj(xtri )= ntr; α1, α2, . . . αnte≥ 0 (2)

In [5], authors used the standard Frank-Wolfe algorithm
to solve the optimization problem of KLIEP resulting in
a sparser solution relative to the original KLIEP method.
The Frank-Wolfe algorithm (also known as the conditional
gradient or projection-free method) iteratively approximates
the objective function linearly by using linear programming
to choose the ascent direction. To use the FW algorithm for
KLIEP, the gradient g = [g1, . . . , gnte ]

ᵀ of the objective
function given by (3) is used to solve the linear maximiza-
tion problem. From the constraint on α, its upper bound
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β = [β1, . . . , βnte ]
ᵀ is given by (4), i.e. 0 ≤ αl ≤ βl , for

l = 1, . . . , nte.

gl =
∂F(α)
∂αl

=

nte∑
j=1

κl(xtej )∑nte
l′=1 αl′κl′ (x

te
j )

(3)

βl =
ntr∑ntr

i=1 κl(x
tr
i )

(4)

The pseudo-code of Frank-Wolfe Covariate Shift (FWCS)
for KLIEP is given in Algorithm 2. The training and test data
samples are given as input and the output is the importance
weight for each training sample. In line 2, the upper bound
of α is calculated and the iteration counter t is set to 0.
The current iterate αt can be expressed as an atomic decom-
position αt =

∑nte
l=1 µt (l)β

(l) such that
∑nte

l=1 µt (l) = 1
and µt (l) ≥ 0, where β(l)

= β � e(l) with e(l) as the
unit basis vector with all entries 0 except 1 at l, and �
denotes the element-wise (Hadamard) product. The active set
St = {l : µt (l) 6= 0} contains the non-zero atom locations
visited up to iteration t . In line 3, the mixing coefficients α,
atoms µ and the active set S are initialized, where iβ is the
index of the minimum element of the upper bound β. Note
that initializing µ and S is not explicitly required in the
FWCS algorithm; however, we use it here to relate this algo-
rithm with the proposed algorithms in the next sub-section.
Lines 4 − 12 are iterated till convergence of the objective
function F . At each iteration t , the gradient gt of F is calcu-
lated and the location lFWt is obtained as the largest coordinate
of the element-wise product of the gradient and the upper
bound. The towards (ascent) direction dFWt is obtained via the
FW linear maximization principle in line 6. The duality gap
computed by the inner product 〈gt ,dFWt 〉 associated with the
objective function F at the current iteration t can be utilized
as a measure of proximity to the optimum solution.

Using line search, the step-size ρt is determined to move
in the towards direction. Instead of using an exact line search
method (requiring iterative optimization that may converge
only asymptotically), an inexact line search is performed
using the classical Armijo rule. The pseudo-code of Armijo
(backtracking) line search to maximize the objective function
is given in Algorithm 3. The line search is iterated until the
Armijo condition stated in Theorem 1 (in Appendix A) is
satisfied to ensure a sufficient increase in the value of the
objective function F . This line search method is known to
have a global linear rate of convergence [25, Ch. 2]. The
mixing coefficients αt+1 are then updated along the towards
direction in line 8. The atoms µt+1 and the active set St+1
are updated in lines 9 and 10 respectively, as derived in
Appendix B.1. Finally, in line 13, the importance weights w
are estimated using the converged sequence of αt with (1).

B. PROPOSED FRANK-WOLFE COVARIATE SHIFT
ALGORITHMS
The sequence of iterates produced by the FW algorithm
converges to the optimal value linearly when the optimal
solution lies in the interior of the feasible set of a polytope.

Algorithm 2 Frank-Wolfe Covariate Shift (FWCS) for
KLIEP

Input: {xtri }
ntr
i=1, {x

te
j }

nte
j=1 , Output: w = {w(xtri )}

ntr
i=1

1: procedure FWCS
2: Compute upper bound β (4) and set t ← 0
3: Initialize: α0 ← 0, iβ ← argmin

i
(β)i,α0(iβ ) ←

β(iβ ),µ0← 0,µ0(iβ )← 1,S0← {iβ}
4: repeat
5: Compute gradient gt (3) F using previous αt
6: Find lFWt ← argmax

l
(gt � β)l ;

Compute dFWt ← β(lFWt )
− αt F Towards

direction
7: Find ρt ← argmax

ρ∈[0,1]
F(αt + ρdFWt ) F Line search

8: Update: αt+1← αt + ρtdFWt
9: Update: µt+1← (1− ρt )µt ;

µt+1(l
FW
t )← µt+1(l

FW
t )+ ρt

10: Update: St+1← St ∪ {lFWt } F Active set
11: t ← t + 1
12: until convergence of (2)
13: Compute weights w with αt (1)
14: end procedure

Algorithm 3 Armijo Line Search
Input: αt ,dt ,F, gt , ρmax , τ ∈ (0, 1), ξ ∈ (0, 1), Out-

put: ρt
1: procedure ArmijoLineSearch
2: Set ρ ← ρmax
3: while F(αt + ρdt ) < F(αt )+ τρ〈gt ,dt 〉 do
4: ρ ← ξρ

5: end while
6: ρt ← ρ

7: end procedure

Otherwise, the convergence rate is sub-linear due to zig-
zagging effects [15]. To guarantee linear convergence rate,
the variants of Frank-Wolfe algorithms, namely Away-
steps FW and Pairwise FW algorithms are proposed in the
literature [15], [16], [26], [27]. Jaggi et al. in [15] studied the
variants of FW algorithms in detail and derived global linear
convergence rate for all its variants.

Figure 1 illustrates the directions taken by the FW algo-
rithm and its variants from the current solution αt , where
α∗ is the optimum solution. In the standard FW algorithm,
the towards direction dFWt is always chosen during each
iteration by finding the location lFWt that maximizes the
potential of ascent; however, this can cause zig-zagging when
the optimal solution lies closer to the boundary of the poly-
tope and thus may need more iterations to converge [15].
To address this, away-steps can be taken by moving away
along dAFWt . The away direction is obtained by finding the
location lAFWt that minimizes the potential of descent. In the
pairwise FW algorithm, the idea is to move pairwise from the
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FIGURE 1. Illustration of Frank-Wolfe towards, away and pairwise
directions.

away direction to the towards direction in the same iteration
resulting in dPFWt = dFWt + dAFWt . The pairwise FW (PFW)
algorithm outperforms both standard FW as well as away-
step FW (AFW) algorithms, especially in the case where
sparser solutions can be found [15]. We modify the FWCS
algorithm to consider the away as well as pairwise directions
for handling the covariate shift and propose AFWCS and
PFWCS algorithms to estimate the importance weights w.

