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ABSTRACT In the past decade, there has been an increase in the development of sensitive, high-
resolution, non-invasive diagnostic methods for periodontic diseases. Optical coherence tomography (OCT)
has attracted considerable attention in clinical settings. In this paper, a reliable, robust algorithm for the
detection of gingival sulcus in 2D OCT cross-sectional images is proposed. Previously, the measurement of
gingival sulcus in OCT images has been performed by manual identification using two-dimensional (2D)
cross-sectional images. The automated detection of gingival sulcus continuity in 2D OCT images may help
medical practitioners to assess important features of gingival tissues. The Sobel and canny operators have
mainly been used for boundary and edge detection in OCT images. However, these algorithms are highly
sensitive to noise and speckle in OCT images. To overcome these limitations, we propose an algorithm for the
quantitative depth measurement of the human gingival sulcus, based on averaged intensity difference. In this
paper, we utilized two commercially-available swept-source OCT systems operating at center wavelengths
of 1310 and 1060 nm to image gingival sulcus of human samples in vivo. The images were processed using
three algorithms: canny, Sobel, and averaged intensity difference.

INDEX TERMS Biomedical optical imaging, detection algorithms, optical coherence tomography.

I. INTRODUCTION
Gingiva is the soft tissue that is present around the teeth. The
gingival sulcus is the naturally-occurring space between the
teeth and gingival tissues. The depth of the gingival sulcus is
determined by the connective tissues and by the free gingival
margin. Food residue and plaque formation in the gingival
sulcus results in a widening or increase in the depth of the
gingival sulcus, resulting in abnormally loosened teeth and
subsequent periodontal diseases. Periodontal disease, which

The associate editor coordinating the review of this manuscript and
approving it for publication was Vishal Srivastava.

can take years to develop, is now believed to be associated
with health problems such as cardiovascular disease [1] and
diabetes [2]. In a recent study, it had been shown that in the
United States between 2009 and 2010, approximately 47% of
the population aged 30 years and older are affected by some
forms of periodontitis [3].

In clinical practice probing of periodontal pockets is the
most commonly-usedmethod for quantifying periodontal sta-
tus, based on attachment loss and the depth of the gingival
sulcus. Probing is a minimally invasive procedure, yet it can
induce or increase separation between gingival tissue and
the tooth surface [4]. The same procedure is also used for
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assessing periodontal disease and deciding upon treatment
procedures [5], [6]. Probing analysis only presents a retro-
spective perspective of the attachment. The procedure is also
susceptible to variations due to manual pressure, probing
angle, instrument caliber, and the condition of tissues. Dental
radiographs, however, provide non-invasive images which
provide information about root length, presence or absence
of periapical lesions, dental calculus, root proximity, and
remaining alveolar bone [7]. Due to the limited resolution
of dental radiography, it is difficult to measure the gingival
sulcus depth using two-dimensional (2D) dental radiograph
images [8]. The use of dental radiography also involves expo-
sure to ionizing radiation, and provides no information about
the state of the soft tissues. As an alternative, cone-beam
computed tomography is routinely used in clinical practice
for the imaging of soft and hard tissues, especially for oral
pathology [8]. However, it has low spatial resolution and
the exposes the patient to ionizing radiation. When it comes
to experimental and research studies, techniques like micro-
CT [9] and histology [10] have predominantly been used for
studying gingival tissues. These techniques involve section-
ing as necessary for histology, or high exposure to ionizing
radiation like in case of dental radiography or in micro-CT
imaging as they use X-ray source.

