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ABSTRACT Smart grid technology increases reliability, security, and efficiency of the electrical grids.
However, its strong dependencies on digital communication technology bring up new vulnerabilities that
need to be considered for efficient and reliable power distribution. In this paper, an unsupervised anomaly
detection based on statistical correlation between measurements is proposed. The goal is to design a scalable
anomaly detection engine suitable for large-scale smart grids, which can differentiate an actual fault from
a disturbance and an intelligent cyber-attack. The proposed method applies feature extraction utilizing
symbolic dynamic filtering (SDF) to reduce computational burden while discovering causal interactions
between the subsystems. The simulation results on IEEE 39, 118, and 2848 bus systems verify the
performance of the proposed method under different operation conditions. The results show an accuracy
of 99%, true positive rate of 98%, and false positive rate of less than 2%

INDEX TERMS Anomaly, cyber-attack, smart grid, statistical property, machine learning, unsupervised
learning.

I. INTRODUCTION
Today’s power systems consist of a network of sensors and
generators that allow two way communication within the
system’s infrastructure as well as reliable energy production
through integration of Distributed Energy Resources (DERs)
and Advanced Metering Infrastructure (AMI). While this
complex communication system has tremendous advantage,
by improving energy efficiency, reliability, and manageabil-
ity, it increases the system’s vulnerabilities to cyber-attacks
due to the tremendous number of devices and access points
that operate outside the traditional administrative domain.
Since failures in the power grid may lead to catastrophic
events, it is highly important to investigate the effects of
cyber-attacks in a power system.

As reported in [1], lack of system awareness is the main
reason in the North American blackouts, which highlight
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the importance of cyber-attack analysis to maintain a sta-
ble and reliable operation of the power supply. A cyber-
attack can result in overload that will damage the equipment,
or false demand request which can result in lots of energy
generated [2]–[4]. Besides, a malicious attack can also cause
false negatives, i.e., false overload condition in a power sys-
tem. Other disruptions in different parts of the smart grid,
electric vehicle infrastructure, is also possible. It is shown
in [5], [6] that malicious attacks by blocking communications
with a device can stop services in substation computers.
Therefore, real time cyber-attack detection is paramount for
the reliable performance of the critical infrastructure includ-
ing smart grids. Online and continuous system monitoring
is a requirement to detect targeted cyber-attacks and achieve
attack resilience [7].

In general, individual sensors in a large-scale network are
the main target of security compromises. A compromised
insider can easily access information stored in a compro-
mised node. In theory, key revocation of any compromised
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node is possible by applying an authentication mechanism to
sensor networks. However, authentication approaches based
on cryptography or security gateway design, such as the one
described in [8], [9], are infeasible due to the computation
and storage constraints of the system. The existing studies
within the smart power grid context mainly focus on the net-
working security of the cyber elements [10]–[12], advanced
anomaly detection techniques [13], [14], and secure control
theories based on different state estimation techniques [15].
A detailed analysis about presence of cyberattack in a power
system is described in [16].

Although the above mentioned solutions are capable of
immunizing the power systems, majority of them are math-
ematically too expensive, physically impractical and not
scalable for large-scale complex network. Nowadays, huge
amount of data is generated all over the grids which increase
accessibility for real-time system monitoring. Exploring
these data greatly enhances the performance monitoring,
diagnosis, and prognosis of anomaly in complex systems.
Historical data describing the system’s operation can help
identify anomalies and potential attacks. However, tradi-
tional Bad Data Detection (BDD) techniques are not prepared
for real time computational and storage issues due to the
large-volume of data generated in the smart grid. These chal-
lenges opens up the possibility of using data analytical tech-
niques, such as Machine Learning (ML), to tackle complex
structure data sets with AI to detect and prevent cyber-attacks.
ML algorithms can be used to analyze various combinations
of measurements through AMI, states, and control actions
by learning their patterns [17], [18]. It can detect False Data
Injection (FDI) attack by learning the non-linear, complex
relationship between measurements. This can be done in
a similar fashion to successful techniques applied to other
power system problems as seen in the research literature [19].

