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ABSTRACT Because of the need for processing and managing the massive amounts of big data in
smart/wearable devices and driverless vehicles, semiconductor companies are focusing on developing
byte-addressable non-volatile memory (NVM)-based storage systems. The byte-addressable NVMs, such
as phase-change memory, resistive memory, and magnetoresistive memory, are regarded as an alternative to
NAND flash memories. There have been many proposals and studies on the use of NVM as main memory in
the memory hierarchy. However, there has not been much academic research on using NVM as a substitute
for NAND flash memories. This paper provides a system architecture for an NVM-based solid state drive
based on some speculations/assumptions on the hardware characteristics of NVMs. It applies the previously
proposed address-mapping algorithms of conventional solid state drives to the NVM-based solid state drives
and examines their suitability. The optimization of I/O parallelism of static and dynamic address mapping
algorithms is compared and analyzed. This paper also observes the effect of log block policies on the
hardware characteristics of the NVMs.

INDEX TERMS Cache storage, flash memory, nonvolatile memory, software systems, wearable computers.

I. INTRODUCTION
Recently, many semiconductor companies have begun focus-
ing on the ways to process and manage the massive amounts
of big data in smart/wearable devices and driverless vehicles.
Such devices and machines require high-performance storage
systems. As result, the major semiconductor vendors are
developing byte-addressable non-volatile memory (NVM)
based storage systems, as an alternative to DRAMandNAND
flash memories. The byte-addressable NVMs, such as phase-
change memory, resistive memory, and magnetoresistive
memory, promise to revolutionize I/O performance. Many
semiconductor companies predict that byte-addressable
NVM will be used in smart phones, wearable devices, and
Internet-of-Things devices, because they provide faster read
and write performance and longer durability than NAND
flash memory. As a result, many researchers are attempting
to determine where to place byte-addressable NVMs in the
memory hierarchy.

To address the limited scalability of DRAM, there
have been many proposals placing NVM on the
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processor’s memory bus alongside the conventional DRAM,
leading to hybrid volatile/non-volatile main memory sys-
tems [1]. In contrast, there have been no academic
proposals, studies, nor mass-produced devices using
byte-addressable NVMs as a secondary device. There have
been some speculations on 3D Xpoint [2], which reveals a
glimpse of new high-performance secondary storage. How-
ever, the materials and techniques used in the products
remain unknown [3]. As a result, this paper explores the
possibility of developing a solid state drive (SSD) based
on byte-addressable NVM (BNVM-SSD) instead of NAND
flash memory for secondary storage. This paper provides
a system architecture for a BNVM-SSD based on some
speculations/assumptions on byte addressable NVMs. Fur-
thermore, to provide efficient data transfer between the file
system and BNVM-SSD, the BNVM-SSD requires a device
driver. Fortunately, there are many flash translation layer
(FTL) algorithms based on NAND flash memory. Therefore,
this paper evaluates existing NAND-based address mapping
algorithms with respect to the I/O parallelism of BNVM-
SSD, and finally analyzes the efficiency of the address
mapping algorithm with respect to the performance of
the BNVM-SSD.
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TABLE 1. Acronyms definitions.

II. RELATED WORK
A. STRIPING TECHNIQUES
Unlike other storage devices, NAND flash memory has an
erase-before-write characteristic [4]. In contrast, BNVMs do
not require a costly erase operation before updating data [5].
Although the hardware characteristics of NAND flash mem-
ories and BNVMs are very different, both memories need
to fully utilize I/O parallelism to increase the overall perfor-
mance. As a result, this section reviews the previous address
mapping algorithms for NAND flash memory and analyzes
the advantages and disadvantages of implementing them on a
BNVM-SSD.

The occurrence of I/O parallelism depends upon the
address mapping algorithm of the FTL, because the address
mapping algorithm determines ‘‘where’’ to write the incom-
ing data. An address mapping algorithm adopts either a
static or dynamic striping technique for I/O parallelism [6].
A static striping technique maps logical addresses to physical
addresses beforehand. Such a technique predetermines the
corresponding physical addresses according to the physical
offsets of the channel/chips/plane/die/block. A dynamic strip-
ing technique, in contrast, allocates logical addresses to phys-
ical addresses on any ‘‘idle’’ chip, regardless of the physical
offsets.