Among the non-invasive imaging techniques, optical
coherence tomography (OCT) has been recognized for its
versatility in applications to biomedical imaging. OCT
uses near-infrared laser light as a light source, and uti-
lizes low-coherence interferometry techniques to produce
high-resolution, non-invasive 2D cross-sectional images in
real time. Owing to its high-resolution imaging capabilities,
OCT is being utilized for the study of microstructures,
borders, thickness, and the anatomy of dental tissues such
as enamel, enamel cracks, dentin, plaque, periodontal,
periodontal tissue structure monitoring, and orthodontic
microimplants [11]–[19]. OCT has also been applied to the
measurement of gingival sulcus in small animal models,
pigs and humans [20]–[23]. Recent studies have focused
on improving the accuracy of measuring pocket depth [24].
Polarization-sensitive OCT (PS-OCT) [25] and OCT angiog-
raphy (OCTA) [26] have been shown to be effective in
visualizing gingival microvasculature with high resolution.
Previous research has shown the usefulness of Sobel and
canny edge operators for edge detection in OCT image post-
processing. These algorithms have also been used for image
layer segmentation and the detection of individual layers in
OCT [27], [28]. However, these operators are highly sensitive
to noise and speckle variations in OCT images.

In this study, we propose a detection algorithm based on
averaged intensity difference in the OCT images. To demon-
strate the effectiveness of the algorithm we imaged the gingi-
val sulcus of human samples in vivo using two commercially
available swept-source OCT (SS-OCT) systems, which were
centered at 1310nm and 1060nm. The 2D cross-sectional
OCT images were analyzed in post-processing for the identi-
fication of gingival sulcus. The images were processed using

FIGURE 1. Schematic diagram of the 1310 nm and 1060 nm SS-OCT
system along with specifications. (A) Schematic diagram representing the
SS-OCT system setup of Thorlabs OCS1310V1, which has a center
wavelength of 1310nm. (B) Schematic diagram representing the SS-OCT
system setup of Santec IVS-1000, which has a center wavelength of
1060nm. (C) Tabulated comparison with parameters of the Thorlabs
OCS1310V1 and Santec IVS-1000 SS-OCT systems.

three detection algorithms: canny, Sobel and averaged inten-
sity difference.

II. MATERIALS AND METHODS
A. SAMPLE ARMAMENTARIUM
In vivo imaging of human samples was performed on eight
individual healthy volunteers aged between 20 and 30 years.
During imaging of the gingival sulcus, a lip retractor and
a bench-top head holder were utilized to keep the teeth
position stable. The lower central incisors of each indi-
vidual were imaged for identifying the gingival sulcus.
All of the human experiments were performed in accordance
with the guidelines of the Institutional Animal and Human
Care and Use Committee of Kyungpook National University
(No. 2017-0145-1). The amount of coherently backscattered
light in highly turbid media decays exponentially with depth,
resulting in axial compression of the image. For this reason,
the OCT axial depth scale should be calculated by divid-
ing the refractive index of the relevant tissue regions, such
as 1.3 for oral mucosa, 1.6 for enamel and gum, 1.5 for
dentin and 1.4 for gingival sulcus, to obtain true physical
dimensions. The refractive index of gingival tissue used for
this study was 1.41 ± 0.06 [20].

B. OCT SYSTEM CONFIGURATION
In this study, we used two commercially available SS-OCT
systems for imaging the gingival tissues: a Thorlabs
OCS1310V1 (Thorlabs. Inc, Newton, New Jersey, United
States), and a Santec IVS-1000 (Santec. Inc, Aichi, Japan).
A schematic of the OCT system setup is shown in
Figure 1 (A) and (B). A brief detail of both OCT system
specifications is shown in Figure 1 (C).
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1) 1310 NM SS-OCT SYSTEM SETUP
The Thorlabs OCS1310V1 OCT system is powered by a
micro-electro-mechanical system (MEMS) tunable vertical
cavity surface emitting laser (VCSEL) swept laser source
which was centered at 1310 nm. The sweeping rate was
100 kHz and the full width half maximum (FWHM) spec-
tral bandwidth of the source was 97nm. A small portion of
the output beam from the VCSEL laser cavity module was
projected into a Mach–Zehnder interferometer (MZI) clock
module to achieve real-time optical clocking, using which
OCT spectral fringes can be evenly sampled in wavenumbers
with the referenced MZI signals, eliminating the necessity
of postprocessing for fringe resampling. The remaining out-
put beam of the source laser was coupled into the main
OCT interferometer, which was connected to a circulator.
The output arm of the circulator (within the interferometer)
was connected to an optical coupler in a 50:50 ratio. The
coupler outlets were connected to a sample arm and refer-
ence arm setup. The back-reflected optical signals interfere
in the optical coupler and the output end of the coupler
and the final output from the circulator arm were con-
nected to the positive and negative terminals of the dual
balanced photodetector. The sample arm setup consisted of
a 2D galvanometer scanner and an objective scan lens of
N.A. = 0.055. The reference arm setup comprised a collima-
tor, a lens, and a highly reflective mirror. The interference
signal from the dual balanced photodetector was linearly
sampled by a 12 bit, 500 MS/s data acquisition card. The
depth-dependent reflectivity profile (A-line) was produced by
fast Fourier transformation of the sampled fringe signals, and
by using the galvanometer scanner two-dimensional cross-
sectional OCT image was generated in real time. The sensi-
tivity of the OCT systemwas 105dB. The axial and transverse
resolutions of the system in air was 18 µm and 25 µm
respectively.