There are limited studies on the application of ML on
cyber-security of the smart grids. Several ML algorithms are
tested and compared in [20] for detection of FDI attacks.
General conclusions was made about the success of machine
learning in classifying FDI attacks. [21] proposed a hybrid
intrusion detection method based on common path mining
method to detect abnormal power system events from PMU
data, relays, and energy management system (EMS) logs.
A cyber-attack detection techniques based on the correla-
tion between two PMU parameters using Pearson corre-
lation coefficient was used in [22]. This method analyzed
the change of correlation between two PMU parameters
using Pearson correlation coefficient. Authors in [20] uti-
lized Gaussian process combined with ML to model the
attack strategy for anomaly detection. In [23] a supervised
ML–based scheme is proposed to detect a cyber-deception
assault in the state estimation process. A deep learning
method which recognize important features of FDI attacks in
real-time is also proposed in [24].

Performance of the existing, data-driven attack detection
techniques can be improved using Probabilistic Graphical
Models (PGM) to model complex system behavior. Among

PGMs, Dynamic Bayesian Networks (DBN) are useful tools
which can represent complex systems evolving in time using
the causal relationships between system components [25].
Moreover, new techniques should be developed to handle
the complex and high dimensional data to maintain the
robustness, scalability and accuracy of the attack detection
mechanisms. To reduce the computational burden in large
data sets, feature extraction can be used to transform the
original features into a more meaningful representation by
reconstructing its inputs and it involves reducing the amount
of resources required [26], [27]. Detection techniques that do
not rely on pre-classified training data are essential, as there
exists anomalies which cannot be measured or simulated.

In this work, we propose a smart grid anomaly detection
method to extract the patterns of changes in FDI attacks. The
revealed features are employed to detect the attacks in real-
time. Symbolic Dynamic Filtering (SDF) is used to build a
computationally efficient feature extraction scheme to dis-
cover causal interactions between the smart grids sub-systems
through DBN. Mutual Information (MI), DBN and learn-
ing algorithms are used to detect unobservable cyber-attacks
based on free energy as the anomaly index. Our goal is to
capture dependencies between variables through associating
of a scalar energy to each variables, which serves as ameasure
of compatibility. The scalability of the proposed technique is
examined on various IEEE test systems which was modeled
on PSS/E software. The results show high accuracy and low
false alarm under different operation conditions. It should be
mentioned that the proposed method does not only relies on
the pattern in the training data sets but It also uses the concept
of free energy to differentiate between the energy level in
the attacked and normal data sets. Therefore, even new and
unseen attacked can be detected.

The main contributions of this work are as follows:

• Formulation of an unsupervised approach to detect an
anomaly in smart grids without labeling data sets.

• Proposing a scalable method by reducing computational
burden through data reduction by SDF.

• Developing a strong learning model based on DBN.
• Proposing a model-free approach, which can be
employed in hierarchical and topological networks for
different attack scenarios.

The rest of the paper is organized as follows. Mathematical
formulations are described in Section II. Proposed cyber-
attack detectionmethod is presented in Section III. Section IV
discusses the case studies and simulation results followed by
the conclusion in Section V.

II. MATHEMATICAL MODELING
A. GENERATOR’S MODEL
In this work, smart grid is modeled as a multi-agent, cyber-
physical system where each of these agents include a genera-
tor, a measurement device, a distributed control agent, and an
energy storage system that can inject or absorb real power in
the system [28]. The dynamic and static state of the system
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are described as follows:

ẋ = f (x, u, η)

z = h (x, u, ε) (1)

where x is the system state including the dynamic state of
the generator (e.g. rotor speed and rotor angle) and the static
state of the network (voltage magnitude and phase angle). f (.)
describes the non-linear, dynamic behavior of the generators
and h (.) is the measurements non-linear function. u and z
represent the output and measurements vector, respectively.

The 4-th order (two-axis) model of generator i’s can be
described as [29]:
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where (̇) denotes the time derivative. Generator parameters
are described using Table 1.

TABLE 1. Generator parameter description.