1) AWAY-STEPS FRANK-WOLFE COVARIATE SHIFT
The pseudo-code of Away-steps FWCS (AFWCS) is given in
Algorithm 4. The working is similar to Algorithm 2 with the
following modifications. Besides finding the towards direc-
tion dFWt in line 6, the away direction dAFWt is also found in
line 7; however, the search for the location lAFWt (obtained
as the smallest coordinate of the element-wise product of
the gradient and the upper bound) is over only the typically
smaller active set St , which makes it fundamentally easier
than finding lFWt . The maximum step-size ρmax (derived in
Appendix B.2) given in line 8 guarantees the feasibility of the
solution in the away direction. In line 9, if the duality gap in
the towards direction is higher compared to that of the away
direction, then the towards direction is chosen; otherwise,
the away direction is chosen. In the case of towards direction,
the working is identical to that of the FWCS algorithm.
However, in the case of away direction, the line search is
conducted over the range [0, ρmax] to ensure feasibility in
line 15 and the mixing coefficients αt+1 are updated along
dAFWt in line 16 followed by updating the atoms µt+1 in
line 17. In line 18, if the step-size obtained via the line search
is same as the maximum step-size ρmax, this is referred to as
a drop step, as it fully removes the location lAFWt from the
current active set St by setting its atom to zero. The update
equations for atoms µt+1 and active set St+1 are derived in
Appendix B.2.

2) PAIRWISE FRANK-WOLFE COVARIATE SHIFT
The pseudo-code of Pairwise FWCS (PFWCS) is given
in Algorithm 5. The working is similar to Algorithm 4
with the following modifications. Instead of choosing the
towards or away direction, the pairwise direction is always
used at each iteration t in line 9. That is, the solution moves
away from the away location lAFWt and also gets closer to
the towards location lFWt in the same iteration. The pairwise

Algorithm 4 Away-Steps Frank-Wolfe Covariate Shift
(AFWCS) for KLIEP

Input: {xtri }
ntr
i=1, {x

te
j }

nte
j=1 , Output: w = {w(xtri )}

ntr
i=1

1: procedure AFWCS
2: Compute upper bound β (4) and set t ← 0
3: Initialize: α0 ← 0, iβ ← argmin

i
(β)i,α0(iβ ) ←

β(iβ ),µ0← 0,µ0(iβ )← 1,S0← {iβ}
4: repeat
5: Compute gradient gt (3) F using previous αt
6: Find lFWt ← argmax

l
(gt � β)l ;

Compute dFWt ← β(lFWt )
− αt F Towards

direction
7: Find lAFWt ← argmin

l∈St
(gt � β)l ;

Compute dAFWt ← αt − β
(lAFWt )

F Away
direction

8: Compute ρmax←
µt (l

AFW
t )

1−µt (l
AFW
t )

FMax. step of
away direction

9: if 〈gt ,dFWt 〉 ≥ 〈gt ,d
AFW
t 〉 then F Choose

direction
10: Find ρt ← argmax

ρ∈[0,1]
F(αt + ρdFWt ) F Towards

step
11: Update: αt+1← αt + ρtdFWt
12: Update: µt+1← (1− ρt )µt ;

µt+1(l
FW
t )← µt+1(l

FW
t )+ ρt

13: Update: St+1← St ∪ {lFWt }
14: else
15: Find ρt ← argmax

ρ∈[0,ρmax]
F(αt + ρdAFWt ) F Away

step
16: Update: αt+1← αt + ρtdAFWt
17: Update: µt+1← (1+ ρt )µt ;

µt+1(l
AFW
t )← µt+1(l

AFW
t )− ρt

18: if (ρt == ρmax) do
St+1 ← St \ {lAFWt }, µt+1(l

AFW
t ) ← 0

F Drop step
19: end if
20: t ← t + 1
21: until convergence of (2)
22: Compute weights w with αt (1)
23: end procedure

direction can be obtained as a superposition of the towards
and away steps:

dPFWt = β(lFWt )
− αt︸ ︷︷ ︸

(towards step)

+αt − β
(lAFWt )︸ ︷︷ ︸

(away step)

∴ dPFWt = β(lFWt )
− β(lAFWt )

= dFWt + dAFWt (5)

Thus, the pairwise direction dPFWt is given by (5). In line 8,
the maximum step-size ρmax (derived in Appendix B.3)
ensures the feasibility of the current solution using line search
in line 10. Due to the pairwise direction, only the atoms
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Algorithm5 Pairwise Frank-Wolfe Covariate Shift (PFWCS)
for KLIEP

. . . as in Algorithm 4, except replacing lines 8 to 19 by:
8: Compute ρmax← µt (l

AFW
t ) FMax. step of away

direction
9: Compute dPFWt ← dFWt + dAFWt F Pairwise

direction
10: Find ρt ← argmax

ρ∈[0,ρmax]
F(αt + ρdPFWt ) F Line search

11: Update: αt+1← αt + ρtdPFWt
12: Update: µt+1← µt ;

µt+1(l
FW
t )← µt (l

FW
t )+ ρt ;

µt+1(l
AFW
t )← µt (l

AFW
t )− ρt

13: Update: St+1← St ∪ {l : µt+1(l) 6= 0}
14: if (ρt == ρmax) do FModify the active set

if (lFWt ∈ St ) do
St+1 ← St+1 \ {lAFWt }, µt+1(l

AFW
t ) ← 0

F Drop step
else

St+1← St+1 ∪ {lFWt } \ {lAFWt } F Swap
step

related to lFWt and lAFWt are updated in line 12, leaving
other atoms unchanged (derived in Appendix B.3). Note that,
in contrast, the FWCS and AFWCS algorithms updates all
active atoms in each iteration. The active set is updated to
contain all locations with non-zero atom weights in line 13.
In line 14, we can have either a drop step or a swap step
depending on certain conditions outlined as follows. An iter-
ation t is a

(i) drop step, if ρt = ρmax < 1 and |St+1| = |St | − 1,
(ii) swap step, if ρt = ρmax < 1 and |St+1| = |St |, and
(iii) good step, if it is neither a drop nor a swap step.

