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ABSTRACT Iris, fingerprint, and three-dimensional face recognition technologies used in mobile devices
face obstacles owing to price and size restrictions by additional cameras, lighting, and sensors. As an
alternative, two-dimensional face recognition based on the built-in visible-light camera of mobile devices
has been widely used. However, face recognition performance is greatly influenced by the factors, such as
facial expression, illumination, and pose changes. Considering these limitations, researchers have studied
palmprint, touchless fingerprint, and finger-knuckle-print recognition using the built-in visible light camera.
However, these techniques reduce user convenience because of the difficulty in positioning a palm or fingers
on the camera. To consider these issues, we propose a biometric system based on a finger-wrinkle image
acquired by the visible-light camera of a smartphone. A deep residual network is used to address the
degradation of recognition performance caused by misalignment and illumination variation occurring during
image acquisition. Owing to the unavailability of the finger-wrinkle open database obtained by smartphone
camera, we built the Dongguk finger-wrinkle database, including the images from 33 people. The results
show that the recognition performance by our method exceeds in those of conventional methods.

INDEX TERMS Biometrics, finger-wrinkle recognition, smartphone camera, deep residual network.

I. INTRODUCTION
Our modern lives have become intertwined with mobile
devices and the internet. Most of our personal information
is stored on internet devices, used for various purposes,
from accessing bank accounts to printing government-issued
documents. Unfortunately, using a password to log into ser-
vices exposes our assets and information to a higher risk
of theft than security systems based on biometric technol-
ogy. To avoid forgetting passwords, users often use auto-
complete or write down the password in another location,
thereby weakening security. Biometrics completely avoids
such problems, because the information is always encoded
in the user’s body. Biometrics has gained substantial popu-
larity in industrial and academic research, because it ensures
both user convenience and stability. Recent mobile devices
have implemented biometric features, such as face, fin-
gerprint, iris, vein, and voice recognition. However, these
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methods generally increase both the size and price of devices
because of additional illumination, sensors, special cameras,
etc. Methods, such as face, touchless fingerprint, finger-
knuckle, and palmprint recognition using the device’s built-
in camera, have been introduced to address these problems.
However, these methods not only lower user convenience,
they also suffer from lower recognition performance because
of factors such as pose changes and misalignments. Recently
released smartphones have implemented fingerprint recog-
nition [2] or palm-vein recognition [1], both employing
separate near-infrared light illumination and a camera with
ultrasonic sensors embedded in the display. Because of the
cost, size, and inconvenience of extant biometric smartphone
technologies, this study proposes a finger-wrinkle recogni-
tion method based on a convolutional neural network (CNN)
that accounts for user convenience and addresses the limita-
tions of biometric methods used in mobile devices.

This paper is organized as follows. Section II com-
pares and analyzes the advantages and disadvantages of
various existing hand-texture-based recognition methods.
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Section III describes the contributions of this study, and
Section IV details the proposed method. Section V describes
the experimental results and analysis, and Section VI con-
cludes the study.

II. RELATED WORKS
Conventional hand texture-based biometrics have been used
for fingerprint recognition, finger-knuckle-print recognition
using the inherent skin patterns of the outer surface around the
phalangeal joints, palmprint recognition using the details of
raised areas (ridges) and branches (bifurcations) on a human
palm, and finger-wrinkle recognition. The most studied and
commercially used method is fingerprint recognition [3], [4].
AlShehri et al. analyzed the characteristics of fingerprints
acquired by different sensors, where cross-sensor matching
is a challenging problem [5]. Engelsma et al. proposed the
design and manufacturing of high-fidelity universal 3 dimen-
sional fingerprint targets, which can be imaged by various fin-
gerprint sensing methods, such as capacitive, contact optical,
and contactless optical sensing [6].

Zhang et al. [8] conducted a study on finger-knuckle-
print recognition. The researchers used directional infor-
mation extracted from finger-knuckle images via Gabor
filtering as local features. Additionally, the Fourier trans-
form coefficients were used as global features. The recog-
nition accuracy was improved using the obtained local and
global information. A study by [9] proposed a method to
encode local patterns using the Riesz transform to extract
local-image features. The study proposed two coding schema
based on the Riesz transform, including RCode2, which
required much less time during the feature extraction stage,
lending itself to be used in real-time systems. Researchers
have also studied several finger-knuckle-print matching
methods to address problems experienced by users with
difficult skin conditions [10]–[13]. A study by [10] con-
firmed the plausibility of finger-knuckle-print recognition
based on band-limited phase-only correlation (BLPOC).
Kusanagi et al. used a BLPOC-based local block-matching
method for the finger-knuckle-print pattern of metacarpopha-
langeal joints [13]. Kumar et al. obtained contour regions
from finger-knuckle images and extracted their geometrical
features. They reduced finger misalignment via detection
along the valley points. They applied linear discriminant
analysis, principal component analysis (PCA), and indepen-
dent component analysis (ICA) to the finger-knuckle region
of interest (ROI). They then fused the calculated matching
scores to perform recognition [14].