For synchronous generator i, excitation system controls
the field voltage, the mechanical torque is controlled by the
associated speed governor, and the electrical output can be
calculated as follows:

PEi = E
′

diIdi + E
′

qiIqi +
(
X
′

qi − X
′

di

)
IdiIqi. (3)

Let Ei denote the internal voltage of generator i, then PEi can
be expressed as [30]:

PEi=
N∑
k=1

|Ei| |Ek | (Gik cos (δi−δk)+Bik sin (δi − δk)) (4)

where Gik = Gki and Bik = Bki are the conductance and
susceptance between generators i and k , respectively.
In this work, the goal is to learn and predict the

dynamic behavior of the smart power grid (where gener-
ators are modeled as explained in this section) to detect
anomaly/cyber-attacks. SDF, DBN, and RBM are used to
develop a computationally efficient tool for discovering the
interactions between the subsystems.

B. ATTACK REPRESENTATION
Traditionally, the integrity of the state estimation process
is verified through BDD method by computing the L-norm
of measurement residual [31]. The presence of bad data is
determined if ∥∥z− Hx̂∥∥ > Tr (5)

where z ∈ RN is the measurement vector, x̂ ∈ RD is the
estimated state vector, and H ∈ RN×D is the Jacobian matrix.
A threshold Tr is pre-defined to maintain the accuracy of

the state estimation. Aside from the fact that cyber-attacks
bypass the existing BDD technique, measurement redun-
dancy required for BDD approaches makes them impractical
for smart grid technology. In intelligent cyber-attacks, specif-
ically FDI attacks, the goal of the adversary is to control a
subset of themeasurements andmanipulate the state variables
arbitrarily. It can be done by injecting a false data vector za ∈
RN which by pass traditional BDD techniques. Suppose the
malicious attack intentionally manipulates the meter readings
by za. Accordingly, the attack- incurred measurement change
can be written as:

z = Hx̂ + za + ε = H

x̂ + ca︸ ︷︷ ︸
x̂a

+ qa + ε (6)

where ε is the measurement noise, and x̂a is the faulty esti-
mated state.

The injected false data (za) can be decomposed into two
parts a = Hca and qa, where ca ∈ RD is an injected vector
of data which bypass BDD tests since it lies in the column
space of H, and qa is the only detectable part that lies in
the complementary space where H

(
HTH

)−1 HT qa = 0.
In other words, the stealth attack vectors (za) always exists
even if the adversary can get partial access to the network
topology and line parameters to construct malicious attacks
that completely lie in (H ), i.e., qa = 0, thereby bypassing the
existing BDD methods [32].

The following assumptions are considered in the model of
the attack:
• In this work, the assumption is that the attacker has lim-
ited resources and could onlymanipulate limited number
of measurement readings. This could be either power
injection or power flow data, for a time period Ta ⊆ T .
This is a realistic assumption because, in the context
of power networks it is not realistic to assume that all
sensors report faulty measurements at the same time.
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Moreover, in reality, compromising all measurements
results in huge cost and effort for attackers.

• Complete knowledge of the system is literally impos-
sible for an outsider. Therefore, the attacker has par-
tial knowledge of the system topology and security
mechanisms. Such knowledge can be obtained by sta-
tistical analysis of data sent from the remote terminal
units (RTUs) to the control center or by physically cap-
turing the security information embedded in a node.

In this work, strategic sparse FDI attack with least absolute
shrinkage and selection operator (LASSO) is considered.
Jacobian matrix (H ) is decomposed based on a row-wise
approach. A sub Matrix HS

=
(
Hji,:,HjN−|S|,:

)
, of H is

created to represent the secure measurements, where Hji,:
is the ji-th row of H, such that HSca = 0. Likewise, sub-
matrixHA is constructed for attacked measurements. Finally,
the attacker’s strategy is defined in a way to find a solution ca
which optimize following objective function:

Minimize
∥∥∥HAca

∥∥∥
0

Subject to HSca = 0,

‖ca‖∞ ≥ τ, (7)

where τ ≥ 0 is a given constant. The optimization problems
is solved using LASSO and Regressor Selection algorithms.
More details about the attack construction is available in [33].

The goal of the attacker is to manipulate rotor speed and
angle through FDI attack by hacking into the communication
network. Hence, ∀t ∈ Ta, for generator i, the effect of FDI
attacks on the system state can be written as:

xai (t) = xi (t)+ γixi (t)+ Ci (8)

where the γi is a constant coefficient and Ci represents a
constant bias in the attacked states. In other word, the attacker
is interested to alter the system state by γi andCi. Considering
that, the attacker will design za in a way that the attack vector
remains unobservable for the operator and traditional BDD
methods. In the experiments, we assume that the attacker has
access to λ measurements, which are randomly chosen to
generate a λ-sparse attack vector.