The covariate shift algorithms can take good/drop/swap
steps as follows:

(i) FWCS algorithm can have only good steps, since
ρmax = 1 at each iteration (refer Appendix B.1).

(ii) AFWCS algorithm can have good steps as well as drop
steps (when the away direction is chosen), but swap
steps can never occur:

– good step, if ρmax = 1 (i.e. dt = dFWt ), or ρmax <

1 (i.e. dt = dAFWt ) and ρt < ρmax,
– drop step, if ρmax < 1 (i.e. dt = dAFWt ) and ρt =
ρmax (the atom at location lAFWt is set to 0 and this
location is removed from the active set).

(iii) PFWCS algorithm can have good steps as well as
drop or swap steps:

– good step, if ρmax = 1, or ρmax < 1 and ρt <
ρmax,

– drop step, if ρt = ρmax < 1 and lFWt ∈ St (the
atom at location lAFWt is set to 0 and this location
is removed from the active set),

– swap step, if ρt = ρmax < 1 and lFWt /∈ St (the
location lAFWt is swapped with lFWt in the active
set).

C. CONVERGENCE RATE ANALYSIS
Let ht = F(αt ) − F(α∗) be the sub-optimality error for an
optimal solution α∗ and let k(t) be the number of good steps
taken till iteration t . The sub-optimality error ht decreases
geometrically at a linear convergence rate ht+1 ≤ (1 − ν)ht ,
where ν is a constant depending on the curvature constant
CF (related to the second-order derivative of F) and the
geometric strong convexity constant µF [26]. The number of
good steps are bounded by k(t) = t for FWCS, k(t) ≥ t/2
for AFWCS and k(t) ≥ t/(3|A|! + 1) for PFWCS, where
A ⊆ Rd is the finite set of atoms. This results in the global
linear convergence rate of ht ≤ h0 exp(−νk(t)) for all three
covariate shift algorithms, leading to the computational cost
of O(1/t). Also, the number of drop steps in both AFWCS
and PFWCS algorithms is bounded by t/2 and the maximum
number of swap steps between any two good steps in PFWCS
algorithm is bounded by 3|A|!. These results are proved
in [15] and are shown to hold true even when the objective
function is not globally strongly convex.

A significant advantage of FWCS, AFWCS and PFWCS
algorithms is that all test data can be used as Gaussian
centers to determine the optimal solution since only one
Gaussian is activated per iteration (via the FW linear max-
imization/minimization principle) resulting in efficient and
sparser solutions. On the contrary, in the original KLIEP
algorithm, a randomly chosen subset of test data is used as
Gaussian centers (e.g. 100 test data points), which may not be
appropriate to model the discrepancy in distributions between
the training and test data [5]. Further, the proposed AFWCS
and PFWCS algorithms produce sparser mixing coefficients
compared to KLIEP and FWCS algorithms as illustrated
in Section III-D.

D. ILLUSTRATIVE RESULTS OF COVARIATE SHIFT
ALGORITHMS
The performance of proposed algorithms is demonstrated on
synthetic data generated from y = −2 x3+ 3 sinc(x)+ 1+ ε,
where ε ∼ N (0, 0.12), similar to [5]. 500 training points
are generated from N (0.5, 0.52) and 300 testing points are
generated from N (0, 0.32) to simulate the covariate shift.
Figure 2(a), 2(b), 2(c) and 2(d) show the results of KLIEP
as well as all three Frank-Wolfe covariate shift algorithms
where we observe that they obtain similar weights w; how-
ever, the mixing coefficients α of FW algorithms vary sig-
nificantly as seen in Figure 2(e) (the scale on y-axis is dif-
ferent to highlight the range of values in each case). Out of
300 test points, the original KLIEP algorithm produces 180
non-sparse mixing coefficients α, whereas FWCS, AFWCS
and PFWCS algorithms produces 73, 18 and 8 non-sparse
mixing coefficients, respectively. The pairwise covariate shift
(PFWCS) algorithm results in the most sparse solution.
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FIGURE 2. Performance of Frank-Wolfe covariate shift algorithms on a synthetic dataset. (a) KLIEP weights, (b) FWCS weights, (c) AFWCS weights,
(d) PFWCS weights, (e) Sparsity of α, (F) Duality gap 〈gt ,dt 〉, (g) Run-time to determine w.

Figure 2(f) shows the decrease in duality gap 〈gt ,dt 〉
with respect to the number of iterations t for all the three
algorithms, where we observe that the PFWCS algorithm
converges relatively faster and its duality gap is the smallest.
Figure 2(g) shows the run-time in log-scale with varying
sampling size (ntr = nte) of the synthetic data. In this case,
it is observed that the Frank-Wolfe algorithms are consis-
tently faster than the original KLIEP algorithm and that the
PFWCS algorithm converges faster than other algorithms.
These algorithms are further evaluated on the benchmark
datasets in Section V.

IV. ADAPTING COVARIATE SHIFT FOR STRUCTURED
REGRESSION
The conventional Gaussian Process Regression (GPR) tech-
nique [28] considers a linear model of the form given by (6),
where ε(d) ∼ N (0, σ 2), f (d)(x) = ψ (d)ᵀζ (x) with zero-mean
Gaussian prior ψ (d)

∼ N (0p, 6p) and ζ (x) function maps
the dx-dimensional input vector x to a p-dimensional feature
space. However, it does not capture the dependencies that
may exist in the multi-dimensional (structured) output, and
hence the Twin Gaussian Process (TGP) framework can be
used that explicitly handles the correlation between the output
dimensions.

y(d) = f (d)(x)+ ε(d) (6)

KLTGP was proposed in [22] to capture the corre-
lations among both multi-dimensional inputs as well as
multi-dimensional outputs by minimizing the KL divergence
between the input and output GPs. A generic version of
TGP known as Sharma-Mittal TGP (SMTGP) using the

generalized Sharma-Mittal divergence measure [10] having
two parameters (θ, γ ) was shown to outperform KLTGP on
several benchmark datasets. In this work, we modify SMTGP
to incorporate the importance weights learned with the algo-
rithms in Section III for handling the covariate shift. A brief
description of SMTGP is given followed by its modification
for covariate shift adaptation.