2) 1060 NM SS-OCT SYSTEM
The Santec IVS-1000 OCT systemwas powered by a VCSEL
tunable type swept source laser which was centered at
1060nm. The spectral bandwidth full width half maximum
(FWHM) of the swept source laser was 100nm. The axial scan
rate of the swept laser was 100 kHz. The output beam from
the laser source was connected to Mach–Zehnder interferom-
eter (MZI). The MZI setup consisted of an optical coupler
of 50:50 ratio. The two output ends of the couplers were
connected to a reference arm and a sample arm. The reference
beam was connected to a polarization controller followed by
an optical circulator. The first output end of the circulator
was connected to a collimator, a focusing lens and a highly
reflective mirror. The back-reflected beam from the mirror
was obtained from the final output arm of the circulator.
The sample beam from the beam splitter was connected
to a polarization controller followed by an optical coupler.
The first output end of the circulator was connected to a

collimating lens through a fiber connector. The collimated
beam was then aligned onto two-axis galvanometer mirror
scanners followed by an objective lens which focused the
sampling beam on to the sample surface. The back-reflected
sample arm beam was collected in the final output arm of
the optical circulator connected in the sample arm. The path
length-matched back-reflected sample arm and reference arm
optical beams were then coupled for interference using an
optical coupler. The final interfered signals from the outputs
of the coupler arms were then connected to a dual-balanced
photodetector. The final signal was linearly sampled using
a high-speed data acquisition 12 bit, 100 MHz board. The
depth-dependent reflectivity profile (A-line) was produced by
fast Fourier transformation of the sampled fringe signals, and
a synchronized control circuit (SCC) two-axis galvanometer
mirror scanners were controlled for generating continuous
two-dimensional cross-sectional OCT images in real time.
The sensitivity of the OCT system was 101dB. The axial
and transverse resolutions of the system in air was 16µm
and 20µm respectively. We used a scan range of 6mm for
acquiring 2D OCT images. The scan range was maintained
in both SS-OCT systems for all in vivo experiments.

III. DETECTION ALGORITHMS FOR IDENTIFICATION OF
HUMAN GINGIVAL SULCUS
A. CANNY AND SOBEL OPERATORS FOR DETECTION OF
THE GINGIVAL SULCUS
For detection of gingival sulcus using the Sobel operator,
we used two 3 × 3 masks. One estimated the gradient in the
x-direction (axial/ depth) and the other estimated the gradient
in the y-direction (transverse/lateral). The algorithm calcu-
lates the gradient of the image intensity at each point in the
image. The algorithm then calculates the direction in which to
increase the image intensity at each point from bright to dark.
This identifies image areas with darker or brighter intensity
contrast, representing the edges in the final image.

In the case of the canny detection algorithm, the image
is initially blurred to reduce noise. The canny operator then
takes the directional gradient of all points in the entire image,
in the x and y directions, and marks the gradients with larger
magnitude as edges. The magnitude of the gradient of each
pixel is checked as to whether it is greater than the next
pixel in either its positive or negative direction perpendicular
to the gradient. If the pixel is not greater than either of the
magnitudes it is suppressed. Finally, the edges are highlighted
with both a high and low threshold. In the final operation,
the edges are determined by suppressing the edges that are not
connected to a stronger edge with high gradient magnitude.

