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ABSTRACT In this paper, we consider the problem of joint target detection and tracking in compressive
sampling and processing (CSP-JDT). CSP can process the compressive samples of sparse signals directly
without signal reconstruction, which is suitable for handling high-resolution radar signals. However, in CSP,
the radar target detection and tracking problems are usually solved separately or by a two-stage strategy,
which cannot obtain a globally optimal solution. To jointly optimize the target detection and tracking
performance and inspired by the optimal Bayes joint decision and estimation (JDE) framework, a jointly
optimized target detection and tracking algorithm in CSP is proposed. Since detection and tracking are highly
correlated, we first develop a measurement matrix construction method to acquire the compressive samples,
and then a joint CSP Bayesian approach is developed for target detection and tracking. The experimental
results demonstrate that the proposed method outperforms the two-stage algorithms in terms of the joint
performance metric.

INDEX TERMS Compressive samples, joint decision and estimation, joint detection and tracking, joint
performance metric.

I. INTRODUCTION
Compressive sensing/sampling (CS) is a new theory of signal
acquisition that can acquire sparse signals at sub-Nyquist
rates and reconstruct the original signals through compressive
samples and recovery algorithms [1], [2]. Recently, applying
CS to radar systems has become a popular research topic,
especially in signal recovery, signal detection and parameter
estimation [3]–[5]. Since modern radar systems often work
on wide bandwidths, which require a high sampling rate
and processing speed to meet the real-time requirements in
transmission, calculation and storage, CS can alleviate these
pressures.

Most prevailing CS radars require complete or partial
recovery of the original signal. However, the recovery algo-
rithms often lead to problems of high computational com-
plexity and large time consumption due to their nonlinear
and iterative processes [6]. For many cases, such as target
detection, estimation and classification, reconstructing the
compressively measured radar signal is unnecessary. Thus,
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a new framework called compressive sensing and processing
(CSP) [6] is proposed. This approach can avoid the above
difficulties by processing the compressive samples directly
without signal recovery. Compared to Nyquist sampling and
processing (NSP), CSP possesses the ability to reduce the
computational pressure and the transmission burden for wide
bandwidth signals, but the low signal-to-noise-ratio (SNR)
of the compressive samples gives rise to the main difficulty
of CSP.

In recent years, CSP has been studied to solve many sig-
nal processing problems in radar systems, such as detec-
tion, classification, estimation, and filtering. The existing
compressive radar detectors in CSP can be mainly divided
into three categories. The first category consists of detectors
that are designed by directly using the compressive sam-
ples to achieve signal detection. In [7] and [8], the compres-
sive detectors based on matched filters are designed without
reconstruction. In [9], the compressive detection problem
with a low SNR is studied by considering the accumu-
lation of the compressive samples and the distribution of
the sparse signal nonzero element amplitudes. The detec-
tors in the second category are designed by constructing a
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measurement matrix with prior information. In [10] and [11],
compressive Bayesian detectors are proposed under the con-
dition that the prior probabilities of two hypotheses are
available. In addition, a random subspace detector is stud-
ied for unknown-parameter sparse signal detection [12], but
the fixed subspace must be acknowledged before detection,
which may limit the application of this detector. The third
category consists of detectors designed by optimizing the
transmitted waveform. In [13] and [14], waveform optimiza-
tionmethods without signal recovery are proposed to increase
the detection performance by increasing the SNR of the
transmitted waveform before detection.

The existing CS tracking algorithms mainly focus on how
to track time-varying sparse signals whose sparse nonzero
elements change slowly. Different types of filters based on CS
are exploited to reduce the workload when sensing dynamic
sparse signals, such as the CS-Kalman, CS-MUSIC, CS-
Bayesian, and CS-Particle filters [15]–[18]. However, these
filters are not suitable for radar target tracking when the target
signals are changing rapidly. To solve this problem, two com-
pressive tracking approaches have been studied in CSP. The
first approach, as shown in Fig. 1(a), uses detection before
tracking in CSP (CSP-DBT), where a CS detector [7]–[14]
performs the target detection first, and then a traditional
tracking filter accomplishes the target tracking. The second
approach, as shown in Fig. 1(b), uses tracking before detec-
tion in CSP (CSP-TBD), where novel methods are proposed
by feeding the tracking results to a compressive sampling
procedure to improve the detection performance at next time
step [19], [20]. In [19], an adaptive particle filter-based track-
ing algorithm is developed for radar target tracking, where the
filtered target result is adopted to construct the measurement
matrix for the next moment, and the signal detection is per-
formed in a compressive matched filter. In [20], a variational
Bayesian adaptive Kalman filter (VBAKF) method based on
a pretracking compressive subspace detector is developed for

FIGURE 1. Approaches for target detection and tracking in CSP:
(a) detection before tracking; (b) tracking before detection; (c) joint
detection and tracking.

target tracking, where the pretracking detector utilizes the
tracking result from the previous moment to improve the
detection performance at the current moment.