Researchers have also actively studied palmprint recogni-
tion [15]–[25]. Connie et al. segmented a palmprint image in
the background using a preprocessing module that automat-
ically aligned the palmprint image and extracted the central
ROI of the palm for recognition. Then, they compared PCA,
Fisher discriminant analysis, and ICA, three different sub-
space projection methods. They also used wavelet transform
to analyze the palmprint images in a multi-resolution multi-
frequency representation [19]. Jain et al. used a fixed-length

minutia descriptor, MinutiaCode, to capture the unique infor-
mation around each minutia and used an alignment-based
minutia-matching algorithm to perform palmprint recogni-
tion [20]. Priya et al. proposed a high resolution palmprint
authenticating system based on level 3 pore feature [21].
A study by [22] proposed the palmprint recognition method
based on binary wavelet transform and local binary pat-
tern (LBP). Gumaei et al. proposed a method of palmprint
recognition using visible and multispectral sensor images
based on histogram of oriented gradients (HOG) with a
steerable Gaussian filter (SGF) [23]. Kumar et al. pro-
posed an approach for matching contactless palmprint images
using accurate deformation alignment and matching [24].
Cheng et al. proposed a robust L2 sparse representation with
tensor-based extreme learning machine (RL2SR-TELM)
algorithm by using an adaptive image level fusion strategy
to accomplish the multispectral palmprint recognition [25].

However, to apply the above-described fingerprint recogni-
tion methods on a mobile device, a separate fingerprint image
acquisition sensor based on capacitance or ultrasonics must
be attached. This increases the size and price of the mobile
device. Otherwise, we could consider the above-described
finger-knuckle-print or palmprint recognition methods for
use with the built-in visible light camera of a mobile device.
However, the difficulty of positioning the palm or the outside
of the finger on the frontal viewing camera of the mobile
device reduces user convenience. For the palm, it is incon-
venient to continuously raise a hand to the frontal view-
ing camera to acquire a palm image. Likewise, for acquir-
ing a finger-knuckle image, it is inconvenient to turn one’s
hand to make the outer surface visible to the frontal view-
ing camera. When acquiring an image of the user’s face,
the frontal viewing camera is mainly used for image acqui-
sition, because the user cannot not see the screen when
positioning his or her palm or hand. Therefore, researchers
have investigated finger-wrinkle (i.e., inner knuckle-print)
recognition, which boasts higher user convenience and can
acquire an image of the user’s finger even if the hand is
not turned but only slightly raised to the frontal viewing
camera. Previously, Liu et al. combined Gabor filtering and
the derivative line detection method to extract line features.
They then used a cross-correlation-based method to match
binary line images [7]. However, their study did not use
images acquired from a mobile device, and there was almost
no misalignment between the acquired images, because they
used finger guide bars, which are difficult to apply with
mobile devices. Moreover, accuracy improvement is limited
when using handcrafted features.

Although it does not belong to the category of hand texture-
based biometrics, in previous research [44], authors proposed
a novel descriptor estimator-based incipient fault estimation
method designed for Lipschitz nonlinear descriptor systems
with process disturbances and measurement output noises.
By using this estimator, incipient sensor faults, abrupt actua-
tor faults, andmeasurement noises could be estimated asymp-
totically. Although it does not belong to the category of
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TABLE 1. Comparisons of proposed and previous studies on hand texture-based biometrics.

hand texture-based biometrics, either, Kim et al. proposed
multimodal biometric method based on CNN by combining
both the information of finger-vein and finger shape [45].

Considering the problems of previous hand texture-based
biometrics, we propose a biometric system based on the
finger-wrinkle image of a user acquired with a smart-
phone’s built-in visible-light camera. A deep residual net-
work (ResNet) is used to address degradation in recognition
performance caused by misalignment and illumination varia-
tion occurring during image acquisition. Table 1 summarizes
the advantages and disadvantages of previous and proposed
methods.

III. CONTRIBUTIONS
Our research is novel in the following four ways:

- This study is the first to perform finger-wrinkle recogni-
tion using the smartphone’s built-in visible-light camera.

- To solve the misalignment issue between the enrolled
image and the recognized image, a guide window is
used in the smartphone display, which displays the
image obtained from the camera. The guide window
was designed to both maximize user convenience and
minimize misalignment. We also compared the user

convenience of the fingerprint, finger-knuckle-print,
palmprint, and finger-wrinkle recognition methods with
the method proposed in this study, and we experi-
mentally compared the degrees of misalignment in the
images acquired with these four methods.

- A deep ResNet-based recognition method addresses
misalignment, illumination variation, blur, and degra-
dation of recognition performance caused by rotation
between the enrolled and recognized images, despite the
use of a guide window. Traditional ResNet is modified
by replacing its last AVG pooling layer with an addi-
tional convolutional layer.

- We made the self-collected Dongguk mobile finger-
wrinkle database (DMFW-DB1) and trained ResNet
model available to other researchers through [28] for fair
comparisons.

IV. PROPOSED METHOD
A. OVERVIEW OF THE PROPOSED METHOD
The flowchart of the proposed method is shown in Figure 1.
As shown in Figure 2, the user’s four-finger image is
acquired using the guide window displayed on the smart-
phone display and the smartphone frontal viewing camera
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FIGURE 1. Flowchart of the proposed method.

FIGURE 2. Three examples of a guide window for image acquisition.