Hu et al. [6] and Chen et al. [7] compared the aver-
age response time of a static striping technique to that
of a dynamic striping technique in NAND flash memory.
Their experimental results indicate that the response time of
dynamic striping outperforms that of static striping for var-
ious workloads, because multi-channel SSDs cannot access
‘‘busy’’ chips. As a result, a static striping technique may
delay the response time when a write request happens to be
on a busy chip. In contrast, a dynamic striping technique can
avoid such delay by adaptively distributing the write requests
to the idle chips. However, it suffers from the need for a large
mapping table, because it records all the logical-to-physical
addresses in DRAM or NAND flash memory.

B. NAND-BASED ADDRESS MAPPING ALGORITHMS
1) PAGE-LEVEL MAPPING SCHEME
The page-level mapping scheme consists of the algorithms
that maintain the logical-to-physical address mapping table
in a read/write unit. It can employ both static and dynamic
striping techniques. A static page-level mapping scheme

predetermines the logical-to-physical addresses. It does not
need to maintain a mapping table in DRAM or in the
flash memory array, because the mapping information does
not change in the static striping technique. In contrast,
the dynamic page-level mapping scheme must indicate the
physical page numbers corresponding to the logical page
numbers (LPNs) [8], because the mapping information can
be freely allocated and changed in the dynamic striping
technique. The dynamic page-level mapping scheme requires
a total of 64 MB per 128 GB of a triple-level cell SSD.
Under the assumption that BNVM-SSDs contain a controller
similar to those in NAND-SSDs, the mapping table size is
determined by multiplying the total number of pages by the
mapping information size.

Because the page-level mapping table for the dynamic
striping technique is too large to upload onto the internal
DRAM [9], there have been some proposed methods that
store the page-level mapping information in the flashmemory
array. Qin et al. [10] suggested managing the page-level map-
ping information in the out-of-band (OOB) area of each page.
According to their experiments, MNFTL [10] is capable of
storing the page-level mapping information of a block within
the OOB area of two physical pages. As a result, MNFTL
reads the two latest physical pages within a block to inquire
about the page-level mapping information of the correspond-
ing physical block. Likewise, Gupta et al. [11] dedicated a
few blocks for storing page-level mapping information.

As shown above, a dynamic page-level mapping scheme
requires additional read/write operations for retrieving the
mapping information from the flash memory array. As a
result, a dynamic page-level mapping scheme may reduce
the number of erase operations by changing the mapping
information compared to that of the static page-level mapping
scheme; however, a static page-level mapping scheme may
perform better in sequential read/write patterns [6].

2) BLOCK-LEVEL MAPPING SCHEME
Unlike a page-level mapping scheme, a block-level mapping
scheme cannot apply dynamic striping at page-level, because
it stores only physical block numbers (PBNs) in its mapping
table [12]. As a result, block-level mapping information can
be freely altered, but the data must be read/written according
to the offset within a block. There are 216 blocks in 128 GB
of triple-level-cell based SSD, and each block-level mapping
entry requires 3 bytes. As a result, a block-levelmapping table
requires only 0.19 MB.

The mapping table size of the block-level mapping scheme
is very small compared to that of the page-level mapping
scheme. However, the block-level mapping scheme cannot
stripe the sequential data at channel- or chip-level, because
it must write the data according to the offset within a block.
For instance, assume that the file system issues the write
request ‘‘w 0 A0-3, 4,’’ which says to write data A of
size 4 starting from LPN 0. Moreover, assume the physi-
cal block corresponding to logical block number (LBN) 0
(LPN 0–LPN 128) exists in chip 0. In this case, four write
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FIGURE 1. Schematic structure of BNVM-SSD.

operations corresponding to LPN 0, LPN 1, LPN 2, and
LPN 3 are issued to chip 0, even though chips 1, 2, and 3 could
be idle. As a result, the total response time for ‘‘w 0 A0-3’’
is four write operations in the block-level mapping scheme.
Note that, in the same scenario, if all chips are in the idle
state, a static/dynamic page-level mapping scheme requires
only one write response time for writing A0, A1, A2, and A3
on chips 0, 1, 2, and 3, respectively.