The above studies in CSP focus either on CS-detection
or CS-tracking only. The same problem also exists in the
NSP framework, i.e., target detection and tracking in radar
systems are optimized individually. In NSP, detection before
tracking (DBT) is the most widely used strategy, where
the detection is performed with different kinds of constant
false alarm rate (CFAR) detectors or generalized likelihood
ratio test (GLRT) detectors. Different tracking algorithms
are exploited for different tracking problems. Typically,
the Markovian jump system (MJS) and the interacting mul-
tiple model (IMM) algorithm can solve the maneuvering
target tracking problems [21]. The unscented Kalman filter
(UKF) [22], extended Kalman filter (EKF) [23], and parti-
cle filter (PF) [24] are exploited for nonlinear uncertainty
problems. The expectation-maximization (EM) [25] method
and variational Bayes (VB) [26] method are popular for
unknown parameter problems. The joint probabilistic data
association (JPDA) [27] and multiple hypothesis tracker
(MHT) [28] can handle multiple target tracking problems
by using data association. Moreover, to avoid data associ-
ation, the probability hypothesis density (PHD) filter [29],
cardinality probability hypothesis density (CPHD) [30], and
Bernoulli filter (BF) [31] can calculate the intensity of the
targets directly based on the finite set statistics (FISST).
However, the DBT may fail to handle weak targets with a
low SNR. Thus, the tracking before detection (TBD) strategy
is considered to improve the detection ability of weak tar-
gets. The prevailing TBDmethods include three-dimensional
matched filtering (3DMF-TBD) [32], Hough transform
(HT-TBD) [33], dynamic programming (DP-TBD) [34], and
PF-TBD [35]. The specific progress of the DBT and TBD
strategies can be found in comprehensive surveys [36]–[40],
but the DBT and TBD strategies still follow the individual
optimization approach, which does not take joint optimiza-
tion into account. Since target detection and tracking are
highly coupled, the separate solutions are likely to propa-
gate the cumulative errors, which means that poor detec-
tion may deteriorate the tracking result and that the error
yielded in the tracking filter can lead to incorrect target
detection. Intuitively, the joint optimization of detection and
tracking is more promising than separate solutions. Thus,
Li proposed a joint Bayesian approach to make the most of
the correlation between the decision and estimation (JDE)
[41]–[44]. In the JDE approach, the decision is to choose a
discrete value, which includes the detection, classification,
association and other problems over discrete data. Estimation
is a parameter inference problem, such as that of predic-
tion, filtering, smoothing and tracking. From the optimization
theoretic view, this joint approach can achieve a globally
optimal solution. Following the Bayes JDE framework, a con-
ditional JDE (CJDE) algorithm is developed in [42] to sim-
plify the calculation of JDE, and a recursive JDE (RJDE)
[43] is derived for the dynamic JDE problems. In [44], a joint
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tracking and identification (JTI) problem is handled by using
a compact CJDE (CCJDE) scheme to improve the joint per-
formance. However, to the best of our knowledge, the joint
optimization for target detection and tracking in CSP has not
yet been studied. Since compressive samples are different
from Nyquist samples, the optimal Bayes JDE in NSP cannot
directly deal with CSP problems.

Inspired by the optimal Bayes JDE, this paper proposes
a jointly optimized target detection and tracking (CSP-JDT)
method within the CSP framework, which can directly detect
and track a target with the compressive samples of radar
echo. As shown in Fig. 1(c), to optimize the CS-detection
and CS-tracking performance jointly, the tracking result is fed
back to the compressive sampling and tracking procedures.
This double closed-loop feedback structure can make the
most of the target tracking results and perform system adjust-
ment automatically. Specifically, the filtered target position
from the previous moment is utilized as a priori informa-
tion for the compressive sampling at the current moment.
In CSP-JDT, an adaptive compressive subspace detector is
first developed to detect whether there is a target in the
compressive samples, although this detector cannot obtain the
target position. Then, a JDT algorithm is adopted to locate and
track the target. Since the detection and tracking are highly
coupled, the proposed CSP-JDT defines a new CSP-JDT risk
that unifies the detection risk and tracking risk and presents
the optimal CSP-JDT solution by minimizing the risk. The
effectiveness of the proposed CSP-JDT is verified by han-
dling two illustrative JDT problems. The experimental results
show that the proposed detector in CSP-JDT can achieve a
high detection probability with a low SNR, and the proposed
CSP-JDTmethod outperforms the two-stage categories in the
joint performance metric (JPM).