A. SHARMA-MITTAL TWIN GAUSSIAN PROCESS
The joint distributions of input and output data are given by
p(X, x) = NX(0,KX∪x) and p(Y, y) = NY(0,KY∪y), where
the joint kernel (N + 1) × (N + 1) matrices are defined
in (7) with x ∈ Rdx as the new test point corresponding to the
unknown (multi-dimensional) output y ∈ Rdy . The training
set comprises of X ∈ R(N×dx ) and Y ∈ R(N×dy) matrices
with N (= ntr) data samples {xtri , y

tr
i }
ntr
i=1.

KX∪x =

[
KX kxX
kxᵀX kX(x, x)

]
, KY∪y =

[
KY kyY
kyᵀY kY(y, y)

]
(7)

KX is a N×N kernel matrix consisting of similarity elements
(KX)ij between xtri and x

tr
j training input points, k

x
X is a N ×1

column vector having elements (kxX)i = KX(xtri , x), and
kX(x, x) = KX(x, x) is a scalar. Similar definitions hold for
KY, k

y
Y, and kY(y, y). Using Gaussian-RBF kernel functions,

the similarity kernels for input and output are given by (8),
where ρx and ρy correspond to the kernel bandwidths, λx and
λy are the regularization parameters to avoid over-fitting, and
δ is the Kronecker delta function with δij = 1 if i = j, and 0
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otherwise.

(KX)ij = exp

(
−
‖xtri − xtrj ‖

2

2ρ2x

)
+ λxδij

(KY)ij = exp

(
−
‖ytri − ytrj ‖

2

2ρ2y

)
+ λyδij (8)

The SMTGP optimization function Lθ,γ (p(X, x), p(Y, y))
computed with the Sharma-Mittal divergence is given by (9),
and its predicted output ŷ is given by (10). Here, kθXY =
(1−θ )kX(x, x)+θkY(y, y) is a scalar, k

xy
XY = (1−θ )kxX+θk

y
Y

is a N × 1 column vector and KXY = (1− θ )KX + θKY is a
N×N matrix. Similar to KLTGP, the SMTGP problem can be
solved using a second-order BFGS quasi-Newton optimizer
with line search for optimal step size selection and has a
computational complexity of O(N 2) at test time, where N
is the number of data points. This is because K−1X , K−1Y and
K−1XY are pre-computed and stored as they depend only on the
training data.

Lθ,γ =
1

γ − 1

[(
|KX∪x|

1−θ
|KY∪y|

θ

|(1− θ )KX∪x + θKY∪y|

) (1−γ )
2(1−θ )

− 1
]
(9)

ŷ = argmin
y

1
γ − 1

[(
kY(y, y)− kyᵀY K−1Y kyY

) θ (1−γ )
2(1−θ )

×

(
kθXY − kxyᵀXYK−1XYk

xy
XY

)−(1−γ )
2(1−θ )

]
(10)

The determinants of (7) are given by |KX∪x| = |KX| ×

ηx and |KY∪y| = |KY| × ηy, where ηx and ηy are the
Schur complements of the joint kernels (refer Appendix C)
and can be interpreted as the ratio by which the uncertainty
measure (variance) of Gaussian Process changes with respect
to the new data point x. Both ηx and ηy are upper bounded
by kX(x, x) and kY(y, y) respectively, and they decrease as
the new data point x gets closer to the training data X.
The uncertainty parameter φ(x, y) of SMTGP is given by

φ(x, y) =
η1−θx ηθy
ηxy

, where ηxy = kθXY − kxyᵀXYK−1XYk
xy
XY, and

it does not depend on the γ parameter. It was shown in [10]
that the structured prediction with SMTGP maximizes this
parameter resulting in a probabilistic interpretation of the
SMTGP output and has a negative correlation with the error
in structured prediction; this insight is missing in the original
KLTGP framework.

B. IMPORTANCE WEIGHTED SMTGP FOR COVARIATE
SHIFT
Under covariate shift, the GP regression model is given
by (11), which is equivalent to re-weighting each input and
output point by w

1
2 (xtri ) [29], [30].

w
1
2 (x)y(d) = w

1
2 (x)f (d)(x)+ ε(d) (11)

Thus, the weighted kernels are given by (12) where W =

diag{w(xtr1 ), . . . ,w(x
tr
ntr )} is a diagonal matrix consisting of

the importance weights w obtained by the Frank-Wolfe
covariate shift algorithms proposed in Section III.

KXW = W
1
2KXW

1
2 , kxXW

=W
1
2 kxX

KYW = W
1
2KYW

1
2 , kyYW

=W
1
2 kyY (12)

Further, in the importanceweighted SMTGP (IW-SMTGP)
framework, we have:

kxyXYW
= (1− θ )kxXW

+ θkyYW
=W

1
2 kxyXY

KXYW = (1− θ )KXW + θKYW =W
1
2KXYW

1
2 (13)

The optimization function of SMTGP ismodified to handle
the covariate shift with weighted kernels and the correspond-
ing IW-SMTGP predicted output ŷw is given by (14).

ŷw = argmin
y

1
γ − 1

[(
kY(y, y)− kyᵀYW

K−1YW
kyYW

) θ (1−γ )
2(1−θ)

×

(
kθXY − kxyᵀXYW

K−1XYW
kxyXYW

)−(1−γ )
2(1−θ )

]
(14)

Using chain rule and re-arrangement, the derivative of the
optimization function for IW-SMTGP with respect to the d th

dimension of structured output is given by (15). For the spe-

cific choice of Gaussian-RBF kernel, ∂kY(y,y)
∂y(d)

= 0 and
∂kyY
∂y(d)

is given by (16). SinceW is a diagonal matrix, computing its
inverseW−1 is trivial and thus, the computational complexity
of IW-SMTGP is same as that of SMTGP.