(step (1) of Figure 1). Next, to extract the finger-wrinkle
region, the designated hexagon ROI is extracted (step (1)
of Figure 1). The extracted ROI is rotated and resized at a
specific angle, based on the ROI center, to obtain the final
ROI for the CNN input (step (3) of Figure 1). Next, the CNN
uses this ROI to find the features of the finger-wrinkle
(step (4) of Figure 1). Next, the Euclidean distance between
the features extracted from the input image and the pre-
registered image features is calculated (step (5) of Figure 1).
Finally, recognition is achieved based on this distance to
determine whether the input image is genuine or an imposter
(step (6) of Figure 1). Here, genuine matching indicates that
the input image and the pre-enrolled image are of the same
class, and imposter matching indicates that the input image
and the pre-enrolled image are of different classes.

B. IMAGE ACQUISITION AND PREPROCESSING
First, the user’s four-finger image is captured with the smart-
phone’s frontal viewing camera to acquire finger-wrinkle
images. When capturing using a face camera, hand covers
the display, making it difficult to confirm whether the screen
is well focused or if the wrinkle part to be recognized is
properly aligned. Moreover, it is difficult to maintain a suit-
able distance between the camera and the hand. Therefore,
the frontal viewing camera is used. To reduce the hand-pose
variation of each shot, the screen displays a rough hand-
guide window, as shown in Figure 2. Based on the images

FIGURE 3. Preprocessing of extracted finger-wrinkle ROI: (a) captured
finger-wrinkle image, (b) finger-wrinkle ROI, and (c) normalization by
in-plane rotation.

acquired using guide windows of various shapes, we found
that the guide window in the shape of (a) in Figure 2 enabled
images to be captured easiest. Because the angle of the finger
when acquiring the image is also important, we empirically
determined the most natural and comfortable angle when the
user positions a hand. To extract the finger-wrinkle region
from the captured image in Figure 3(a), the ROI of the
hexagon is cropped, as shown in Figure 3(b), with the six
points previously given in the guide window. To insert a
square image, as shown in Figure 3(c), as the CNN input
(see Equation (1)), pixels

(
xorg, yorg

)
, belonging to the ROI,

are in-plane rotated with respect to
(
Cx,Cy

)
.The empty pix-

els of image
(
xnew, ynew

)
, subject to this rotation, are filled

via bi-linear interpolation.
Here, the background region is reduced and the rotation

angle (θ = 40◦) is used to include as much of the ROI as
possible in the CNN input image. To use the image as input
to the CNN, it is resized to 224 × 224 pixels via bi-linear
interpolation.(
xnew
ynew

)
=

(
cos θ − sin θ
sin θ cos θ

)(
xorg − Cx
yorg − Cy

)
+

(
Cx
Cy

)
(
xorg, yorg

)
∈ R (Region of interest) (1)

C. PREPROCESSING USING RETINEX FILTERING FOR
ILLUMINATION COMPENSATION
In this study, to test the robustness of the DMFW-DB1
database for illuminance variation in various environments,
photographs are captured five times at different indoor illu-
minances for each class. This illumination variation can
decrease recognition accuracy. This study, therefore, uses
a Retinex filtering algorithm to reduce the illumination
variation of the input images. The red-green-blue (RGB)
ROI image obtained in Figure 3(c) is converted into a
hue-saturation-value (HSV) color space. Among the three
channels, only the value channel (illumination) is subject
to Retinex filtering, as shown in Equations (2) to (5).
In Equation (2), the intensity of captured image, (L (x, y)),
is modeled by multiplying the illumination, Ic(x, y), and the
ratio of reflection, (r(x, y)) [29]. Equation (2) can be obtained
from Equation (1).

L (x, y) = Ic (x, y)× r (x, y) (2)

logr(x, y) = logL(x, y)− logIc(x, y) (3)
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FIGURE 4. Examples of Retinex images obtained with various sigma
values of Gaussian filter: (a) original image; Retinex images obtained
using sigma values of (b) 10, (c) 15, and (d) 20.

The illumination (Ic(x, y)) is assumed to be the convolution
of the Gaussian filtering (F(x, y)) and the image, (L(x, y)),
as shown in Equations (3) and (4) [30].

logr(x, y) = logL(x, y)− log[F (x, y) ∗ L(x, y)] (4)

F (x, y) =
1

2πσ 2 e
−
x2+y2

2σ2 (5)

where F (x, y) and log r(x, y) respectively indicate the Gaus-
sian filter using various sigma values (σ = 10, 15, and 20)
and the result image by Retinex filtering. The finger-wrinkle
ROI images subject to Retinex filtering are normalized,
as shown in Figure 4.