The main contributions are given as follows:
1) A novel joint optimization method for target detection

and tracking in CSP (CSP-JDT) is developed in this paper.
Compared with the local optimization obtained by sepa-
rate CS-detection or individual CS-tracking, the proposed
CSP-JDT integrates the CS-detection and CS-tracking risks
in an effective way, which can guarantee the joint global opti-
mality of the detection probability and position estimation.

2) In this paper, a new CSP-JDT risk is derived, and the
optimal CSP-JDT solution is given. The CSP-JDT method
is proposed for processing compressive samples, which is
different from the optimal Bayes JDE for processing Nyquist
samples. Due to the direct processing of compressive sam-
ples, CSP-JDT can avoid the high computational complexity
caused by recovery algorithms.

3) CSP-JDT adopts a double closed-loop feedback struc-
ture, which can fully exploit the filtered target kinematic state.
First, CSP-JDT utilizes this prior information to construct the
measurement matrix and determines the subspace where the
target may exist. Different from the fixed subspace in [12],
the proposed subspace is adaptively changed with the prior
information, and it can further reduce the calculation amount
by reducing the detection range. Then, CSP-JDT uses the

prior information to jointly locate and track the target in the
subspace range, which can achieve a global optimization.
Thus, CSP-JDT can handle the coupled detection and track-
ing problem effectively.

4) By applying CSP-JDT to two dynamic JDT problems,
the superiority of CSP-JDT is demonstrated in the joint detec-
tion and tracking performance.

This paper is organized into five sections. Section II
presents important preliminary knowledge of sparse radar
signals and compressivemeasurements and briefly introduces
the Bayes JDE. Section III proposes the CSP-JDT method
and its solution. Section IV presents the experimental results
and the performance comparison with the two-stage methods.
Section V concludes the paper.

II. SYSTEM MODEL
A. SPARSE RADAR WAVEFORM MODEL
A radar echo is the reflection signal after the transmitted
signal s(t) encounters the targets, where t ∈ [0,T ], and T
is the pulse repetition interval. Suppose there are I targets,
and each target falls into one distance cell. Then, the received
waveform of the lth target is given by

gl(τl, t) = als(t − τl)ej2πvl t (1)

where τl , al and vl denote the delay, amplitude, and Doppler
shift, respectively, l = 1, · · · , I . Each al is assumed indepen-
dent of each other and obeys aGaussian distributionN (0, σ 2

x ).
The range and velocity are defined as dl = cτl

/
2 and ḋl =

cvl
/
2fc, where c denotes the speed of light, and fc is the carrier

frequency. Thus, the received radar echo is formulated as

r̃(t) = r(t)+ w(t) =
I∑
l=1

gl(τl, t)+ w(t) (2)

where w(t) obeys the additive white Gaussian noise distribu-
tion N (0, σ 2

0 ).
Because a target only falls into one distance cell in a

radar observation range, r(t) is indeed sparse. With the sam-
pling frequency fs, the received waveform length is N =
T fs. Suppose the radar observation interval is [D0,D1] and
the bandwidth is B, then the range resolution is 1d =
c
/
2B and the total number of distance cells is L =

(D1 − D0)
/
1d . r(t) is sparse in the received waveform space

9 = span{s1(t), s2(t), · · · , sL(t)}, where sl(t) = s(t −
τl)ej2πvl t , and τl is the delay.

B. COMPRESSIVE MEASUREMENT MODEL
In CS, the received radar echo r(t) can be com-
pressively sampled by a measurement matrix 8 =

span{φ1(t), φ2(t), · · · , φM (t)}, then the compressive samples
y = [y1, y2, · · · , yM ]T are given by

ym =
∫
∞

−∞

r(t)φm(t)dt =
I∑
i=1

ali

∫
∞

−∞

sli (t)φm(t)dt (3)

where m = 1, · · · ,M . Since the SNR of r(t) is decreased
in y, most existing CS detectors need to reconstruct the
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signal r(t) from y for target detection, which is time-
consuming [6]. However, the CSP detectors [7]–[14] can per-
form target detection without signal recovery, which canmeet
the real-time requirements for target tracking.