III. PROPOSED ENERGY-BASED CYBER-ATTACK
DETECTION
In this section, a cyber-attack detection framework is pro-
posed which utilize DBN modeling, feature extraction
through MI and RBM for data training. DBN and MI are
applied to smart grid test systems with extensive measure-
ments, and the RBM is used to capture the patterns in system
behaviour that are extracted by the unsupervised DBNmodel
(data are not labeled).

The proposed data driven framework for anomaly detection
is depicted in Fig. 2. At first, the system is partitioned into
several sub-systems. Then causal dependency between nom-
inal characteristics of subsystems are learned using SDF. The
proposed method is a computationally efficient tool, which

FIGURE 1. Illustration of the steps to generate DBN using SDF-based
feature extraction.

reduce the computational burden by: 1) selecting a subset
of measurements through feature selection and SDF, and
2) by domain decomposition and data processing on several
subsystems in parallel, rather than dealing with whole system
at once.

A. SYMBOLIC DYNAMIC FILTERING
In the proposed feature extraction method based on SDF,
the time series data are first converted into symbol sequences,
and then DBN are defined from these sequences to compress
the information into low-dimensional statistical patterns. The
phase space of the system in Eq. (1) is divided into a finite
number of cells. A compact region � is identified by intro-
ducing a partition B ≡ {B0, . . . ,B −1} consisting of m
mutually exclusive (i.e., Bj

⋂
Bk = ∅ ∀j 6= k) and exhaus-

tive (
⋃
−1

j=0 Bj = �) cells. The dynamic system describes
the time-series data as O ≡ {β0, . . . ,β −1} ,βi ∈ �,
which passes through the cells of the partition B [34], [35].
To understand the concepts of partitioning and mapping
into the symbol alphabet, consider the system shown in
Fig. 1 [34].

Consider the cell visited by a trajectory as a random vari-
able S with symbol value s ∈ A. Symbol alphabet is the
set A of different symbols that mark the elements in
the partition. Every initial state β0 ∈ � produce a series of
symbols which can be defined by mapping from the phase
space into the symbol space as follows:

β0→ si0 si1 . . . sik (9)

Eq. (8) is called symbolic dynamics. The symbolization
process converts multi-dimensional space into a symbol
sequence, and then into a DBN.

B. DYNAMIC BAYESIAN NETWORKS
DBNs are probabilistic graphical models that can demon-
strate system’s state as a set of variables, and model the
probabilistic dependencies of the variables between time
steps. In this work, a high order DBN on ξ variables xt =
{x1,t , . . . , xξ,t } at different time points t = 1, . . . ,T is
considered. Each xi,t represents the expression of state i at
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FIGURE 2. Proposed framework for cyber-attack detection using unsupervised learning.

time t. Symbol sequence is extracted from the variables set by
SDF. To find the occurrence probability for a new symbol sn,
we assume that the DBN satisfies the L-th order Markov
property:

P
(
sn|sn−1 . . . sn−L . . . s0

)
= P

(
sn|sn−1 . . . sn−L

)
(10)

Thus, a state transition matrix 5 which describes the L-th
order Markov chain can be defined based on the training data.
The order of the model is set based on trial an error. Let the
state at time instant k be denoted as qk . The ij-th element of
5 can be defined as follows:

5ij , P
(
qk+1 = si|qk = sj

)
(11)

In this work, since we are dealing with several time series,
we use a modified version of Markov chain (xL-th order
Markov chain) [36] to predict the occurrence probability for a
new symbol in a series A using the last L symbol for another
series B. 5A and 5B are defined for L-th order Markov
representing sub-systems A and B, respectively. The same
way, causal dependencies of A on B and B on A can be
represented by cross state transition matrices5AB and5BA,
respectively.