D. CNN-BASED FINGER-WRINKLE RECOGNITION
This study is based on the pre-trained model of
ResNet-101 [27], with the exception of the output node and
replacement of last average (AVG) pooling layer by addi-
tional convolutional layer. This model is pre-trained using
the ImageNet database, comprising millions of images, used
in the ImageNet Large-scale Visual Recognition Competition
(ILSVRC) [51]. Thus, image preprocessing includes resizing
the training and testing images to 224 × 224 pixels, the size
of ImageNet data input. This pre-trained model was used
to fine-tune the training data of DMFW-DB1 built into this
study. To perform finger-wrinkle recognition, the number of
classes included in the training data is set to the number of
CNN output nodes. Figure 5 and Table 2 show the structure
of the deep ResNet model used in this study. The size of
the feature map is typically calculated based on (output
width (or height) = (input width (or height) – filter width
(or height) + (# of padding) × 2) / (# of stride) + 1) [31].
For example, in Table 2, the feature-map width (or height)
output in the first convolution layer (Conv1) is 112
((224 – 7 + 3 × 2) / 2 + 1). Batch normalization [32]
and rectified linear units (ReLU) are used to optimize the
model. During batch normalization after each convolution
layer, rather than obtaining the mean and variance of all
training data, the values are obtained in mini-batch units and
normalized. Batch normalization can address the problems
of a vanishing/exploding gradient or dropping to the local
minimum occurring when the learning rate is increased in the
deep CNN. It can also reduce the internal covariance shift that
makes the training process unstable and stabilize the overall
system to accelerate training speed. The activation function
is important to the training process. Although a sigmoid
function [33] is commonly used, ReLU is used to alleviate the

FIGURE 5. CNN structure used in our research.

vanishing-gradient problem [34] in backpropagation during
training. Additionally, the learning convergence rate becomes
faster than the non-linear activation function when using the
ReLU function. ReLU can be expressed as follows [33], [35].

y = max(0, x) (6)

where x and y are the input and output values of the
ReLU function, respectively.

As shown in Table 2, a bottleneck structure is used in
Conv3–Conv5 of ResNet [27]. A convolution layer compris-
ing filters of 1×1, 3×3, and 1×1 is referred to as a bottleneck
design. The first 1 × 1 convolution is intended to reduce the
dimension, after which the 3 × 3 convolution is performed,
and then the last 1 × 1 convolution serves to expand the
dimension again. This bottleneck structure can reduce com-
putational complexity compared to structures in which two
3× 3 convolution layers are directly connected. The shortcut
of ResNet addresses the problem of poor training caused
by deepening layers, and it alleviates signal attenuation by
transferring the input to the output in the residual block. After
Equation (6) is processed, the backpropagation process is
performed to modify the weight using the stochastic gradient
descent (SGD) method, which compares the obtained output
with the ground-truth value to optimize the weight of the
learning model. The first calculation is the loss between the
current result and the ground-truth. Based on how precisely
it is calculated, it is possible to determine if they converge
so that the training can complete. The basic multinomial
logistic loss method is used for calculation here, and softmax
is used to calculate the predicted output. Thus, better numer-
ical stability can be maintained in the slope calculation. The
following is the equation of the softmax function [35].

σ (z)j =
ezj∑K
k=1 e

zk
for j = 1 . . . ,K (7)
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TABLE 2. Architecture of CNN used in our research. Note: N* indicates that N pixels are included as padding in the left, right, up, and down positions of
an input image or feature map. 2/1** means 2 at the 1st iteration and 1 from the 2nd iteration.

In case that the array of output neurons is set to z, the prob-
ability of the neurons belonging to the jth class is obtained by
dividing the value of the jth class by the sum of the values
of all classes. Using these results as input, the multinomial
logistic loss [52] is calculated (Equation (8)). The following
is the equation for calculating loss.

E = −
1
N

∑N

n=1
log(p̂n, ln) (8)

P̂n : predicted probability
ln : label ln ∈ [0, 1, 2, . . . ,K − 1]
In Equation (8), K is the number of classes. As explained

at the beginning of this section, we modified the traditional
ResNet model [27] by replacing its last 7 × 7 AVG pooling
layer with an additional convolutional layer of 7× 7× 2048
(Conv6 in Table 2 and Figure 5) and performed the fine-
tuning of this revised ResNet model with our finger-wrinkle
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training database. The reasons why we used 7 × 7 × 2048
convolutional layer are as follows. Compared to the conven-
tional biometrics such as fingerprint, iris, and vein recog-
nition, the classification of our finger-wrinkle images has
the problems of high inter-class similarity due to low image
quality caused by illumination variation, misalignment, blur,
and in-plane rotation. Therefore, more features without loss
should be extracted from the CNN for the classification. The
traditional ResNet [27] obtains the featuremap of 1×1×2048
from the previous feature map of 7 × 7 × 2048 by using
AVG pooling layer including one filter of 7 × 7, and this
can lose useful features. To address this issue, the additional
convolution layer (Conv6 in Table 2 and Figure 5) including
2048 filters of 7 × 7 × 2048 in our revised ResNet model
generates the feature map of 1× 1× 2048 from the previous
feature map of 7× 7× 2048, and this can maintain the useful
features without loss.Moreover, the filter coefficients of AVG
pooling layer in traditional ResNet model are fixed ones.
However, the optimal filter coefficients of the Conv6 in our
revised ResNet model can be obtained by training.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL DATABASE AND ENVIRONMENT
Because there is no smartphone-acquired finger-wrinkle open
database, we built DMFW-DB1 to support the experiments of
this study. The images of this database were captured using
the frontal-viewing camera (8 mega-pixels (2, 160 × 3, 840
pixels), 30 fps, auto-mode) of an LG V20 smartphone based
on the guide window shown in Figure 2(a) [36]. To make
the database robust at several illuminances, images of both
hands of 33 people (male and female) were captured in five
different indoor environments, each for 2 ∼ 3 s. A total of
33,359 images were extracted from the captured videos by
frame, creating 66 classes with approximately 500 images
per class. To use 2-fold cross validation (a testing-error
measurement method) in supervised learning, the classes
of this database were divided into two groups for train-
ing and testing. Thus, in the 1st-fold validation, 34 classes
(class 1–class 34) of images (subset 1 in Table 3) were
used in training, and the remaining 2nd-fold 32 classes
(class 35–class 66) of images (subset 2 in Table 3) were used
in testing. In contrast, in the 2nd-fold validation, 32 classes
(class 35–class 66) of images (subset 2 in Table 3) were
used in training, and 34 classes (class 1–class 34) of images
(subset 1 in Table 3) were used in testing. Figure 6 shows an
example of DMFW-DB1. Figures 6(a) and (b) show five trial
images taken at different illuminances of the same person’s
left and right hands, and Figure 6(c) shows five trial images
taken at different illuminances of another person’s left hand.