C. REVIEW OF THE BAYES JDE
Many practical applications often involve discrete and con-
tinuous uncertainties, such as target recognition and tracking
and target detection and tracking. These problems can be
considered as joint decision and estimation (JDE) problems,
where the decision and estimation affect each other. Two
prevailing methods for solving the JDE problems can be
summarized as follows: a) decision before estimation (DBE):
an optimal decision is determined by its own information,
and then a corresponding estimation is made by the estimator
based on this decision. Here, the estimation result fails to help
the decision, and the decision error may make the estimation
result worse. b) Estimation before decision (EBD): the esti-
mation is conducted first to assist the decision-making, where
the estimation error may lead to the reduction of the decision
performance.

To overcome the above drawbacks, Li proposed a new gen-
eralized Bayes risk by jointly solving the decision problem
and estimation problem [41]:

R̄ = 6
i
6
j
(αijcij + βijE[C(x, x̂)|Di,Hj])P{Di,Hj} (4)

where x̂ is the estimate of the true x.Hj denotes the jth hypoth-
esis, Di denotes the ith decision, and C(x, x̂) stands for the
estimating cost. cij is the decision cost, and E[C(x, x̂)|Di,Hj]
is the expectation of the conditioned estimation cost when Di
is decided but Hj is true. According to practical JDE prob-
lems, the nonnegative decision cost weight αij and estimation
cost weight βij are chosen differently.

This risk possesses the following advantages: (a) It is a
joint risk that considers the decision cost, the estimation
cost and their coupling together. (b) The hypothesis set and
the decision set need not have one-to-one correspondence.
(c) The weight factors (αij, βij) provide additional flexibility.
Thus, it theoretically outperforms the two-stage methods.

Following the concept of the JDE, a CJDE risk [42] is
proposed to simplify the calculation of the JDE by utilizing
the measurement z:

RC (z) = 6
i
6
j
(αijcij + βijE[C(x, x̂)|Di,Hj, z])P{Di,Hj|z}

(5)

Moreover, the recursive JDE risk [43] and recursive CJDE
risk [42] are studied for dynamic JDE problems.

III. JOINT DETECTION AND TRACKING IN CSP
Traditional JDE algorithms [41]–[44] have been proposed for
processing theNyquist samplingmeasurements, which do not
fit the CSP problems. In this paper, our goal is to jointly detect
and track a single target by directly using the compressive
radar data without signal reconstruction. More specifically,

detection is used to locate the target position in the compres-
sive samples, and tracking is used to estimate the true target
state. To make full use of the target spatial correlation in the
radar echoes, the filtered target position is fed back to the
sampling procedure at the next moment, which means we
adopt the filtered target position at the last moment to con-
struct the measurement matrix to guide the signal acquisition
at the current moment. Thus, in CSP-JDT, we first construct
the subspace by utilizing the tracking result at the last time
step. Then, we develop an adaptive compressive subspace
detector to judge whether there is a target in the compressive
samples. Finally, we perform a JDT algorithm to determine
the target location and accomplish target tracking in CSP.

A. SUBSPACE CONSTRUCTION
In [12], a random signal with a known sparsity can be
detected by a compressive detector with a fixed subspace.
However, this detector is not suitable for time-varying sparse
signals. To solve this problem, the fixed subspace is replaced
by an adaptive subspace 3k . The subspace 3k is obtained by
the predicted x̂k|k−1, which can be calculated from the filtered
x̂k−1 by a target motionmodel. Since the target true position is
near the predicted position, we suppose that the error between
them will not exceed K

/
2 distance cells, then the target is

likely to fall within K distance cells.
Consider a noiseless return waveform

r(t) =
K∑
i=1

alisli (t) (6)

where al1 , al2 , · · · alK are the nonzero sparse coefficients.
Thus, 3k = span{sl1 (t), sl2 (t), · · · , slK (t)} can be considered
as a subspace of 9.
For simplicity, sli (t) can be rewritten in its discrete form as

sli (t) = s(t − τli )e
j2πvt
=

N−1∑
n=0

s(n− nli ) sin c(tfs−n) (7)

where i = 1, 2, · · · ,K . The predicted subspace 3k can be
represented in its discrete form as

3k =


s(−nl1 ) · · · s(−nlK )
s(1− nl1 ) · · · s(1− nlK )

...
...