Features from L-th order Markov chain are known as
the atomic patterns (APs) and the one for xL-th order
Markov chain are referred as the relational patterns (RPs).
State-transition matrices5AB and5BA, can be described as:

πAB
kl , P

(
qBn+1 = l|qAn = k

)
∀n

πBA
ij , P

(
qAn+1 = j|qBn = i

)
∀n (12)

where j, kεQA and i, lεQB, QA and QB are the state vector
related to sequence A and B, respectively.
Given a multivariate time series, the symbol sequences

S is generated with partitioning. After that, a high order
DBN is used to define the subsequent states and transition
probabilities between the vertices. We use MI criteria to
extract important feature of an AP or an RP. MI develops a
generalized linear correlation coefficient that measures the
relationship between two random variables. A non-zero value
in MI means the two variables are independent towards each

other. MI between state sequences qA and qB can be written
as Importance metric IAB as follows:

IAB = I
(
qBk+1; q

A
k+1

)
= H

(
qBk+1

)
− H

(
qBk+1|q

A
k

)
(13)

where,

H
(
qBk+1

)
= −

∑QB

i=1
P
(
qBk+1 = i

)
log2 P

(
qBk = i

)
H
(
qBk+1|q

A
k

)
= −

∑QA

i=1
P
(
qAk = i

)
H
(
qBk+1|q

A
k = i

)
H
(
qBk+1|q

a
k = i

)
= −

∑QB

j=1
P
(
qBk+1 = j|qAk = i

)
× log2 P

(
qBk+1 = j|qAk = i

)
More details about the MI-based causality can be found
in [32]. The variation of the MI matrix (IAB) between two-
time periods can be driven as:

δ (I ) = IABt1 − I
AB
t2 (14)

Large δ means a strong predictive and informative link in AP
or RP that can be used to distinguish the two kinds of end
uses.

Once the models are ready, patterns of system’s behaviour
are learned by the RBM. Test data are used to compute the
likelihood of the learned features. In this work, we used
Restricted Boltzmann Machine (RBM) for this purpose.

C. RESTRICTED BOLTZMANN MACHINE
Boltzmann Machine is a generative method to model the
unknown distribution of data. Unlike most of the Machin
Learning techniques that only discriminate some data vectors
in favor of others, Boltzmann Machine can also generate
new data with given joined distribution, as well as pattern
completion in case of missing inputs. It is also considered
more feature-rich and flexible. RBM belongs to the class of
stochastic Energy-basedModels (EM) [38]. In EM, each state
of the system is associated to an specific energy level. Such
a system can be described by a network of stochastic binary
neurons (a set of visible variables v = {v1, . . . ,vN }) which
are connected a set of hidden variables h = {h1, . . . ,hK }.
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System’s state can be described based on joint configurations
of the visible and hidden variables. It is proved that model
estimation in RBMamounts tomaximize the likelihood of the
training data with low-energy state. As a result, an anomaly
will appear as a configuration with low probability or high-
energy [39]. Given binary variables v and hidden variables h,
the joint probability of a state (Pr (v, h)) can be described
based on the energy of that state (En (v, h)), with a Boltzmann
distribution function:

Pr (v, h) =
exp(−En(v, h))∑
v,h exp(−En(v, h))

(15)

where

En (v, h) = −
N∑
i=1

aivi +
K∑
k=1

(
bk +

N∑
i=1

wikvi

)
hk (16)

where a, b, and w are model parameters which are calculated
through maximization of the probability of the training data
with low-energy state.

Data density can be rewritten as:

Pr (v) ∝
∑
h

exp(−En(v, h)) = exp(−F(v)) (17)

where F (v) is known as free-energy and can be rewritten as:

F (v) = − log (Pr (v))+ constant (18)

Therefore, free energy can be used as the anomaly index
to rank data instances in linear time. The trained RBM is
employed to identify cyber-attack based on the probability
and energy level of event. Anomaly is represented by an event
with high energy or low probability. The assumption is that
cyber-attacks change the interaction among the sub-systems
and results in different patterns in DBN. For simplicity of
training, IAB can be normalized into binary states (0 and 1
for low and high values, respectively) for APs and RPs.
Finally, changes in the parameters related to the accepted
patterns are used to identify cyber-attacks. A distribution of
free energy is used to detect low probability events or cyber-
attacks based on distance metric. For the normal operation
condition, free energy will have similar distribution to that of
the training data. The assumption is that the training data are
mostly collected from normal operation condition. Therefore,
the learnt RBM can effectively capture the normal operation
of the system.