This study used the rough guide window shown
in Figure 2(a), which is not strict. As shown in Figure 6,
there are many misalignments caused by translation and
in-plane rotation in the input images, even when the same
hand is captured several times. There are also various
illumination variations. Therefore, we acquired and tested
data, including various environmental change factors, to

FIGURE 6. Examples of DMFW-DB1 images. Different trials of the same
person: (a) image of left hand; (b) image of right hand; and (c) image of
another person’s left hand.

TABLE 3. Description of DMFW-DB1 for 2-fold cross validation.

measure recognition performance in an unconstrained real
environment rather than the constrained environment of a
laboratory.

As described above, a mean accuracy in this study was
measured using two-fold cross validation, which exchanges
the images used in training and testing. Because different
classes are used during training and testing, the output node
values of ResNet cannot be used for recognition. There-
fore, we performed distance matching for the 2,048 features
of the input and enrolled images extracted from the
AVG pool of Table 2 rather than the final output value
of the CNN. Then, we measured recognition performance.
Table 3 shows a description of the database used in this
research.

In this research, the CNN training and testing was per-
formed using a system with Intel R© CoreTM i7-7700 central
processing unit (CPU) @ 3.60 GHz (4 cores) (Intel, Santa
Clara, CA, U.S.) with 24-GB memory and an NVIDIA
GeForce GTX 1070 (1920 CUDA cores, NVIDIA Corpora-
tion, Santa Clara, CA, U.S.) graphics card having a memory
of 8 GB [37]. The training and testing algorithms were imple-
mented usingWindows Caffe (version 1) [38] with Microsoft
Visual Studio 2013 [39], and was compute on a unified device
architecture (CUDA) (version 8.0) [40] with the CUDA deep
neural network library (version 5.1) [41].
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FIGURE 7. Examples of loss and accuracy curves with training data of
2-fold cross validation: (a) is from the 1st fold validation; (b) is from the
2nd fold validation.

B. TRAINING OF CNN
An SGD optimizer was used to optimize CNN training [42].
In the SGD optimizer, optimization is performed using a
step policy that multiplies the gamma value for each fixed
iteration so that the training accuracy and loss converge
quickly. Training, a function of SGD, was performed in
mini-batch size units. The number of iterations is calculated
as ‘‘number of training data / mini-batch size,’’ defined as
1 epoch. In this experiment, learning rate [32] is 0.0005,
momentum is 0.9, and gamma is 0.1, whereas the mini-
batch size [32] in ResNet-50 is 16, 6 in ResNet-101, 3 in
ResNet-152, and 20 in visual geometry group (VGG)-16,
with a maximum epoch of 10. Because fine-tuning was per-
formed using the existing pre-trained weights, we used small
learning-rate values. After seven epochs, the learning rate
is reduced. One epoch indicates that training is performed
as many times as the total number of iterations. Therefore,
the total number of trainings is equal to the number of itera-
tions × the number of epochs. To calculate the training loss,
the softmax [35] function was used to calculate multinomial
logistic loss, as in Equation (8).

Figure 7 shows the training accuracy and loss of the
ResNet-101 model proposed in this study. The x-axis repre-
sents the number of epochs, and the y-axis shows the training

TABLE 4. Comparison of error rates of finger-wrinkle recognition
according to the input of gray and color spaces.

accuracy and loss in each epoch. As shown in Figure 7, when
training is performed, the accuracy converges to 100 and the
loss converges to 0. This shows that the training of the CNN
model used in this study was successful. We made the self-
collected DMFW-DB1 and trained ResNet model available to
other researchers through [28] for fair comparisons.

C. TESTING OF PROPOSED CNN-BASED RECOGNITION
1) COMPARISON OF FINGER-WRINKLE RECOGNITION
PERFORMANCE ACCORDING TO COLOR SPACE
For the first experiment, we compared the recognition per-
formance of input images of gray and various color spaces.
As shown in Table 4, we compared performances when using
the input images expressed in RGB, grayscale obtained from
RGB, HSV, and H + S + grayscale obtained from RGB. For
grayscale, the same image was copied to the three channels
of the CNN. As shown in Table 4, recognition error is lowest
when the RGB color image is used. In this study, wemeasured
the recognition error rate using the equal error rate (EER).
EER is the error rate at the point at which the false acceptance
rate, the error rate of incorrectly accepting imposter data
as genuine, and false rejection rate (FRR), the error rate of
incorrectly rejecting genuine data as imposter, become the
same.