...

s(N − 1− nl1 ) · · · s(N − 1− nlK )

 (8)

B. ADAPTIVE COMPRESSIVE SUBSPACE DETECTOR
The hypothesis testing problem can be formulated as{

H̃0 : yk = wk

H̃1 : yk = 8krk + wk
(9)

Here, the same detector design method in [12] is adopted
to design the adaptive compressive subspace detector. The
measurement matrix 8k is constructed by 3k . The SVD of
the discrete 3k is given by

3k = UkDkVk (10)
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Then, we can obtain two orthogonal matrices Uk ∈ N ×
N and Vk ∈ K × K , and a diagonal matrix Dk ∈ N × K .
ρ21 ≥ ρ

2
2 ≥ · · · ≥ ρ

2
N ≥ 0 are the nonnegative eigenvalues of

3k3k
T and ρ21 > ρ2N . The firstM1 columns ofUk are denoted

asUs,k and the lastM2 columns asUo,k , where M= M1+M2.
Then, 8k is designed as

8s,k =
1
√
M

Ts,kUT
s,k , 8s,k ∈ M1 × N

8o,k =
1
√
M

To,kUT
o,k , 8o,k ∈ M2 × N (11)

where Ts,k ∈ M1 ×M1 and To,k ∈ M2 ×M2 are orthogonal
matrices. Specifically, 8s,k can be rewritten as

8s,k =


φs,k (1, 1) · · · φs,k (1,N )
φs,k (2, 1) · · · φs,k (2,N )

...
...

...

φs,k (M1, 1) · · · φs,k (M1,N )

 (12)

and 8o,k is in the similar form. The base of 8k is represented
as

φs,ms (t) =
N−1∑
n=0

φs(ms, n) sin c(tfs−n)

φo,mo (t) =
N−1∑
n=0

φo(mo, n) sin c(tfs−n) (13)

where φs,ms denotes the msth row of 8s,k , and
ms = 1, · · · ,M1(likewise for φo,mo ). Thus,

8k = span{φs,1(t), · · · , φs,M1 (t), φo,1(t), · · · , φo,M2 (t)}

(14)

Through CS r(t) by 8k

ys,m =
∫
∞

−∞

r(t)φs,mdt =
K∑
i=1

ali

∫
∞

−∞

sli (t)φs,m(t)dt

yo,m =
∫
∞

−∞

r(t)φo,mdt =
K∑
i=1

ali

∫
∞

−∞

sli (t)φo,m(t)dt (15)

The compressive samples can be obtained as yk =

[ys,1, ys,2, · · · , ys,M1 , yo,1, yo,2, · · · , yo,M2 ]
T . As proven in

[12, Theorem 1], the designed8s,k and8o,k in (11) can solve
the following optimization problems:

argmax Er,w
8s,k

(||ys,k ||22), s.t. M8s,k8s,k
T
= IM1

argmin Er,w
8o,k

(||yo,k ||22), s.t. M8o,k8o,k
T
= IM2 (16)

Thus, r(t) can be separated into its largest energy part
and its smallest energy part by 8s,k and 8o,k , respectively.
As shown in [12, Theorem 2], we can obtain the test statistic

T =
ys,kT ys,k
yo,kT yo,k

H̃1
>
−
<γ

H̃0

(17)

where γ is the threshold. Define the probability of false
alarm as PFA = QF(M1,M2)(γ ). The probability of detection
is bounded within PD,low ≤ PD ≤ PD,up

PD,low = QF(M1,M2)(ηlowγ )

PD,up = QF(M1,M2)(ηupγ ) (18)

where ηlow =
σ 20+σ

2
x ρ

2
N−M2+1

σ 20+σ
2
x ρ

2
M1

, ηup =
σ 20+σ

2
x ρ

2
N

σ 20+σ
2
x ρ

2
1
, and

QF(M1,M2)(ηlowγ ) obeys an F-distribution with M1 and M2
degrees of freedom at point ηlowγ .
If no target is detected by the proposed detector in yk ,

the following target location and target tracking can be
skipped for this yk , which can accelerate the processing
speed. If a target is detected by the proposed detector in yk ,
which means the target exists in the subspace 3k , then a JDT
method in CSP is adopted to locate and track the target in3k .