To quantify the difference between the energy distributions
in training and test data, Relative Entropy (RE)metric is used.
The relative entropy between two probability distributions is a
measure of the distance between them. RE for two probability
distributions P and Q on a finite set X, can be described
as [35], [36],

RE(P‖Q) =
∑
X

P(x) log
P(x)
Q(x)

(19)

where P and Q refer to the distribution of free energies in
the normal situation and under cyber-attack, respectively.
Free energies in the normal operation condition (F (vn))

and under cyber-attack condition (F (vca)), can be calculated
using Eq. (14). A symmetric RE distance can be defined
as [38],

REd (P‖Q) = RE(P‖Q)+ RE(Q‖P) (20)

which can be used as an index for cyber-attack/anomaly
detection. This index will be compared with a Detection
Threshold (DT) to detect the cyber-attack. Too low thresholds
may results in many false attack detection, while too high
thresholds may lead to unidentified attack. In this work, most
of the RE values calculated through training are assumed to
be normal, while a few of them are outliers. To find the DT,
the normal distribution is used as the baseline. The assump-
tion is that 95% of the data are within two standard devi-
ations of the mean. ∀ D̃T satisfying

∣∣{RE i:D̃T ≥ RE i}∣∣ =
0.95|{RE i}|, i = 1, 2, . . . , n that, DT = min{̃DT } where RE i
is the i-th RE in the training data. Then, anomaly is detected
when RE (t) ≥ DT . The steps can be summarized as follows:
• Transform time series data to symbolic sequence.
• Model the subsystems and their interactions using DBN.
• Evaluate the information based metric values using MI
(I ij).

• Generate a binary vector of length L using I ij, and assign
a state 0 or 1 to each I ij.

• Use RBM with visible nodes corresponding to APs and
RPs to learn the behaviour pattern.

• Detect anomaly by calculating the occurrence probabil-
ity of the current observation based on trained RBM.

The anomaly detection process algorithm is described
in Fig.3.

FIGURE 3. Proposed algorithm for anomaly detection.

IV. CASE STUDIES AND SIMULATION RESULTS
In this section a case studies under different operation con-
dition are simulated to validate performance of the proposed
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method. Case 1 is modeled as a multi-agent cyber-physical
system based on IEEE-39 bus model where each agent
includes a generator as described in Section II, ameasurement
device, a distributed control agent, and an energy storage
system as shown in Fig.4. Energy storage represent the energy
that can be fed into the system by different micro grid or
renewable sources. The same analysis is performed for all
case studies, however, for the sake of space only the results
of Case 1 are included in this section.

FIGURE 4. IEEE 39 bus system under cyber-attack in line 6-31 and 11-12.

A. TEST SYSTEM
Details of the case studies are listed in Table 2 and adapted
fromMatpower [42]. All case studies are assumed to be fully
observable. To make sure about the accuracy of the historical
data a level of security is added to the measurement model.
Large-scale power grids contain thousands of meters which
makes the protection of measurements highly expensive.
In order to reduce the cost, we identify the critical meters to
protect them based on optimal PMU placement [31]. We also
assume that the system topologies remain unchanged over the
typical days. Case studies are implemented inMatlab R2017a
and carried out on a PC with a Core(TM) i7-7700 CPU,
3.6 GHz, and a RAM of 32.00 GB.

TABLE 2. Units for magnetic properties.

By exploring the MI index, dependency between a subset
of variables that influence each other in the normal condi-
tion is used for anomaly detection. The model generated by
RBM represent the normal system since most of the collected

data are collected are from the normal conditions. It should
be mentioned that collected data are labeled as normal or
anomalous. Training data are used to obtain the baseline for
the normal condition which will be used for selecting the
threshold for the anomaly. A moving window in a subset
of the training data (with distribution P) is used to compute
the distribution Q representing the dynamic behavior of the
system. In order to measure the distance between Q and P,
the REmetric is applied in each subset. Similar setting is used
for the testing data. Finally, the twoRE are compared to detect
anomalous condition (cyber-attack in our case).