∂Lθ,γ
∂y(d)

=
−θ

2(1− θ )

[(
kY(y, y)− kyᵀYW

K−1YW
kyYW

) θ (1−γ )
2(1−θ )−1

×

(
−2kyᵀYW

K−1YW
W

1
2
∂kyY
∂y(d)

)
×

(
kθXY − kxyᵀXYW

K−1XYW
kxyXYW

)−(1−γ )
2(1−θ )

]
+

1
2(1− θ )

[(
kY(y, y)− kyᵀYW

K−1YW
kyYW

) θ (1−γ )
2(1−θ )

×

(
kθXY − kxyᵀXYW

K−1XYW
kxyXYW

)−(1−γ )
2(1−θ) −1

×

(
−2kxyᵀXYW

K−1XYW
θW

1
2
∂kyY
∂y(d)

)]
(15)

∂kyY
∂y(d)

=



−1
ρ2y

(y(d)tr1 − yd )kY(y1, y)

−1
ρ2y

(y(d)tr2 − yd )kY(y2, y)

...
−1
ρ2y

(y(d)trN − yd )kY(yN , y)


(16)

The uncertainty parameter of SMTGP is also updated
to include the importance weights under covariate shift.
Using weighted kernels, the importance weighted uncertainty

VOLUME 7, 2019 73811



S. V. Chapaneri, D. J. Jayaswal: Covariate Shift Adaptation for Structured Regression With Frank–Wolfe Algorithms

φW(x, y) of IW-SMTGP is derived as given by (17).

φW(x, y) =
η1−θxW ηθyW

ηxyW

ηxW = kX(x, x)− kxᵀXW
K−1XW

kxXW

ηyW = kY(y, y)− kyᵀYW
K−1YW

kyYW

ηxyW = kθXY − kxyᵀXYW
K−1XYW

kxyXYW
(17)

Note that φW(x, y) ≤
|(1−θ )KXW+θKYW |

|KXW |
1−θ |KYW |

θ due to the following

inequality as an agreement between the joint distributions
p(X, x) and p(Y, y):

|KXW |
1−θ
|KYW |

θη1−θxW ηθyW

|(1− θ )KXW + θKYW |ηxyW
≤ 1

Equality is achieved only when the two joint distributions are
identical, which justifies maximizing φW(x, y).

V. EXPERIMENTAL RESULTS
The proposed Frank-Wolfe covariate shift algorithms are
applied to two benchmark applications of structured regres-
sion: human pose estimation and music mood estimation.
These two applications are chosen because they both exhibit
structured output whose multiple dimensions are correlated
with each other and this property can be nicely exploited by
SMTGP and IW-SMTGP frameworks. Human pose estima-
tion is a challenging and active research topic in computer
vision whereas music mood estimation is actively pursued
by the MIR (music information retrieval) community. Esti-
mating multi-dimensional pose from a single RGB image is
known to be an ill-posed problem, sincemultiple articulations
of body limbs may result in the same projection of pose and
the system needs to be invariant to various factors such as
clothing texture and shape, skin color, background scenes,
lighting, etc. Music mood prediction and recommendation is
a popular service in several commercial apps (e.g. Musicov-
ery, Spotify, Wynk, etc.) that suggests an automated playlist
based on the current mood query of the user. Improving the
mood estimation of a particular audio clip and enhanced
recommendations are among the major focus areas of the
digital music industry.

The performance for these applications is evaluated using
the following methods: the conventional Gaussian Process
regression (GPR) [28] (note that the prediction is obtained
separately for each output dimension in GPR), KLTGP [22],
its importance weighted variant IW-KLTGP [29],
SMTGP [10] and the proposed IW-SMTGP. RuLSIF [12]
is used in IW-KLTGP [29] to determine the importance
weights (with biased estimates), but in this work, we use the
proposed Frank-Wolfe covariate shift algorithms to learn the
KLIEP importance weights for IW-KLTGP to provide a fair
comparison with IW-SMTGP.

A. COVARIATE SHIFT IN HUMAN POSE ESTIMATION
The HumanEva dataset [31] consists of synchronized multi-
view video and motion capture data with Histogram of

TABLE 1. Comparison of methods for estimating weights of the
HumanEva dataset.

Oriented Gradients (HoG) extracted features (x ∈ R270) of
three subjects (S1, S2, S3) performing the following actions:
boxing, gesturing, jogging, throwing/catching and walking.
The output multi-dimensional pose (y ∈ R60) is encoded
by (20) 3D joint markers using torsoDistal as the root, cap-
tured via three color cameras (C1,C2,C3), with a total of
9, 630 image-pose frames for each camera. The following
five covariate shift scenarios [29] are considered for human
pose estimation:

a) Selection Bias (C1): All three subjects are selected for
training and only one subject is selected during testing
with camera 1 data being used.

b) Selection Bias (C1−3): Similar to above but with all
three camera data used (3× 4, 815 = 14, 445 training
and testing frames).

c) Subject Transfer (C1): The test subject is not included
during the training phase.

d) Motion Transfer (C1−3): The motions used for training
are boxing, gesturing and jogging, whereas the motions
used for testing are throwing/catching and walking.

e) Camera Transfer: Camera 1 data (C1) is used for train-
ing and Camera 2 data (C2) is used for testing.

Table 1 shows the comparison of methods used to esti-
mate the weights w for two covariate shift scenarios. In both
cases, the PFWCS algorithm results in the lowest number of
non-sparse atoms of α. Importance weighted cross-validation
(IWCV) [24] is used to determine the optimal σ parameter
of (1). The training run-time in seconds is measured over 50
trials and the average values (with standard deviation) is noted
for all four methods to estimate the importance weights w.
PFWCS algorithm is faster than other methods since, in every
iteration, it updates only two atoms related to the towards
and away directions as opposed to updating all atoms in
the FWCS algorithm. For further experiments, the PFWCS
algorithm is used to compute theweights for all covariate shift
scenarios of the HumanEva dataset.