C. CSP-JOINT DETECTION AND TRACKING RISK
Applying the JDT algorithm to target detection and tracking
for compressive samples requires first determining the detec-
tion and tracking problems. Since the tracking result of the
previous time step is utilized, the target exists in the distance
cells corresponding to the subspace 3k , so the detection
problem at the current time step is to determine the specific
position of the target in the subspace 3k , and the tracking
problem is to estimate the true target position. Therefore,
in the CSP-JDT problem, the conditions are set as

H(3k ) =
{
H k
0 ,H

k
1 , · · · ,H

k
K

}
(19)

D(3k ) =
{
Dk0,D

k
1, · · · ,D

k
K

}
(20)

The hypothesis set H(3k ) contains K + 1 hypotheses at
time k , where H k

0 indicates that the target appears outside
the subspace 3k , and the last K hypotheses indicate that the
target appears in the K distance units corresponding to their
respective subspace 3k . The detection set D(3k ) contains
K + 1 detection decisions at time k , where Dk0 indicates that
the decision target appears outside the subspace 3k , and the
lastK detections indicate that the decision target falls in theK
distance units corresponding to their respective subspace 3k .

In CSP-JDT, the core idea is to minimize the Bayesian risk
function at time k .

R̄(3k )=6
i
6
j
(αijcij(3k )+βijE[C(xk , x̂k )|Dki ,H

k
j ])P{D

k
i ,H

k
j }

(21)

where Dki represents the ith decision at time k , i.e., the com-
pressive samples yk ∈ Dk

i (D
k
i represents the region for D

k
i ).

Here, as shown in (22),we design a method to judge whether
yk falls into Dk

i . Supposing the decision Dki is made, which
means the target falls in the distance cell corresponding toDki ,
we can use the corresponding signal s(t − τli ), denoted by sli ,
to construct the compressive samples yki = 8sli . If the inner
product of yk and yki exceeds a certain threshold Th, then yk
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falls into Dk
i , otherwise y

k /∈ Dk
i .

Dk
i = {y

k
|

∣∣∣〈yk , yki 〉∣∣∣ ≥ Th} (22)

D. OPTIMAL CSP-JDT SOLUTION
We can obtain the optimal CSP-JDT solution by minimizing
the above CSP-JDT risk R̄(3k ).

1) OPTIMAL DECISION
For any given εkij = E[C(xk , x̂k )|Dki ,H

k
j ], the optimal deci-

sion D(3k ) is given by

D(3k ) = Dki , if C
k
i (y

k ) ≤ Ck
h (y

k ), h = 1, 2, · · · ,K (23)

where the posterior decision cost is given by

Ck
i (y

k ) = 6
j
(αijcij(3k )+ βijεkij)P{H

k
j |y

k
}, ∀i (24)

2) OPTIMAL ESTIMATION
For any decision Dki , the optimal estimator with estimation
cost C(xk , x̂k ) for calculating R̄i(3k ) is formulated as

x̂k = xk (i) = 6
j
x̂(j)k P̄

(i)
k {H

k
j |y

k
} (25)

where x̂(j)k = E[xk |yk ,Dki ,H
k
j ] is the conditioned state when

the hypothesis is H k
j . The generalized posterior probability

P̄(i)k {H
k
j |y

k
} can be calculated by

P̄(i)k {H
k
j |y

k
} =

βkijP{H
k
j |y

k
}∑

h
βkihP{H

k
h |y

k}
(26)

Note that in the above (23) and (24), the key is to obtain the
posterior probabilityP{H k

j |y
k
}, the conditioned state estimate

x̂(j)k and the expected estimation cost εkij.
Specifically, P{H k

j |y
k
} can be formulated as

P{H k
j |y

k
} =

f {yk |H k
j }P{H

k
j }

K∑
j=1

f {yk |H k
j }P{H

k
j }

(27)

At different time steps, the hypothesis set H(3k ) and its
priori probability P{H k

j } are different. Assume that H(3k )
at time k obeys a Gaussian distribution N (x̂k|k−1, σH 2I4),
where σH 2

= P̂k|k−1 = Fk P̂k−1FkT is the covariance of the
one-step prediction at time k − 1. Then, P{H k

j } is

P{H k
j }=

∫
H k
j

f (x)dx =
∫
H k
j

1
√
2πσH

exp(−
(x − x̂k|k−1)