The attack strategy is designed to overload lines 6-31 and
11-12. The attack region is shown in Fig. 4. Normalized
measurement residual under normal operation condition, due
to fault, and due to cyber-attacks are presented in Fig.5 for
Case 1. It can be seen that all the measurements residuals
due to cyber-attacks have almost the same magnitude as
the measurement residual under normal operation condition
which implies that conventional residual test cannot detect
the stealthy cyber-attacks. It should be noted that faults will
results in significant residual in the measurement residual as
shown in Fig. 5. In case of a fault in the system, the operator
will be notified and clear the fault. Therefore, the fault will
not affect the states of the system.

FIGURE 5. Measurement residual before and after cyber-attack on Case 1.

In Fig. 6, the variation in the lower plot is in an acceptable
zone. However, in the top plot, the variation significantly
increases during the attack between 35-65 samples. This
indicates that there is a potential case of cyber-attack that has
gone unnoticed in bad data detection. Therefore, estimated
states with high error could be fed into the rest of the system,
which may result in irreparable damages.

B. ACCURACY, FALSE POSITIVE AND TRUE POSITIVE
In the smart grid analysis, the major concern is not only the
detection of cyber-attacks, but also the ability to avoid false
alarms. Therefore, performance of the proposed method is
analyzed based on the True Positives (TP), the True Negatives
(TN), the False Positives (FP), and the False Negatives (FN),
which are defined in Table 3.

The learning abilities and memorization properties of the
algorithms are measured by the False Positive Rate (FPR),
True Positive Rate (TPR), and Accuracy (Acc) values, which
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FIGURE 6. Variation on state estimation error, a) without cyber-attack, b)
with cyber-attack on Case 1.

TABLE 3. Units for magnetic properties.

are defined as [43]:

FPR =
FP

TN + FP

TPR =
TP

TP+ FN

ACC =
TP+ TN

TP+ TN + FP+ FN
(21)

Low FPR of 0% means that none of the secure measure-
ments are misclassified as attacked. TPR of 100% clarifies
that none of the attacked measurements are misclassified as
secure. Accuracy of 100% means that each measurement
classified as attacked is an attacked measurement, and each
measurement classified as secure is a secure measurement.

1)Effect of Threshold on FPR- Fig. 7 shows the variation of
FPR as a function of detection threshold for single attack (SA)

FIGURE 7. FPR under single and multiple cyber-attack for two different
attack magnitudes on Case 1.

FIGURE 8. TPR and ACC under single and multiple cyber-attack for two
different detection thresholds on Case 1.

and multiple attack (MA) on state variables δ2, δ4. For each
case DT was varied from 0.25DT to 1.5 DT, where DT is
the threshold defined in Section III. As can be seen from
the figure, FPR decreases sharply with increase in detection
threshold. This indicates that, when the threshold is too low,
the algorithm becomes too aggressive in attack detection, thus
suffering from high false-alarm rate.

In addition, as the figure shows, magnitude of the attack
and number of attacks does not affect the FPR significantly.
Moreover, it can be seen that for threshold larger than DT,
FPR becomes negligible (i.e., under 2%). Therefore, DT is
used as the threshold for the proposed method. Similar trend
was observed in the trend of changes in FPR vs. the threshold
for other states.

2) Effect of Attack Magnitude on TPR and ACC-
Fig. 8 shows the variation of TPR and ACC as a function of
attack magnitude for two attack scenarios on state variables
δ2, δ4. 1 (1% of the original measurement) and 10 (10%
of the original measurement) indicate low and high attack
magnitudes, respectively. Mediummagnitude (here indicated
by 5) is the regular type of attack on the literature. To verify
the effect of detection threshold on TPR and ACC, the results
are plotted for two different thresholds.

As shown in Fig.8, by increasing the attack magnitude,
TPR and ACC quickly approached 100%. In addition, it can
be seen that a very high threshold adversely affects the TPR
and impacts the minimum size detectable attack. The results
show that DT defined in Section III can effectively detect
an attack with medium and higher strength with almost 99%
accuracy and 98% TPR. A similar trend was observed in the
changes of TPR and ACC vs. the attack magnitude for all
states. Summary of the results for different case studies are
reported in Table 4.