We use randomly chosen 50% disjoint training and testing
sets. In cases of fewer training samples (e.g. Figure 3), we ran-
domly sub-sample ntr from the full training set and repeat the
sub-sampling procedure 10 times to avoid the sampling bias
and report the average resulting joint errors. The joint error
for each pose (in mm) is measured as the average Euclidean
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FIGURE 3. Performance on HumanEva dataset as a function of the number of training samples; results are averaged over all motions for each subject.
The IW-SMTGP results are statistically significant as per paired t-test at 5% significance level. (a) Sel. Bias (C1), S1. (b) Sel. Bias (C1), S2. (c) Sel. Bias
(C1), S3. (d) Sel. Bias (C1−3),S1 (e) Sel. Bias (C1−3),S2. (f) Sel. Bias (C1−3),S3. (g) Subject Transfer S1. (h) Subject Transfer S2. (i) Subject Transfer S3. (j)
Motion Transfer S1. (k) Motion Transfer S2. (l) Motion Transfer S3. (m) Camera Transfer S1,C2. (n) Camera Transfer S2,C2. (o) Camera Transfer S3,C2.

distance given by (18), where ŷ is the estimated pose vector
and y∗ is the true pose vector. For TGPs, the original param-
eter setting of [22]: λx = 10−3, λy = 10−3, 2ρ2x = 5 and
2ρ2y = 5 × 105 is used. Further, for SMTGP, the model
parameters are set to θ = 0.99 and γ = 0.99 as stated
in [10].

Errorpose(ŷ, y∗) =
1
20

20∑
i=1

‖ŷ(i) − y∗(i)‖ (18)

Table 2 shows the performance of joint error as well as the
uncertainties of SMTGP and IW-SMTGP using the full train-
ing set for various covariate shift scenarios. Both SMTGP

and IW-SMTGP use the same parameter setting; however,
the weights w learned by the PFWCS algorithm results in
better estimation of the structured pose leading to reduced
joint regression error with IW-SMTGP. Figure 3 compares the
performance of baseline and existing methods and shows the
average pose prediction error as a function of the number of
training samples (averaged over all motions and 10 runs). The
graphs show that the importance weighted methods improve
the performance relative to the non-weighted counterparts.
Also, IW-SMTGP results in a statistically significant perfor-
mance using a paired t-test at 5% significance level relative
to other methods.
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TABLE 2. Performance on the HumanEva dataset averaged across all
motions.

B. COVARIATE SHIFT IN MUSIC MOOD ESTIMATION
For music mood estimation, two benchmark datasets are
used: AMG (All Music Guide) [32] and DEAM (Database
for Emotion Analysis of Music) [33]. The AMG (DEAM)
dataset contains crowdsourced annotations of 1608 (1802)
audio clips of duration 30 seconds (45 seconds) from a variety
ofWestern popular music genres (Rock, Pop, Electronic, etc.)
annotated by 665 (195) users, along 2D valence and arousal
(VA) dimensions with values in the range [−1, 1]. Since
not all annotators annotated every audio clip and they may
not be equally reliable, truth discovery analysis [34] of this
crowdsourced data is required to determine the estimated con-
sensus. Instead of taking the average VA value for each audio
clip from the crowdsourced annotated data, the EM algorithm
proposed in [35] is used to consider the reliability of each
annotator and compute the estimated consensus ground truth
y ∈ R2. This estimated consensus algorithm also tackles the
long-tail phenomenon commonly observed in crowdsourced
data by using the upper bound of the confidence interval of
χ2 distribution.

For each audio clip, standard acoustic features are
extracted using MIRToolbox [36] across four categories
(dynamics, spectral, timbral and tonal) resulting in a
70-dimensional feature vector per frame of 50 ms duration
with 50% overlap. For an effective prototypical feature rep-
resentation, the variational Bayesian inference algorithm is
used to compute the Bayesian Acoustic Gaussian Mixture
Model (BAGMM) posterior probability feature vector x ∈
RKopt for each audio clip, where Kopt = 117 [35]. The
advantage of Bayesian inference is that the number of latent
audio topicsK can be determined from the data automatically,
thus avoiding the problems of singularity and over/under-
fitting with ad-hoc values of K [9].
The t-SNE (t-distributed Stochastic Neighbor Embedding)

[37] scatterplot of these two datasets projected onto three
dimensions is shown in Figure 4, where it can be observed that

FIGURE 4. t-SNE scatterplot of music mood datasets.

the distributions of AMG and DEAM projected features are
different from each other with some overlap between the two.
Thus, covariate shift in the form of subject transfer [38] can be
observed, since the two music mood datasets were developed
independently with different selections of audio clips from
various sources. The following two scenarios for music mood
estimation are evaluated:

a) Subject Transfer: AMG dataset is used for the training
phase and DEAM dataset is used for the testing phase.

b) Subject Transfer: DEAM dataset is used for the train-
ing phase and AMG dataset is used for the testing
phase.

The comparison of methods for estimating weightsw using
importance weighted cross-validation for these two covariate
shift scenarios is given in Table 3. The PFWCS algorithm
results in sparser α and is faster than other methods, where the
average run-time in seconds (with standard deviation) over 50
trials is noted. The regression performance for music mood
estimation is measured using three criteria: the coefficient of
determination R2 (higher is better), root mean square error
RMSE (lower is better) given by (19) and the uncertainty
parameter (φ(x, y) or φW(x, y)) individually for the valence
and arousal dimensions. Here, ŷ is the predicted mood dimen-
sion, y∗ is the estimated consensus obtained from the crowd-
sourced data and ȳ is the corresponding average value. For
TGPs, the parameters were cross-validated with a grid search
over suitable ranges [10], [22] and the parameters resulting
in highest R2 were obtained empirically: λx = 10−4, λy =
10−4, 2ρ2x = 100, 2ρ2y = 1, θ = 0.7 and γ = 0.99.