2

2σH 2 )dx

(28)

and P{H k
0 } = 1 −

K∑
j=1

P{H k
j }. f {y

k
|H k

j } is the probability

distribution of yk when the hypothesis isHj. The correspond-
ing signal of Hj is s(t − τlj ), denoted by slj . Then, we can
obtain the expectation and covariance of yk

E[yk ] = E[8slj +8w] = E[8slj ]+ E[8w]
= 8slj +8E[w] = 8slj (29)

cov[yk ] = E[(y−8slj )(y−8slj )
H ] = E[(8w)(8w)H ]

= E[8wwH8H ] = 8E[wwH ]8H
= σ 2

w88H (30)

Thus, we consider that f {yk |H k
j } obeys aGaussian distribu-

tion N (8slj , σ
2
w88H ), and (27) can be calculated by P{H k

j }

and f {yk |H k
j }.

x̂(j)k = E[xk |yk ,Dki ,H
k
j ] stands for the target state estimate

conditioned on hypothesis H k
j when the decision Dki is made,

i.e., yk ∈ Dk
i . It equals the estimate of the target state when

the target real position is at dkj corresponding to H k
j , and the

target measurement position is at dki corresponding to Dki .
The target measurement equation is given by

zk = Gxk + vk (31)

where G denotes the measurement transfer matrix, and vk
denotes the white Gaussian noise N (0, 0k ).

It can be seen from equation (31) that different Dki and H
k
j

change the value of 0k , that is,

0k = (dkj − d
k
i )

2 (32)

Then, the filtered value of the target x̂(j)k can be obtained
by a traditional tracking algorithm, and we can obtain εkij =
E[(x̂k − xk )2|Dki ,H

k
j ] as

εkij = (xk (i) − x̂H k
j
)2 = (xk (i) − dkj )

2 (33)

In summary, in a single target tracking scenario, one cycle
of CSP-JDT at time k consists of the following:
1) Initialization
Obtain the one-step prediction x̂k|k−1 of x̂k−1 based on the

target motion model, construct the 8k and then get yk .
2) Update step
Through the adaptive compressive subspace detector, if no

target can be detected in yk , skip this yk . Otherwise, with yk

available, update P{H k
j |y

k
} and the initial decision partition

D(3k ) =
{
Dk

0,D
k
1, · · · ,D

k
K

}
.

3) Estimation and decision step
For any decision candidate Dki (i = 1, 2, · · · ,K ), first

make the following judgment: if yk /∈ Dk
i , skip this iteration;

if yk ∈ Dk
i , calculate the optimal state estimate x̂k corre-

sponding to this iteration. Then, obtain the expected cost εkij
and posterior cost Ck

i (y
k ). Finally, obtain the decisionDki and

the cost R̄i(3k ) of the current iteration.
4) Iteration step
Repeat step 3) K times, and obtain the optimal decision

D(3k ) through (23) and the smallest R̄(3k ).
5) Output
Output the final detection and tracking result {D(3k ), x̂k}.

E. JOINT PERFORMANCE EVALUATION
Intuitively, to evaluate the target detection and tracking
performance, the detection probability (Pd ) and root mean
square error (RMSE) are often adopted separately. However,
without considering the correlation between the detection and
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tracking in JDE problems, the Pd and RMSE may fail to
compare different JDE solutions. Thus, instead of separate
evaluations, the detection and tracking performance should
be evaluated jointly for JDE problems. For this, a joint per-
formance metric (JPM) was proposed in [41], which is the
distance between the real and the one-step measurement. This
JPM was extended for the dynamic JDE problems in [42].
In CSP-JDT, we define the JPM as the distance between the
true measurement and mock measurement generated by the
CSP-JDT method, which is

ξk = E[(zk − ẑk|k−1)2|Dk ,Dk−1] (34)

where zk represents the target measurement position detected
by yk and Dk , and ẑk|k−1 represents the predicted target
measurement position predicted by x̂k−1 and Dk−1. More
details can be seen in [41] and [42].