Figure 8 shows the accuracy measured in Table 4 in more
detail with the receiver operating characteristic (ROC) curve.
The genuine acceptance rate is calculated as 1 – FRR. Each
graph is a mean graph of the two graphs in 2-fold valida-
tions. Figure 8 shows that the best recognition performance
is obtained when using the RGB color image.

2) COMPARISON OF PERFORMANCE BETWEEN RETINEX
FILTERED IMAGE AND ORIGINAL IMAGE
In the following experiment, we compared the recognition
performance of Retinex filtering and the original image.
The σ value of Retinex filtering determines the shape of
Gabor filter as shown in Equation (5), and the performance
is compared with the Retinex filtered images according to
various σ values, as shown in Table 5. Table 5 also shows
that the recognition error is lowest when the original RGB
color image is used without Retinex filtering. This occurs,
because, as shown in Figure 4, applying Retinex filtering
reduces not only illumination variation, but it also increases
the distinctiveness of finger-wrinkle texture. Moreover, the
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TABLE 5. Comparison of error rates using Retinex filtered image and original image according to various σ values.

FIGURE 8. Comparative ROC curves of finger-wrinkle recognition
according to the input of gray and color spaces.

deep ResNet used in this study can obtain sufficiently robust
features to address the illumination variation.

Figure 9 shows the accuracy measured in Table 5 in more
detail through ROC curves. Each graph is a mean graph of
two graphs in the 2-fold validations. Figure 9 shows that the
best recognition performance is obtained when the original
RGB image is used without Retinex filtering.

3) PERFORMANCE COMPARISON ACCORDING TO
BACKGROUND PROCESSING METHOD
In the next experiment, we measured the recognition accu-
racy according to the processing method of the back-
ground region, excluding ROI in Figure 3(c). Because the
224× 224-pixel images, including ROI and background, are
used as input images of the CNN, they can affect the deep
features extracted from the CNN according to the background
pixel values. We compared the recognition accuracy when
the background is filled with values of 0 (Figure 3(c)) and
when the background is filled with themean pixel value of the
ROI (Figure 10).

As shown in Table 6, the former case (EER of 5.42%)
showed a higher recognition rate than the latter
(EER of 8.35%). In the former case, no valid features were

FIGURE 9. Comparative ROC curves of finger-wrinkle recognition
according to the image with or without Retinex filtering.

FIGURE 10. Example of other trial images from the same hand of one
person, in which the background outside the ROI was filled with the
mean pixel value of the ROI: (a) Trial 1 and (b) Trial 2.

automatically extracted by CNN training for the background
comprising values of 0. Whereas, in the latter case, the pixel
values of the background changed according to the illumi-
nation variation of the ROI, as shown in Figure 10. This is
because unnecessary features adversely affecting recognition
were extracted from the background.

Figure 11 shows the ROC curve for the accuracy measured
in Table 6. Each graph is a mean graph of the two graphs in
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TABLE 6. Comparison of error rates according to background processing
method.

FIGURE 11. ROC curves of finger-wrinkle recognition according to the
background processing method.

the 2-fold validations. Figure 11 shows that the background
filled with values of 0 shows better recognition performance.

4) PERFORMANCE COMPARISON ACCORDING
TO CNN MODEL
For the next experiment, we compared the recognition per-
formance of various CNN models to ResNet-101. The mod-
els for comparison are VGG Net-16 [43], ResNet-50, and
ResNet-152 [27]. VGG Net-16 performs distance matching
using features extracted from fully connected layer 6 (Fc6)
and fully connected layer 7 (Fc7), which are typically used
for deep features. Additionally, ResNet-50 and ResNet-152
performed distance matching using features extracted from
the AVG pool (Pool 5) in Table 2 for fair evaluation.

Table 7 shows the performance according to the features
extracted from different layers of the CNN model and com-
parison models. ResNet, a network deeper than VGG using
residual connection, showed high recognition performance.
ResNet-101 showed the highest recognition performance.
Figure 12 shows the accuracy measured in Table 7 in more
detail using ROC curves. Each graph is a mean graph of
the two graphs in the 2-fold validations. Figure 12 shows
that ResNet-101 has the highest recognition performance
compared to the other CNN models.

TABLE 7. Comparative accuracies of finger-wrinkle recognition according
to various CNN networks.

FIGURE 12. ROC curves of recognition by ResNet-50, 101, 152,
and VGG-16.

TABLE 8. Comparison of finger-wrinkle recognition accuracy.

5) PERFORMANCE COMPARISON BETWEEN THE EXISTING
METHODS AND PROPOSED METHOD
In the next experiment, we compared the performance of the
proposed method with that of the existing method. The exist-
ing methods are based on handcrafted features. Table 8 shows
that the deep feature-based method proposed in this study has
higher recognition accuracy than the existing methods.

Figure 13 shows the ROC curve for the accuracy measured
in Table 8. Each graph is a mean graph of the two graphs
in the 2-fold validations. Figure 13 shows that recognition
performance improves when utilizing the deep features of this
study rather than handcrafted features.
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FIGURE 13. Comparative ROC curves of finger-wrinkle recognition via
previous and proposed methods.

FIGURE 14. Examples of correct recognition cases: (a) authentic matching
and (b) imposter matching. Left and right images in (a) and (b) show the
enrolled and input images, respectively. In (a) and (b), the images are the
resized ROI image (224 × 224).