R2 = 1−

∑
i(ŷ

(i)
− y∗(i))2∑

i(ŷ(i) − ȳ)2

RMSE =

√
1
nte

∑
i

(ŷ(i) − y∗(i))2 (19)

Table 4 shows the performance of SMTGP and IW-
SMTGP using all audio data samples from both datasets
under the two scenarios of covariate shift. We observe the
significance of importance weights learned by the PFWCS
algorithm due to which IW-SMTGP outperforms SMTGP
with the same parameter settings. However, valence estima-
tion is still a challenging problem for music mood estimation.
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TABLE 3. Comparison of methods for estimating weights of music mood
datasets.

TABLE 4. Performance evaluation for music mood estimation.

Figure 5 shows the average R2 values as a function of the
number of training samples using GPR, KLTGP, IW-KLTGP,
SMTGP, and the proposed IW-SMTGP. In this case too, sub-
sampling of the training set is done 10 times to avoid the
sampling bias and the average results are reported. It can
be observed that SMTGP performs better than KLTGP and
GPR, and IW-SMTGP results in a statistically significant
performance using a paired t-test at 5% significance level
relative to other methods.

VI. CONCLUSION
In this work, we proposed computationally efficient Away-
steps Frank-Wolfe and Pairwise Frank-Wolfe Covariate Shift
algorithms to correct the covariate shift of an importance
weight estimation procedure (KLIEP) in an unsupervised
manner resulting in sparser solutions. Due to the use of
linear optimization in these algorithms, the time complexity
per iteration is significantly smaller than the original pro-
jected gradient method of KLIEP. The proposed AFWCS and
PFWCS algorithms perform better than the FWCS algorithm
for determining the weights of the training data. The PFWCS
algorithm achieves the most sparse solution with high com-
putational efficiency. The convergence rate analysis showed
that all proposed algorithms achieve a linear convergence
rate.We alsomodified the Sharma-Mittal Twin Gaussian Pro-
cess structured regression framework to handle the covariate
shift and derived its importance weighted formulation hav-
ing quadratic computational complexity (similar to KLTGP).
Experimental evaluation validated the performance of pro-
posedwork on two applications of structured regression using
benchmark datasets. In both cases of human pose and music

FIGURE 5. Performance on music mood datasets as a function of the
number of training samples. The IW-SMTGP results are statistically
significant as per paired t-test at 5% significance level. (a) Arousal (Train:
AMG, Test: DEAM), (b) Valence (Train: AMG, Test: DEAM), (c) Arousal
(Train: DEAM, Test: AMG), (d) Valence (Train: DEAM, Test: AMG).

mood estimation, the proposed approaches outperform the
state-of-the-art techniques to eliminate the bias occurring due
to covariate shift in various scenarios. For future work, it will
be interesting to explore Frank-Wolfe optimization princi-
ples for covariate shift techniques in structured classification
applications.

APPENDIX
A. ARMIJO LINE SEARCH CONDITION
The Armijo condition stated in Theorem 1 ensures that the
objective function increases by a significant amount at each
iteration t using inexact line search.
Theorem 1: Suppose F is a continuous and differentiable

function, its gradient gt is Lipschitz continuous with Lipschitz
constant C, τ ∈ (0, 1) and dt is the towards direction at the
current solution αt . Then, the Armijo condition given by (20)
is satisfied for all ρ ∈ [0, ρ∗], where ρ∗ = 2(τ−1)〈gt ,dt 〉

C‖dt‖22
.

F(αt + ρdt ) ≥ F(αt )+ τρ〈gt ,dt 〉 (20)
Proof: Using Taylor’s series, we have

F(αt + ρdt )

≥ F(αt )+ ρ〈gt ,dt 〉 +
1
2
Cρ2 ‖dt‖22

≥ F(αt )+ ρ〈gt ,dt 〉 +
1
2
Cρ

2(τ − 1)〈gt ,dt 〉

C ‖dt‖22
‖dt‖22

= F(αt )+ ρ〈gt ,dt 〉 + ρ(τ − 1)〈gt ,dt 〉

= F(αt )+ τρ〈gt ,dt 〉

B. DERIVATION OF UPDATES FOR FW ALGORITHMS
The update equations of atoms µt+1 and active set St+1 for
FWCS, AFWCS, and PFWCS algorithms are derived here
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and the maximum step-size ρmax is determined to guarantee
feasibility of the solution.

1) FWCS ALGORITHM
For any ρt , we have

αt + ρtdFWt
= αt + ρt (β(lFWt )

− αt )

= (1−ρt )αt+ρtβ(lFWt )
= (1−ρt )

nte∑
l=1

µt (l)β
(l)
+ρtβ

(lFWt )

=

∑
l 6=lFWt

(1−ρt )µt (l)β
(l)
+(1−ρt )µt (l

FW
t )β(lFWt )

+ρtβ
(lFWt )

=

∑
l 6=lFWt

(1− ρt )µt (l)β
(l)
+ {(1− ρt )µt (l

FW
t )+ ρt }β(lFWt )

=

nte∑
l=1

µ̂
FW
t (l)β(l) (21)

To ensure feasibility of the solution, we need
∑nte

l=1 µ̂
FW
t (l) =

1 and µ̂FW
t (l) ≥ 0. From (21), it follows that

nte∑
l=1

µ̂
FW
t (l) =

∑
l 6=lFWt

(1− ρt )µt (l)+ (1− ρt )µt (l
FW
t )+ ρt

= (1− ρt )
nte∑
l=1

µt (l)+ ρt = 1. ∵
nte∑
l=1

µt (l) = 1

For l = 1, . . . , nte, µ̂
FW
t (l) ≥ 0 ∀ρt ∈ [0, 1], thus ρmax = 1.

The update equations of µt+1 and St+1 for FWCS algorithm
are thus given by (22 – 23).

µt+1(l) =

{
(1− ρt )µt (l) if l 6= lFWt ,

(1− ρt )µt (l)+ ρt if l = lFWt .
(22)

St+1 =


{lFWt } if ρt = 1,
St if ρt < 1 & lFWt ∈ St ,
St ∪ {lFWt } if ρt < 1 & lFWt ∈ St .