B. PROPOSED AVERAGED INTENSITY DIFFERENCE
ALGORITHM FOR DETECTION OF THE
GINGIVAL SULCUS
In our proposed algorithm, edge detection is carried out by
calculating the averaged intensity difference at every pixel,
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FIGURE 2. Flow diagram representation illustrating the steps involved in
averaged intensity difference edge detection algorithm.

in order to identify the boundaries in the image. The algorithm
was written in Matlab. The flow diagram illustrating the
steps involved in the averaged intensity difference detection
algorithm is shown in Figure 2.

The workflow begins with loading the OCT image,
followed by scanning the image pixels; the line detection
algorithm. The line detection algorithm comprises two pro-
cesses, vertical and horizontal linearity. In the horizontal
detection process, a pixel window size of n×m is selected, and
the center pixel is assigned as the target pixel. Then the pixel
window is split into two sub-pixel windows, the horizontal
top, and the horizontal bottom, with the center row containing
the target pixel in both the sub-windows. The intensity of all
of the pixels within the horizontal top sub-pixel window is
summed and averaged, as are those in the horizontal bottom
sub-window. The difference between the average intensities
of the horizontal top and the horizontal bottom is calculated,
and absolute modulus of the value is estimated. This absolute
modulus value is comparedwith a predefined threshold value.
If it is higher, the target pixel is assigned a value of 1. If it
is less than the threshold it is assigned a value of 0. The
target pixel is then shifted by one pixel, moving the initial
full pixel window of size n×m by one pixel in the horizontal
direction. The target pixel value is re-calculated as previously
described.

The same procedure is executed in the vertical direc-
tion These two processes are executed for the entire image,
thereby assigning a value of either 1 or 0 to each pixel in the
OCT image. If the final processed OCT image is does not
meet the requirements for edge detection then the predefined
threshold value is increased or decreased as needed.

FIGURE 3. Detailed step by step process involved in averaged intensity
difference edge detection algorithm with an example of OCT image.

FIGURE 4. Detailed explanation of vertical and horizontal linearity
process.

Figures 3 and 4 shows the details of the averaged intensity
difference edge detection algorithm, using an example of
an OCT image. The averaged intensity difference detection
algorithm can be classified into six individual steps. Step 1 is

VOLUME 7, 2019 73079



N. K. Ravichandran et al.: Averaged Intensity Difference Detection Algorithm for Identification of Human Gingival Sulcus

loading the OCT image and assigning a fixed pixel window
size of n × m and m × n horizontal linearity and vertical
linearity processes, respectively. The values of m and n are
chosen according to the sensitivity requirements of the edge
detection of the OCT image. In step 2, the center pixel is
assigned as the target pixel in its respective horizontal and
vertical pixel windows (Figure 3).

Step 3 is the execution of the horizontal and vertical
linearity process. This step can be further classified as
steps 3 (A), (B), and (C) (Figure 4). In this step, after assign-
ing the pixel window size, each horizontal and vertical
linearity pixel window is sub-divided into sub-pixel windows
in such a way that the target pixel (center pixel) is present in
both sub-pixel windows. In step 3 (A) the row containing the
target pixel is present in both the horizontal top and horizontal
bottom sub-pixel windows. Then all of the intensities of the
pixels in the horizontal top sub-pixel window are summed
and averaged and assigned as AH1A. Similarly, all the inten-
sities of pixels in horizontal bottom sub-pixel window are
summed and averaged as AH2A. If the absolute modulus of
the difference between AH1A and AH2A is higher than the
predefined threshold value, the target pixel (TPH ) is assigned
the value 1, while if the absolute modulus of the difference
between AH1A and AH2A is less than the predefined threshold
value, the target pixel (TPH ) is assigned the value 0. As in
step 3 (A), in step 3 (B) for the vertical linearity pixel window,
the column containing the target pixel is present in both the
vertical left and vertical right sub-pixel windows. All of the
intensities of the pixels in the vertical left sub-pixel window
are summed and averaged and assigned as AV 1A. All of the
intensities of the pixels in the vertical right sub-pixel window
are summed and averaged as AV 2A. If the absolute modulus
of the difference between AV 1A and AV 2A is higher than
the predefined threshold value, then the target pixel (TPV ) is
assigned the value 1, if the absolute modulus of the difference
between AV 1A and AV 2A is less than the predefined threshold
value, then the target pixel (TPV ) is assigned the value 0.
Finally, the values of TPH and TPV are compared. If TPV is
0 and TPH is 1, or vice versa then the final target pixel (TPF )
is assigned a value of 1. If both TPH and TPV are 0, then
the final target pixel (TPF ) is assigned to be 1., If both TPH
and TPV are 1, then the final target pixel (TPF ) is 1. In the
case of edge and corner pixels, as shown in step 3 (C) of
Figure 4, when the target pixel (center pixel) is in the first
column or row, we copy the data values of pixels in the target
columns or rows and shift and paste in vertical left or vertical
right, or in the horizontal top or in the horizontal bottom as
required (Figure 4C).