3) LOG-BLOCK POLICIES
Yao et al. [13], Kim et al. [14], Park et al. [15], Jung et al.
[16], and Shim et al. [17] proposed adding log-block poli-
cies to the block-level mapping scheme. These log-block
policies allocate a fixed percentage of log blocks as a tem-
porary buffer for updates and share them with the entire
SSD. The policies allocate 0.1% of flash memory for log
blocks and maintain a page-level mapping table for the log
blocks in DRAM. Such log-block policies differ with respect
to how the log blocks are allocated to the data blocks.
Qin et al. [10], Yao et al. [13], and Kim et al. [14] proposed
dedicating one log block per data block. When an update
occurs on a data block, they dedicate one log block for the
corresponding data block and write the update to that log
block. Because it dedicates one log block for one data block,
this log block policy is referred to as ‘‘coarse associativity’’
in this study. In contrast, Shim et al. [17] proposed ‘‘full
associativity,’’ which allows the sharing of all log blocks for
all the data blocks.

III. BYTE-ADDRESSABLE NON-VOLATILE SSD
A. HARDWARE ARCHITECTURE
Figure 1 overviews the hardware architecture and character-
istics of BNVM-SSD. There have not been many academic
proposals/researches on using NVMs as a secondary storage,
and there is not yet a commercial BNVM-SSD product. As a
result, for the purposes of this study, the hardware architec-
ture of BNVM-SSD was designed based on the following
assumptions.

We first assume that the BNVM-SSD consists of a con-
troller, an internal DRAM/SRAM, and NVM chips. The
BNVM-SSD uses an internal DRAM/SRAM under the
assumption that the read/write speed of DRAM/SRAM out-
performs that of NVM. When the file system issues the
read/write requests, the controller determines ‘‘where’’ to
write the data. We also assume that the controller contains a
software layer called the non-volatile translation layer (NTL),

which plays a role very similar to that of NAND flash mem-
ory’s FTL. The main role of NTL is to convert the given
logical addresses to physical addresses of the NVM array
according to its address mapping algorithm. The controller
maintains the logical-to-physical address mapping table in
the internal DRAM/SRAM.

A BNVM-SSD is assumed to be composed of multiple
chips, and we assume it uses channel/chip-level parallelism,
which enables each chip to read/write the incoming data
independently. Furthermore, it does not require the units of
bank, plane, or block, because it does not require an erase
operation, as NAND-SSDs do. Finally, this study assumes
that the BNVM-SSD is read or written using the units of
a sector or page. Yue and Zhu [18] and Mittal et al. [19]
proposed the Parallel Chips Phase Change Memory (PCM),
which augments a PCM bank with extra chips to increase the
number of bits that can be written to the bank in parallel.
According to their experiments, the increased write unit size
reduces the number of write units and hence shortens the
time required to complete writing a cache line to PCM [20].
This paper applies the samemethodology to the BNVM-SSD.
To remain compatible with current file systems, the units of
write/read are sectors (512 B) or pages (2 KB or 4KB).

B. HARDWARE CHARACTERISTICS
We assume that the BNVM-SSD is composed of multiple
phase change memory (PCM) chips. However, note that
other NVMs, such as resistive memory and magnetoresis-
tive memory, have the potential to be implemented in a
BNVM-SSD, and the proposed approach in this study is
not limited to PCM chips [21]. The hardware characteristics
of PCM are compared with those of NAND flash mem-
ory, to evaluate the implementation of existing NAND-based
mapping algorithms for BNVM-SSD in Section IV.

The most distinct difference between PCM and NAND
is the overwrite operation. Unlike NAND flash memory,
PCM is capable of updating data without a preceding erase
operation. However, the cost of an update is larger than that
of writing on an empty space [22]. In this study, any write
operation executed on an empty page is referred to as a
‘‘clean write’’ and an update is referred to as a ‘‘dirty write.’’
Although PCMdoes not have an erase operation as in NAND,
it is supported by a refresh operation, which cleans a fixed
number of read/write units. A PCM array is divided into
refresh units, and each refresh unit is composed of a fixed
number of read/write units. For convenience, the terminol-
ogy used for NAND-SSD is re-used for the BNVM-SSD.
Hence, read/write and refresh units are defined as ‘‘pages’’
and ‘‘blocks,’’ respectively.