(23)

2) AFWCS ALGORITHM
If the chosen direction is dt = dFWt (towards), then ρmax = 1.
But if dt = dAFWt (away), then ρmax = 1 may produce an
infeasible solution. For any ρt , we have

αt + ρtdAFWt

= αt + ρt (αt − β(lAFWt ))

= (1+ ρt )αt − ρtβ(lFWt )

= (1+ ρt )
nte∑
l=1

µt (l)β
(l)
− ρtβ

(lFWt )

=

∑
l 6=lAFWt

(1+ ρt )µt (l)β
(l)
+ (1+ ρt )µt (l

AFW
t )β(lAFWt )

− ρtβ
(lAFWt )

=

∑
l 6=lAFWt

(1+ρt )µt (l)β
(l)
+{(1+ρt )µt (l

AFW
t )− ρt }β(lAFWt )

=

nte∑
l=1

µ̂
AFW
t (l)β(l) (24)

To ensure feasibility of the solution, we need
∑nte

l=1 µ̂
AFW
t

(l) = 1 and µ̂AFW
t (l) ≥ 0. From (24), it follows that

nte∑
l=1

µ̂
AFW
t (l) =

∑
l 6=lAFWt

(1+ ρt )µt (l)+ (1+ ρt )µt (l
AFW
t )−ρt

= (1+ρt )
nte∑
l=1

µt (l)−ρt = 1. ∵
nte∑
l=1

µt (l) = 1

For l = 1, . . . , nte, µ̂
AFW
t (l) ≥ 0 ∀ρt ∈ [0, 1], and

µ̂
AFW
t (lAFWt ) ≥ 0 for 0 ≤ ρt ≤ ρmax, where the maximum

step-size ρmax is given by (25).

(1+ ρmax)µt (l
AFW
t )− ρmax = 0 ∴ ρmax =

µt (l
AFW
t )

1− µt (l
AFW
t )

(25)

Note that ρmax is well-defined since µt (l
AFW
t ) cannot be 1.

Suppose that µt (l
AFW
t ) = 1, then it implies αt = β(lAFWt ),

i.e. dAFWt = 0, thus 〈gt ,dFWt 〉 ≥ 0 = 〈gt ,dAFWt 〉, which
is a contradiction as it will lead to a choice of the towards
step. When ρt = ρmax and ρmax < 1 (or equivalently,
µt (l

AFW
t ) < 1

2 ), this condition is known as a drop step since it
cannot guarantee a decrease of the duality gap. The location
lAFWt is removed from the active set St for the drop step. The
update equations ofµt+1 and St+1 for AFWCS algorithm are
thus given by (26 – 27).

µt+1(l) =

{
(1+ ρt )µt (l) if l 6= lAFWt ,

(1+ ρt )µt (l)− ρt if l = lAFWt .
(26)

St+1 =


St \ {lAFWt } if ρt = ρmax(drop step),
St if ρt < ρmax & lFWt ∈ St ,
St ∪ {lFWt } if ρt < ρmax & lFWt /∈ St .

(27)

3) PFWCS ALGORITHM
For any ρt , we have

αt + ρtdPFWt

= αt + ρt (β(lFWt )
− β(lAFWt ))

=

nte∑
l=1

µt (l)β
(l)
+ ρt (β(lFWt )

− β(lAFWt ))

=

∑
l 6=lFWt ,l 6=lAFWt

µt (l)β
(l)
+µt (l

FW
t )β(lFWt )

+µt (l
AFW
t )β(lAFWt )

+ ρt (β(lFWt )
− β(lAFWt ))

=

∑
l 6=lFWt ,l 6=lAFWt

µt (l)β
(l)
+ {µt (l

FW
t )+ ρt }β(lFWt )

+{µt (l
AFW
t )− ρt }β(lAFWt )

=

nte∑
l=1

µ̂
PFW
t (l)β(l) (28)
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To ensure feasibility of the solution, we need
∑nte

l=1 µ̂
PFW
t

(l) = 1 and µ̂PFW
t (l) ≥ 0. From (28), it follows that

nte∑
l=1

µ̂
PFW
t (l)

=

∑
l 6=lFWt
l 6=lAFWt

µt (l)+ {µt (l
FW
t )+ ρt } + {µt (l

AFW
t )− ρt }

=

nte∑
l=1

µt (l)+ ρt − ρt = 1. ∵
nte∑
l=1

µt (l) = 1

For l = 1, . . . , nte, µ̂
PFW
t (l) ≥ 0 ∀ρt ∈ [0, 1], and

µ̂
PFW
t (lAFWt ) ≥ 0 for 0 ≤ ρt ≤ ρmax, where the maximum

step-size ρmax is given by (29). The update equations of µt+1
and St+1 for PFWCS algorithm are thus given by (30 – 31).

µt (l
AFW
t )− ρmax = 0 ∴ ρmax = µt (l

AFW
t ) (29)

µt+1(l)

=


µt (l) if l 6= lFWt &l 6= lAFWt ,

µt (l)+ ρt if l = lFWt ,

µt (l)− ρt if l = lAFWt .

(30)

St+1

=



St \ {lAFWt } if ρt = ρmax & lFWt ∈ St ,
(drop step)

St ∪ {lFWt } \ {lAFWt } if ρt = ρmax& lFWt /∈ St ,
(swap step)

St if ρt < ρmax& lFWt ∈ St ,
St ∪ {lFWt } if ρt < ρmax& lFWt /∈ St .

(31)

C. JOINT KERNEL DECOMPOSITION
Using Aitken block-diagonalization formula [39], the joint
kernel matrix KX∪x can be decomposed as (32), since it is
square and non-singular. Here, ηx = kX(x, x) − kxᵀX K−1X kxX
is the Schur complement of KX∪x with respect to KX.
Thus, the determinant of the joint kernel matrix is given by
|KX∪x| = |KX| × ηx, since ηx is a scalar and the determi-
nant of unit triangular matrices is one. Similarly, |KY∪y| =

|KY| × ηy, where ηy = kY(y, y) − kyᵀY K−1Y kyY is the Schur
complement of the joint kernel matrix KY∪y with respect
to KY.

KX∪x =

[
I 0

kxᵀX K−1X I

] [
KX 0
0 ηx

] [
I K−1X kxX
0 I

]
(32)
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