In step 4, the target pixel is shifted by one pixel horizon-
tally. This is achieved by shifting the fixed pixel window size
by one pixel to the right. Step 5 is a repetition of step 3 and 4
until all of the pixels in the 2DOCT image have been assigned
as a target pixel and are assigned a value of either 0 or 1.When
executing step 4, if the moving of the fixed pixel window
reaches the corner or the edge of any side of the OCT image
then the pixel window is moved down and then moved to

FIGURE 5. Comparative analysis of Sobel, canny and averaged intensity
difference edge detection algorithms using phantom samples. Five
phantom samples (solid lines) with a black background induced with a
tilt angle of 0◦, 30◦, 45◦, 60◦, and 90◦ created using Microsoft office
toolkit, which was then saved as a JPEG image. Sobel, canny and
averaged intensity difference edge detection algorithms were used for
detecting the edges of all five samples.

the left or right as required. Step 6 is the final projection of
the edge-detected 2D OCT image by the averaged intensity
difference algorithm. If the final image is not as expected,
and if the gingival sulcus is not sufficiently visible, then the
threshold value which is used in the algorithm is changed as
needed to achieve an identifiable gingival sulcus in the final
processed OCT image.

IV. RESULTS AND DISCUSSION
A. COMPARISON OF EDGE DETECTION ALGORITHMS
USING PHANTOM
To evaluate the efficiency of the proposed algorithm for edge
detection, and to compare it with the canny and Sobel edge
detection algorithms, we created a phantom sample. The
phantom was created using the Microsoft office toolkit in
form of five solid lines of continuous intensity (white) on
a black background. It was then saved as a JPEG image
with dimensions 32.25mm (height) by 165.6mm (width). The
length of each solid line in the phantom 31.5mm and width
0.508mm. The crated five solid lines had angles of 0◦, 30◦,
45◦, 60◦, and 90◦, respectively. The length, width, and angles
of the solid lines were selected as necessary to evaluate the
efficiencies of the detection algorithms.

Figure 5 shows the original phantom image with the final
edge detected images as executed by the canny, Sobel and
averaged intensity different algorithms. Figure 5 shows that
all three algorithms detect the edges of the solid lines in the
phantom at all angles. Upon closer inspection, however, it is
apparent that as the tilt angle of the solid lines increases the
canny and Sobel edge detection algorithms show an increase
in the width of the solid lines detected. It can also be seen
that the edges detected by these algorithms are not smooth
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FIGURE 6. Sobel, canny, and averaged intensity difference edge detection
algorithm for gingival sulcus identification in 1060 nm SS-OCT images.
(A), (E), (I), and (M) are the original 2D OCT images of human gingival
sulcus, obtained using 1310 nm SS-OCT system. (B), (F), (J), and (N) is the
edge detected OCT images using a Sobel edge detection algorithm.
(C), (G), (K), and (O) are the edge detected OCT images using canny edge
detection algorithm. (D), (H), (L), and (P) are the edge detected OCT
images using the proposed averaged intensity difference edge detection
algorithm. The identified gingival sulcus is shown within the yellow
dotted ellipse in the edge detected images.

in the solid lines tilted at 30◦, 45◦, and 60◦. In the case
of the proposed averaged intensity difference edge detection
algorithm, the width of the edge detected solid lines in all tilt
angels is constant, with a very small or negligible increase
when compared to a horizontal solid line (0◦ tilt) or vertical
solid line (90◦ tilt). Additionally, the edges detected in tilted
solid lines have smoother edges when compared with those
detected by the two canny and Sobel algorithms.