Once a page is occupied with data, PCM cannot execute
a clean write unless a refresh operation precedes it on the
corresponding block. Otherwise, PCM must execute a dirty
write on the page. However, note that the cost of a refresh
operation (e.g., 50–100 ms) is much higher than that of a
clean (200 µs) or dirty write (250 µs) [22]. As a result, NTL
must carefully consider the usage of the refresh operation
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to avoid degrading performance. In addition to performance,
each cell in PCM has a limited life cycle for write/refresh
operations. If a page has been written or refreshed over a cer-
tain threshold (e.g., 1,000,000 times), the corresponding page
may not function correctly and is thus unable to guarantee
data integrity [22].

IV. PERFORMANCE EVALUATION
The following subsections describes the application of
existing address mapping algorithms to a BNVM-SSD and
observes their effect on its performance.

A. PAGE-LEVEL AND BLOCK-LEVEL MAPPING SCHEMES
1) COMPARISON
A BNVM-SSD is assumed to be composed of multiple
chips and use channel-/chip-level parallelism, which enables
each chip to read or write the incoming data independently.
Therefore, when a page-level mapping scheme is imple-
mented on a BNVM-SSD, it is capable of writing sequential
data on idle chips simultaneously. Let us assume that the file
system issues the command ‘‘w 0 A0-3, 4.’’ If chips 0, 1, 2,
and 3 are in the idle state, the page-level mapping scheme can
write data A0-3 in one write response time by simultaneously
issuing the write commands corresponding to A0, A1, A2,
and A3 on chips 0, 1, 2, and 3, respectively. Of course,
one write response time is only one possibility; the actual
write response time will differ depending upon the static and
dynamic striping techniques used.

As shown above, the page-level mapping scheme can
increase I/O parallelism using static or dynamic striping
techniques. In a BNVM-SSD, channel-/chip-level parallelism
is a very important factor for increasing data throughput,
because the BNVM-SSD does not have any other units, such
as banks, planes, or blocks, as in NAND-SSD (according
to the assumptions in Section III). Unlike the page-level
mapping scheme, the block-level mapping scheme maps
the logical-to-physical addresses in block units. It cannot
stripe the sequential data at channel- or chip-level, because
it bounds the logical addresses to their corresponding blocks.
Assume that the file system issues the write request ‘‘w
0 A0-3, 4.’’ The block-level mapping scheme first searches
for the corresponding physical block in its mapping table.
Here, we assume that the physical block mapped to LBN 0
(LPN 0 to LPN 127) is PBN 0 and PBN 0 exists in chip 0.
Because the block-level mapping scheme dedicates PBN0 for
LBN 0, it must access PBN 0 to write data A. As a result,
four consecutive write commands corresponding to A0, A1,
A2, and A3 are issued to chip 0 without considering other idle
chips. Because chip 0 cannot initiate the next write command
until the previous write command is finished, the block-
level mapping scheme consumes four write response times
to perform ‘‘w 0 A0-3, 4.’’

2) ANALYSIS
As shown in the above example, the block-level mapping
scheme delays the write response time in the BNVM-SSD,
because it cannot process the sequential data in the

TABLE 2. Experimental setup.

BNVM-SSD simultaneously. Here, the sequential data refers
to user data in which the logical addresses are sequential
and the data size is large. Unfortunately, real-life workloads,
especially multimedia data patterns, are mainly composed of
sequential data, although small sized random data may fre-
quently appear as an update. Because the block-levelmapping
scheme cannot read/write sequential data simultaneously,
the block-level mapping scheme is omitted in the following
experiments for the sake of brevity. However, the log block
policy mentioned in Section II.C is reviewed and applied
to the page-level mapping scheme to consider the frequent
updates of random data.