Figure 14 shows an example of correct recognition (correct
acceptance and correct rejection) by the proposed method.
As shown in Figure 14(a), even with a variation in mis-
alignment between the enrolled image and the input image,
the proposed method returns the correct acceptance result.
In Figure 14(b), even with a similar finger appearance
between two images, our method produces the correct rejec-
tion result. Figure 15 shows an example of incorrect recog-
nition (false rejection and false acceptance) by the proposed
method. As shown in Figure 15, when misalignment and
appearance similarity between the enrolled image and input
image are large, the proposed method shows an incorrect
recognition result.

6) SUBJECTIVE TEST
Because user convenience is an important and integral part
of biometrics, we conducted an experiment to subjectively

FIGURE 15. Examples of incorrect recognition cases: (a) false rejection
case and (b) false acceptance case. Left and right images in (a) and (b)
show the enrolled and input images, respectively. In (a) and (b),
the images are the resized ROI image (224 × 224).

FIGURE 16. Subjective test of user convenience with (a) proposed
method, (b) finger-knuckle-print recognition, (c) touchless fingerprint
recognition, and (d) palmprint recognition.

evaluate the user convenience of the proposed method and the
touchless fingerprint, palmprint, and finger-knuckle recog-
nition methods (Figure 16). For fair evaluation, we used a
guide window on the screen display in eachmethod, as shown
in Figure 16. The convenience score comprised five levels
(5: very satisfied, 4: satisfied, 3: normal, 2: dissatisfied, and
1: very dissatisfied) and was conducted for 20 participants
10 times each.

The average user convenience scores in Figure 17 show
that the proposed method received higher scores than the
conventional hand-texture-based recognition methods. The
touchless fingerprint received the lowest user convenience
score because of the difficulty of positioning one finger in
the guide window, as shown in Figure 16. In the case of the
palmprint, whereas it is easy to position the palm in the guide
window, the user convenience score is the second lowest
because of the inconvenience of frequently raising the hand
when acquiring the image.

We then performed a t-test [46] to show the significance of
the user convenience of the proposed method. In Figure 17,
the significance of the score difference between the proposed
method and the finger-knuckle-print method, which has the
second-highest user convenience score, was measured. The
experimental results in Figure 18 show that the p-value of
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FIGURE 17. Comparisons of user convenience with our method and other
hand-texture-based methods.

the user convenience is 0.0134 (less than 0.05). These results
show that the null hypothesis for user convenience is rejected
at a 95% confidence level, showing that there is a significant
difference between the user convenience of our method and
that of the finger-knuckle-print method.

We also performed Cohen’s d [47] analysis, by which the
size of the difference between the two groups are shown using
the effect size [48]. Cohen’s d analysis has been widely used
for analyzing the difference between two measured values.
Generally, Cohen’s d is classified as small at about 0.2–0.3,
as medium at about 0.5, and as large at greater than or equal
to 0.8. For example, if the calculated Cohen’s d is closer to
0.2–0.3 than 0.5 and 0.8, we can say that the difference
between measured values has a small effect size. If the
calculated Cohen’s d is closer to 0.8 than 0.2–0.3 and 0.5,
we can say that the difference between measured values has
a large effect size. The calculated Cohen’s d about our user
convenience was about 1.71 (closer to 0.8), from which we
can conclude that the difference in user convenience between
our method and the finger-knuckle-print method has a large
effect. From the t-test and Cohen’s d analysis, we can con-
clude that there is a significant difference in user convenience
between our method and the finger-knuckle-print method.

In the next experiment, we examined the misalignment
of the acquired images of finger-knuckle-print, fingerprint,
and palmprint methods with the proposed method. Generally,
the larger the misalignment, the larger the intra-class varia-
tion, thereby increasing FRR.

We used an LG G7 ThinQ [49] instead of an LG V20,
which captured the images for the DMFW-DB1 database,
to evaluate performance in various mobile devices. Using
the same guide window and conditions as when we captured
the images for the DMFW-DB1 database using an LG V20,
we used the LG G7 ThinQ’s frontal viewing camera (8 mega-
pixels (2, 160×3, 840), 30 fps, auto-mode) to capture images
of 20 participants, as shown in Figure 16. We sampled the
acquired images in sets of five and calculated the motion
deviation of the x and y coordinates between the acquired
images. We then calculated the degree of misalignment

FIGURE 18. T-test with user convenience score by proposed method and
finger-knuckle-print method.

TABLE 9. Comparison of motion deviation within images obtained by the
proposed method and other hand-texture-based methods (unit: Pixels).

FIGURE 19. Jetson TX2 embedded system.

induced for each guide window according to recognition tar-
get. As shown in Table 9, the fingerprint method exhibited the
greatest motion deviation, and the proposed method showed
the second-largest deviation. However, this deviation was
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FIGURE 20. Examples of features maps extracted from each layer for the input finger-wrinkle images: Feature maps from
(a) Conv1 of Table 2; (b)–(d) the first, second, and third iterations of residual blocks in Conv2 of Table 2, respectively;
(e)–(g) the last residual blocks in Conv3, Conv4, and Conv5 of Table 2, respectively; (h) the 3 dimensional
feature-map image obtained by averaging all feature-map values of (g).
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TABLE 10. Comparisons of processing speed by the proposed method on
a desktop computer and an embedded system (unit: ms).

not significantly different from the finger-knuckle-print and
palmprint methods (maximum 0.18 pixels). The t-test results
showed insignificant motion deviations between the finger-
knuckle-print, palmprint, and proposed methods, suggesting
that the proposed method does not generate significant mis-
alignment between acquired images.