B. DETECTION IDENTIFICATION OF HUMAN GINGIVAL
SULCUS USING THE PROPOSED ALGORITHM
Eight healthy patients were separated into two groups of four.
The first group of patients was imaged using the 1310nm
SS-OCT system and the rest were imaged using the 1060nm
SS-OCT system. To avoid involuntary movements by the
patients, they were seated in an upright position with their
chins rested on a bench-top head holder, and a lip retractor
was positioned to keep their mouths open during the imaging
process. All OCT imaging was done on the patients’ lower
central incisors, and the scanning position was aligned such
that the region of interest was focused on the boundary
between tooth and gingival tissues. The sample arm focusing
was set to few micrometers below the gingival tissue where
the gingival sulcus is present. Multiple 2D OCT images were
acquired for each patient along the region of interest, so that
the best fitting OCT image could be selected, where the
gingival sulcus could be seen in the OCT image.

Figure 6 shows the 2D cross-sectional OCT images of
samples that were acquiredwith the 1060nmSS-OCT system.

FIGURE 7. Sobel, canny, and averaged intensity difference edge detection
algorithm for gingival sulcus identification in 1310 nm SS-OCT images.
(A), (E), (I), and (M) are the original 2D OCT images of human gingival
sulcus, obtained using 1310 nm SS-OCT system. (B), (F), (J), and (N) is the
edge detected OCT images using a Sobel edge detection algorithm.
(C), (G), (K), and (O) are the edge detected OCT images using canny edge
detection algorithm. (D), (H), (L), and (P) are the edge detected OCT
images using the proposed averaged intensity difference edge detection
algorithm. The identified gingival sulcus is shown within the yellow
dotted ellipse in the edge detected images.

In Figure 6, images (A), (E), (I), and (M) are the original 2D
cross-sectional OCT images. The enamel, dentin and gingival
tissues are marked with solid arrows in the OCT images.
Images (B), (C), and (D) are the edge-detected final images
obtained using the Sobel, canny and averaged intensity differ-
ence algorithms respectively. Images (F), (G), and (H) are the
final processed images of sample (E), images (J), (K), and (L)
are the final processed images of sample (I), and images (N),
(O), and (P) are the final processed images of sample (M).
In all edge-detection processed images, the estimated position
of the gingival sulcus is shown with a yellow dotted ellipse.
From the processed images it can be observed that images
processed with the Sobel algorithms show the least identi-
fiable gingival sulcus. In the canny edge detected images,
the gingival sulcus is fairly visible, but the detected gingi-
val sulcus lacks continuity, and the structure looks irregular
(Image C). In the averaged intensity difference edge detected
images, the continuity and intensity of the gingival sulcus are
apparent.

Figure 7 shows the 2D cross-sectional OCT images of sam-
ples that were acquired using the SS-OCT system with a cen-
ter wavelength of 1310nm. In Figure 7, images (A), (E), (I),
and (M) are the original 2D cross-sectional OCT images.
When compared with the 1060nm OCT images, the images
acquired at 1310nm show more prominent depth resolution
of structures. The internal structures of the samples, such as
enamel, dentin, and gingival tissues, are marked with solid
arrows in the OCT images. Images (B), (C), and (D) are the
edge-detected final images obtained using the Sobel, canny
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TABLE 1. Pixel window size, the total time taken for processing, and
intensity threshold values used for canny, Sobel, and averaged intensity
difference edge detection algorithms executed for 1060 nm SS-OCT 2D
images.