B. ANALYSIS OF STATIC AND DYNAMIC MAPPING
SCHEMES
1) COMPARISON
The main goal of this subsection is to analyze the differ-
ence in performance between pure static and dynamic page-
level algorithms in a BNVM-SSD. Readers may question
the reason for this comparison, because the dynamic page-
level mapping algorithm suffers from the need for a large
mapping table in a BNVM-SSD. However, the dynamic page-
level mapping algorithm is well-known for its optimized I/O
parallelism in NAND-SSDs. As a result, it is worthwhile
considering how compatible the static and dynamic page-
level mapping algorithms are with the hardware architecture
and characteristics of the BNVM-SSD.

The BNVM-SSD can overwrite data using a dirty write
operation or a refresh operation. The refresh operation cleans
a fixed number of read/write units, and therefore, it requires
a mechanism that collects the updates in a refresh unit.
Unfortunately, neither pure static nor dynamic page-level
mapping algorithms have such a mechanism. Furthermore,
the cost of a dirty write operation (250µs) is much smaller
than that of a refresh operation (e.g., 50–100 ms) [22], and a
refresh operation generates additional clean write operations
for copying the valid data to other areas. As a result, a dirty
write operation is used for the updates in the comparison
between the pure static and dynamic page-level mapping
algorithms.

The experimental setup is given in Table 2. The simulation
mimics the hardware characteristics of BNVM-SSD based
on the assumptions in Section III and runs various traces
from SNIA IOTTA [23] to ensure the experimental results are
reproducible. The cost of a clean write, dirty write, and erase
is 200µs, 250µs, and 100 ms, respectively. Traces A to F are
workloads from NEXUS5. Trace A contains write-intensive
patterns retrieved from music applications and Twitter.
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FIGURE 2. Comparison on static and dynamic page-level mapping schemes. (a) Trace A. (b) Trace B.
(c) Trace C. (d) Trace D. (e) Trace E. (F) Trace F.

Trace B contains write commands generated by executing
multiple copy operations. Traces C, D, and E are composed
of read and write commands retrieved from OS installation,
Facebook apps, and Google Maps, respectively. Finally trace
F consists of read and write patterns generated by multiple
activities in web browsers.

Figure 2 compares the static and dynamic page-level map-
ping algorithms on the BNVM-SSD using traces A to F.
The dynamic page-level mapping algorithm outperformed the
static page-level mapping algorithm for traces A and B by
reducing the total number of parallel_writes. In the results,
the number of parallel_ dirty_writes increased in trace B.
A close observation of trace B reveals that each paral-
lel_dirty_write in the dynamic page-level mapping algorithm
contained only one or two dirty write operations, and the
rest were clean write operations. In other words, the dynamic
page-level mapping algorithm reduced the total number of
parallel_writes by simultaneously performing the clean and
dirty write operations in one write response time. As a result,
the dynamic page-level mapping algorithm reduced the total
number of parallel_writes by increasing I/O parallelismwhile
increasing the number of parallel_dirty_writes.

For traces C, D, E, and F, the static page-level
mapping algorithm unexpectedly generated better perfor-
mance than the dynamic page-level mapping algorithm.
The static page-level mapping algorithm generated more

parallel_clean_writes than the dynamic page-level map-
ping algorithm, whereas the dynamic page-level mapping
algorithm generated more parallel_dirty_writes. For exam-
ple, for trace C, the static page-level mapping algorithm
generated 67,595 parallel_clean_writes and 38,714 par-
allel_dirty_writes, whereas the dynamic page-level map-
ping algorithm generated 64,797 parallel_clean_writes and
43,119 parallel_dirty_writes. The dynamic page-level map-
ping algorithm reduced the number of parallel_clean_writes
by 2,798, but generated an additional 4,149 paral-
lel_dirty_writes when compared with the static page-level
mapping algorithm. As a result, the dynamic mapping algo-
rithm increased the total number of parallel_writes, and there-
fore, the static page-level mapping algorithm outperformed
the dynamic page-level mapping algorithm for traces C,
D, and E. For trace F, the static page-level mapping algo-
rithm performed better than the dynamic page-level mapping
algorithm, although the static page-level mapping algorithm
generated more total parallel_writes. This is due to the fact
that the cost of a dirty write operation (250µs) is higher than
that of a clean write operation (200µs).