3) Effect of Attack Sparsity on TPR and ACC- to analyze
the effect of attack sparsity, attacks with different sparsity
λ/N ∈ [0, 1] are generated. N represents the total number of
measurements in the system. As shown in Fig. 9, both TPR
and ACC increase as the number of contaminated measure-
ments increases. Here, sparsity 1 means all measurements are
manipulated by the attacker. The figure shows that proposed
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TABLE 4. Summary of results for single attack with medium attack
magnitude (average).

FIGURE 9. TPR and ACC under single and multiple cyber-attack for
different attack sparsity on Case 1.

algorithm has very high TPR (94%) and ACC (90%) when
only 35% of the measurements are manipulated. Once half of
the measurements are attacked, which is a realistic assump-
tion for successful attack implementation from the attacker’s
perspective, the algorithm is highly effective with 99% TPR
and 98% ACC.

C. PERFORMANCE ANALYSIS UNDER DIFFERENT
OPERATION CONDITION
To validate efficieny of the proposed method, four different
scenarios are considered:1) normal condition without attack,
2) random attack, 3) single FDI attack on 6-31, 4) multi-
ple, simultaneous FDI attacks on lines 6-31 and 11-12. Pro-
posed method is compared with the two most popular BDD
approaches; LNR test and Chi-Square test. The threshold
is set to 3σ while σ is the standard deviation, to minimize
the false positives due to the noise, thus FPR due to noise
is less than 1% [44]. For accurate and detailed comparison,
the threshold is normalized for all detectors. The same crite-
rion is considered for setting threshold in LNR test. For more
information about LNR and Chi-Square test refer to [20].
Detector’s output are depicted in Fig. 10.

As shown in Fig. 10 (a), in normal operation condition, the
output of all detectors is under the threshold which specifies
that there is no trace of bad data or cyber-attack in the system.
Fig. 10 (b) shows that all methods are able to detect the
random attack. Since the attack is unintelligent, it will leave
its trace in the data sets and the operator will be informed of
an attack presence. The random bad data, which was injected
to the measurement set, results in significant changes in the
measurement residual vector, which leads to the increase in

FIGURE 10. Detector out put under a) normal condition, b) random
attack, c) single cyber-attack, d) multiple cyber-attack on Case 1.

cost function. In an optimal state estimation, we evaluate
the cost function based on the residual of the measurements.
In the normal operation condition, without bad data in the
system, the cost function follows a normal distribution with
zero mean. Under a random attack, the cost function will pass
the threshold for optimal state estimation. Therefore, both
LNR and chi-square tests will trigger the alarm successfully.

In case of single or multiple FDI attacks, as can be seen
in Fig. 10 (c) and (d), the cost function for both LNR and
Chi-Square detector stayed in the true range of predefined
thresholds. Both approaches resulted in their normalized
residue values below the specified threshold and thus they
were unable to detect the attack in the system. However, in the
same setup, output of the proposed detector is above the given
threshold and can trigger the alarm. The main reason is that
the LNR test and Chi-Square test are based on residual of the
measurement vector while cyber-attacks are carefully crafted
to bypass the statistical detector with no trace in residual
vector. Similar results were observed for all case studies.
Average detection time for all case studies was 1ms with
0.2ms deviations.
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In general, any type of FDI attack in line or system topol-
ogy results in the same changes in the network with minor
modification. Therefore, the proposed method can success-
fully detect various FDI attacks from different sources. Fur-
thermore, since the proposed scheme analyze the patterns
between the compromised data and the normal data, its suc-
cess rate does not depends on the attack scenarios.

V. CONCLUSION
In the context of smart grid anomaly detection, the solutions
proposed in the literature are mainly offline approaches with
restriction to deal with dynamically evolving cyber threats.
This paper propose a real time and computationally efficient
tool for anomaly detection that utilizing feature extraction
scheme and time series partitioning to discover causal inter-
actions between the subsystems. DBN concept and learning
algorithms based on Boltzmann Machine are used to detect
unobservable attacks based on free energy as the anomaly
index. Performance of the proposed algorithm was evaluated
on different IEEE test systems and under different operation
conditions for several measures (TPR, FPR, and ACC). The
results demonstrated that the system achieves an accuracy of
99%, TPR of 98% and FPR of less than 2%.
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