and averaged intensity difference algorithms respectively.
Images (F), (G), and (H) are the final processed images of
sample (E); images (J), (K), and (L) are the final processed
images of sample (I); and images (N), (O), and (P) are the
final processed images of sample (M). In all of the edge-
detected images, the estimated position of the gingival sulcus
is shown with a yellow dotted ellipse. In the case of the
Sobel edge-detected images the identification of the gingival
sulcus is much more difficult and the continuity is lower in
comparison to the other detection algorithms. In the canny
edge-detected images the continuity of the gingival sulcus is
consistent, as seen in Figure 6, images (C), (G), (K), and (O).
The irregularity in the shape of the identifiable gingival sulcus
can lead to the wrong identification of the surrounding gin-
gival tissues for the gingival sulcus. In the averaged intensity
difference edge-detected images, the continuity and intensity
of the gingival sulcus are consistent. The proposed algorithm
highlights the intensity of the gingival sulcus without chang-
ing the detection of its shape or thickness.

Tables 1 and 2 illustrate the pixel window size, total
time taken for processing, and intensity threshold values
used for the canny, Sobel, and averaged intensity difference
edge detection algorithms executed on 1060nm SS-OCT and
1310nm SS-OCT 2D images of the human gingival sulcus.,
The total time taken by edge detection algorithms varies
according to the image size. Also, using a trial and error
method, the intensity threshold values for the edge detection
algorithms was different for each 2D image. This result was
due to variations in the thickness of the gingival tissues,
and the visibility of the gingival sulcus in OCT images. The
averaged values along with the standard deviation of the
total time taken to process the images for different intensity
threshold values are shown in Tables 1 and 2.

TABLE 2. Pixel window size, the total time taken for processing, and
intensity threshold values used for canny, Sobel, and averaged intensity
difference edge detection algorithms executed for 1310 nm SS-OCT 2D
images.

From the values shown in these tables, we can observe that
the fastest edge detection algorithm is the Sobel algorithm,
but the edge-detected images were lower in sensitivity for
identification of the gingival sulcus. The canny edge detection
algorithm takes almost three times that of the Sobel edge
detection algorithm, but the final images have higher sensitiv-
ity for the identification of the gingival sulcuswhen compared
to the Sobel algorithm.

The averaged intensity difference algorithm takes longer
to process images in comparison to the canny and Sobel
methods. Even though the time taken for processing is higher,
the final edge-detected OCT images showed much higher
sensitivity for identification of the gingival sulcus in the
images. We used two types of pixel window size, 7 × 7 and
9 × 7. We observed that the bigger the pixel window size,
the longer the processing time for the images, and the clearer
the gingival sulcus in the final processed images.

V. CONCLUSIONS
We propose a novel edge-detection algorithm, termed aver-
aged intensity difference for identification of the gingival sul-
cus in OCT images. The efficiency of our proposed algorithm
was compared with conventional edge detection algorithms
such as Sobel and canny edge detection. Phantom samples
generated using the Microsoft office toolkit were utilized
for comparative analysis of all three detection algorithms.
2D OCT images of in vivo human gingival sulcus, acquired
using 1310nm SS-OCT and 1060nm SS-OCT were used for
testing the efficiency of the proposed algorithm and for com-
parative analysis of the proposed algorithm with the canny
and Sobel edge detection algorithms. The Sobel algorithm
was highly sensitive to noise and the edges detected for the
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gingival sulcus were not continuous or consistent, possibly
due to the presence of speckle noise in OCT images. The
canny algorithm blurred the OCT images, thereby reduc-
ing the noise in the image, but resulting in changing the
microstructural details in the OCT image. This, in turn, pro-
duced an irregular structure of the detected gingival sulcus.
The proposed edge detection algorithm was able to pro-
duce images of the gingival sulcus which were clearer and
had increased intensity in the OCT images. There were no
changes to the microstructures detected in the final processed
images. Even though the proposed algorithm has a longer
processing time when compared to the canny and Sobel
algorithms, it is still fast enough for rapid assessment of
OCT images. We believe that the proposed algorithm can be
beneficial for researchers and clinical practitioners who use
OCT imaging techniques to visualize and assess the gingival
sulcus in vivo during periodontal diagnosis.
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