2) ANALYSIS
As shown above, the performance of dynamic and static
algorithms varied depending on the traces. This phenomenon
occurs because of the dirty write operation. When a chip is
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FIGURE 3. Comparison on static and static + full page-level mapping schemes. (a) Trace A. (b) Trace B.
(c) Trace C. (d) Trace D. (e) Trace E. (F) Trace F.

in a busy state, the static page-level mapping algorithm may
suffer from a performance delay while waiting for the chip’s
status to change to idle. In other words, it increases the overall
response time because the frequency and duration of the chip
occupancy increases. In a NAND-SSD, an erase operation is
the main cause of such chip occupancy, because its cost is
much higher than that of a write. As a result, the dynamic
striping technique outperformed the static striping technique
when the trace contained update patterns that frequently
triggered erase operations. However, a BNVM-SSD does
not have an erase operation. When an update occurs, both
static and dynamic page-level mapping algorithms execute a
dirty write operation according to its mapping information.
There is no practical performance delay for waiting for the
corresponding chip to finish a dirty write operation because
the response time deviation between a clean (200 µs) and
dirty write (250 µs) operation is only 50 µs [22]. As a
result, the dynamic page-level mapping algorithm does not
benefit from the flexible address mapping allocation in the
BNVM-SSD.

C. ANALYSIS ON FULL ASSOCIATIVE LOG POLICY ON
BNVM-SSD
Previous log block policies can be categorized into coarse
and full associativities, as explained in Section II. How-

ever, a BNVM-SSD cannot apply coarse associativity unless
it adopts a block-level mapping scheme. Unfortunately,
the block-level mapping scheme is not adequate for the
BNVM-SSD, as discussed in Section III.A. As a result,
full associativity is applied on the static page-level mapping
scheme and the effect on the BNVM-SSD is observed. For
convenience, the static page-levelmapping algorithmwith the
full associativity log policy is referred to as the static + full
algorithm.

1) MODIFICATION
When an update occurs, the static + full algorithm avoids
dirty writes by transferring the updates to the log area instead
of immediately executing a dirty write operation in the data
area. However, if the updates are immediately directed to the
log area, the static + full algorithm cannot take advantage
of chip-level I/O parallelism, thus increasing the number of
parallel_clean_writes. To avoid such a scenario, we allocate
a buffer for collecting the updates. The size of the buffer is the
page size times the number of chips. When the buffer is fully
filled with the updates, the static + full algorithm executes a
clean write operation on each chip’s log area simultaneously,
resulting in one parallel_clean_write.

When the log area is fully filled with the updates,
the statica + full algorithm triggers a merge process. Amerge
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process is a procedure through which the data area is
reclaimed when the log area is full. Its response time is given
as follows.

Tmerge = T_dirty_write×M_valid_pages

+T_refresh×refresh_units (1)

Here, the total response time for a merge process (Tmerge)
includes the time taken to copy pages corresponding to the
valid data from the log to the data area as well as the time
taken to refresh the log area. For the time taken to copy
the valid pages, the time for one dirty write (Tdirty_write) is
repeated for the maximum number of valid pages of the
refresh units of the log area (Mvalid_pages). For example, if
the log area contains two valid pages belonging to chip 0 and
one valid page for chips 1, 2, and 3, the total dirty write
response time consists of two dirty writes. The first valid
page belonging to chip 0 is concurrently executed with the
other valid pages of chips 1, 2, and 3. Then, the second
valid page belonging to chip 0 is transferred from the log
to the data area. The response time for a merge process
includes the time for refreshing the log area, as given in (1).
To simultaneously execute the refresh operations, the same
number of refresh units is allocated per chip for the log area,
and the refresh units are located in the same offset within
each chip. By concurrently executing the refresh operations,
the total refresh response time is given by repeating the time
for one refresh operation (Trefresh) by the number of refresh
units per chip (refresh_units).