Based on these experimental results, the proposed method
showed significantly higher user convenience than the
other hand-texture-based methods with similar misalign-
ments between acquired images.

7) PROCESSING SPEED OF PROPOSED METHOD
The processing speed of the ResNet-101-based finger-
wrinkle recognition method proposed in this study was
measured via the following experiment. Measurements
were conducted using the desktop computer described in
Section V.A. and the Jetson TX2 embedded system [53],
which is often used in on-board deep-learning processing
(Figure 19). Jetson TX2 has an NVIDIA PascalTM-family
graphical processing unit (GPU) (256 CUDA cores) with
8-GB memory shared between the CPU and GPU, and
59.7 GB/s of memory bandwidth; it uses less than 7.5-W of
power.

As shown in Table 10, regarding the recognition speed of
the proposed method for one image, 27 ms of processing time
was consumed in the desktop computer, whereas 72.9 ms was
consumed in the Jetson TX2 embedded system. The Jetson
TX2 embedded system has a longer processing time, because
the computing resources are much more limited than with the
desktop computer. However, this confirmed that the proposed
method could be applied to embedded systems with limited
computing resources.

8) ANALYSIS OF FEATURE MAP
In this subsection, the feature map extracted from each
layer of deep ResNet for the input finger-wrinkle image is
analyzed as shown in Figure 20. As described in Table 2,
as the depth of the output feature map grows, the layer
deepens and it becomes difficult to express in three dimen-
sions. The feature maps for each depth are shown in order
from top-left to bottom-right (Figure 20). Figure 20(a)
shows the feature maps from Conv1 of Table 2, whereas
Figures 20(b), (c), and (d) show the feature maps from the
1st, 2nd, and 3rd iterations of residual blocks in Conv2 of
Table 2, respectively. Additionally, Figures 20(e), (f), and (g)
show the feature maps from the last residual blocks in Conv3,
Conv4, and Conv5 of Table 2, respectively. For example,

the feature map obtained from Conv1 in Table 2 has a size
of 112× 112× 64. Therefore, Figure 20(a) shows 64 feature
maps of 112× 112 pixels from top-left to bottom-right.
As shown in Figure 20, the more feature maps are extracted

from the deeper convolutional layers, the more abstracted
the extracted features become and the wider the region of
dominant features in one feature map. Thus, in Figure 20(a),
features represent the shape of the original finger-wrinkle and
high-frequency edge components. However, in Figure 20(g),
the original finger-wrinkle shape disappears in place of a
feature map with mainly abstracted low-frequency features.
Figures 20(b), (c), and (d) involve more convolutional lay-
ers than Figure 20(a) and have feature maps in which the
finger-wrinkle shape has vanished more. However, because
they comprise a structure that maintains the original fea-
ture map through the residual block before the convolu-
tion operation, the original finger-wrinkle shape does not
disappear and can be confirmed to some extent. However,
in Figures 20(f) and (g), the convolution layers become
deeper, and the original finger-wrinkle shape is hardly
retained. Additionally, the degradation of recognition perfor-
mance caused by misalignment between the enrolled and rec-
ognized images caused by the rough detection of the finger-
wrinkle region proposed in this study can be compensated to
some extent by the characteristics of the abstract and wide
low-frequency features in the feature map of Figure 20(g).

In Figure 20(h), the 3 dimensional image obtained by
averaging the featuremagnitudes in the channel (depth) direc-
tion in the feature map of Figure 20(g) is presented with
the original finger-wrinkle image. As shown in this figure,
the magnitudes of feature map values are also large in the
rough finger-wrinkle region, which can prove that important
features can be extracted from whole finger-wrinkle regions.

VI. CONCLUSION
This study proposed the finger-wrinkle recognition method
based on the visible light camera of smartphone. To address
misalignment issues between the enrolled and the recognized
images, a guide window with captured image was shown in
the smartphone display. The guide window was designed to
enhance user convenience with less misalignment. ResNet-
based recognition method was used to alleviate the degra-
dation of recognition performance caused by misalignment
and illumination variation occurring between the enrolled
and recognized images, blur, and rotation. Most recognition
errors occurred because of severe misalignment between the
enrolled and recognized images caused by translation, rota-
tion, and severe illumination variation.

Furthermore, with a subjective test, we compared the
user convenience of the fingerprint, finger-knuckle-print, and
palmprint recognition methods with our method. We verified
its reliability with a t-test and Cohen’s d value. Additionally,
we experimentally compared the degree of misalignment dur-
ing image acquisition of the four methods. Thus, we found no
significant differences between the amount of misalignment
between the images acquired from the four methods.
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In future work, we would research about generative
adversarial network-based method [50] to convert input
finger-wrinkle image similar to the enrolled image, thereby
improving recognition performance. In addition, we would
conduct research on improving recognition performance via
multimodal biometrics, combining finger-shape or finger-
print recognition.
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