2) ANALYSIS
The static + full algorithm is compared to the static page-
level mapping algorithm in Figure 3. As expected, the static+
full algorithm performed fewer parallel_dirty_writes for all
traces by collecting the updates and transferring them to the
log area. However, despite reducing the number of paral-
lel_dirty_writes, the static + full algorithm suffers from the
following problems.

a: REFRESH OPERATION
The full associativity log policy triggers a refresh operation
when the log area is fully filled with the data. Unfortunately,
a refresh operation costs 50 to 100 ms in PCM and is used
for erasing the entire data area. In other words, the controller
is not optimized for cleaning a group of pages in the cur-
rent PCMs [22]. In conclusion, a BNVM-SSD requires i) an
improvement in the performance of the refresh operation and
ii) to adopt a controller that can clean a group of pages if it is
to adopt the full associativity log policy.

b: INCREASE IN THE NUMBER OF PARALLEL_CLEAN_WRITES
The number of parallel_clean_writes drastically increases.
The static + full algorithm generates approximately
1.5 to 1.8 times more parallel_clean_writes than the static
page-level algorithm, as shown in Figure 3. However, a close
observation reveals that this unexpected performance degra-
dation is caused by the frequent occurrence of large updates.

The static + full algorithm collects the updates in the buffer
in order to write the updates on each chip’s log area simulta-
neously, as explained in this subsection. However, as a side
effect of implementing a buffer, the static + full algorithm
generates two parallel_clean_writes when the data is trans-
ferred from the buffer to the log area. Assume that chips 0
and 1 are busy processing the previous write request and the
buffer is fully filled with the data because of the large update.
The static + full algorithm accesses all the chip’s log area
simultaneously to transfer the data from the buffer to the log
area. However, in this case, the data in the buffer has to wait
for chips 0 and 1 to finish the previous write request, even
though the rest of the chips are in the idle state. As a result,
the static + full algorithm delays the response time by two
parallel_clean_writes whenever the buffer is full.

c: SUDDEN POWER-OFFS
In addition to degraded performance, the static + full algo-
rithm may suffer from a lack of data integrity if there is
a sudden power-off. Because it stores the updates in the
buffer temporarily before writing them to the log area,
the updates can be vulnerable to sudden power-offs. To deal
with this possibility, the BNVM-SSD will need to adopt
a power-off recovery mechanism, as in the NAND-SSD.
However, such a power-off recovery mechanism requires
additional accesses to the spare area of each page. As a result,
the static + full algorithm may need to increase the number
of parallel_clean_writes to implement a power-off recovery
mechanism.

V. CONCLUSION
To address the need for high I/O performance, byte-
addressable NVMs are attracting a lot of attention frommajor
semiconductor vendors. There have been many proposals
that place NVMs on the processor’s memory bus alongside
DRAM, leading to a hybrid main memory system. However,
there has been a lack of academic proposals/studies on using
NVMs as a substitute for NAND flash memories. This paper
provided a system architecture for the BNVM-SSD, reviewed
and applied static and dynamic mapping schemes, and ana-
lyzed the effect of the log policy on the BNVM-SSD. Accord-
ing to the experimental results, the performance of the static
and dynamic page-level mapping schemes varies depending
on the traces. In other words, the dynamic page-level mapping
scheme is not able to benefit from I/O parallelism, because
the BNVM-SSD does not have a block unit (erase) opera-
tion, as in conventional SSDs. Furthermore, the log policy is
not compatible with the current the hardware characteristics
(assumption/speculations) of the BNVM-SSDs, because the
performance cost of a refresh operation is too high compared
to that of a write operation. To benefit from the log policy,
the refresh operation will need to have smaller units and
improve its performance.

In this paper, the performance evaluation was performed
by a trace-driven simulation using various traces from
SNIA IOTTA. The simulation enables FTL designers to
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mimic the hardware characteristics of BNVM-SSD based on
the hardware assumptions and speculations, and also enables
other researchers to reproduce the experimental results.
However, the performance of such secondary storage could
also be influenced by the power consumption, material,
device size, and operation voltages. In future, as more infor-
mation on BNVM-SSDs is revealed (e.g., further announce-
ments or products), experiments are planned to evaluate
various address mapping algorithms on BNVM-SSD test
boards to measure the effect of power, operation voltages, and
material on performance. Furthermore, various wear-leveling
algorithms will be implemented on BNVM-SSD test boards
to determine their effect on durability.
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