F. COMPLEXITY ANALYSIS
The leading computational complexity of CSP-JDT is the
measurement matrix construction by the adaptive subspace
3k ∈ N×K ( where K � N ), which isO(N 2K ) in (10) [45].
Traditionally, after compressively sensing an I -sparse signal
r ∈ N × 1 by the measurement matrix 8 ∈ M × N ,
the CS methods need to reconstruct the original signal, which
is time-consuming. For example, the computational complex-
ity of the orthogonal matching pursuit (OMP) algorithm is
O(IMN ), and the basis pursuit (BP) algorithm is O(M2N 3/2)
[46]. However, the CSP-JDT processes the compressive sam-
ples directly without signal recovery, which can avoid the
above computational complexity caused by the reconstruc-
tion algorithms [6]. Then, the computational complexity of
CS is O(MN ) in (15). Since the subspace reduces the detec-
tion range from N distance cells to K , the computational
burden of target detection is also reduced. Finally, the joint
target detection and tracking can be rapidly achieved through
K iterations in (23-25), which is O(K ). Therefore, the total
computational complexity of CSP-DT to process one frame
of a radar signal is O(N 2K +MN + K ).

IV. SIMULATION RESULTS
In this section, the simulations are performed to demonstrate
the performance of the CSP-JDT for joint target detection and
tracking.

A. PERFORMANCE ANALYSIS OF THE PROPOSED
DETECTOR
In these experiments, the widely used linear frequency mod-
ulation (LFM) radar signals are adopted to verify the adaptive
subspace detector when judging whether there is a target in
the compression samples, where T = 1µs, B = 200MHz,
N = 2000.
The first experiment is to examine the detection probability

of the detector at different SNRs with different compressive
ratios, where SNR = 10log10

σ 2x
σ 20

(in dB). With the prior

information of the predicted target position, we construct an

adaptive subspace 3k ∈ N ×K for detection, where K = 15.
The measurement matrix 8k = [8s,k ,8o,k ] is formed by
choosingM1 = M2, andM = [100, 200, 300, 400]. A steady
result is obtained by conducting 1000 random computer sim-
ulation trials in this experiment. Fig. 2 shows the detection
performance with a 10−5 false alarm probability (PFA). The
detection probability (Pd ) increases with the SNR, and a
high Pd of 0.95 can be obtained when M/N = 0.2 and
SNR = −9dB. The signal can also be detected with a Pd
of 0.86 whenM/N = 0.05 and SNR = −5dB. The algorithm
processes the compressive samples and detects the signal
without signal reconstruction.

FIGURE 2. The detection probability of the proposed detector at different
SNRs with different compression ratios.

The second experiment is devoted to comparing different
detectors with the proposed detector. We employ the same
LFM signals used in the previous experiment. Fig. 3 shows
that the proposed detector outperforms the compressive
matched filter (CMF) in [7]. When SNR = −9dB, the Pd of
the proposed detector and the traditional matched filter (MF)
are similar, but eighty percent of the computational data are
reduced.

FIGURE 3. Detection performance comparison with different detection
methods.
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FIGURE 4. Target trajectory in different motion models: (a) CV, (b) CT.

FIGURE 5. Tracking performance comparison in different motion models. (a) RMSE in the CV model, (b) JMP in the CV model, (c) RMSE in
the CT model, and (d) JMP in the CT model.

To summarize, the proposed detector can achieve good
detection performance for low SNR signals at low compres-
sion ratios.

B. PERFORMANCE ANALYSIS OF CSP-JDT METHOD
In these experiments, the performance of the CSP-JDT
method is verified by two typical JDT examples. We compare
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the CSP-JDT with the CSP-DBT and CSP-TBD methods
in terms of the root mean square error (RMSE) and joint
performance metric (JPM).

The compared methods are as follows:
1) CSP-DBT: a CMF [7] performs the target detection first,

then a traditional tracking Kalman filter (KF) accomplishes
the target tracking.

2) CSP-TBD: a CSP-VBAKF [20] method is employed
by feeding the tracking results into a compressive sampling
procedure to improve the detection performance in the next
time step.

Suppose there is only one target moving on the Cartesian
plane within the radar searching area. The parameters of
the LFM radar signals are the same as those of previous
experiments. The target state can be described as xk =
[xk , ẋk , yk , ẏk ]T , where xk and ẋk denote the position and
velocity in the x-direction (likewise for the y-direction). The
initial target position is at (100 m, 120 m), and the sampling
time is 1 s. In the first simulation, the target state evolves for
40 time steps according to the constant velocity (CV) model.
The target has a speed of 2 m/s in the x-direction and 1 m/s
in the y-direction. In the second simulation, the target state
evolves for 40 time steps according to the constant turn (CT)
model. The target has a speed of 0.6o/s in the x-direction and
1 m/s in the y-direction. At each moment, 3k is constructed
over time, and K = 15. Since the proposed detector can guar-
antee a high detection rate from the previous experiments,
we choose M1 = M2, M/N = 0.2, and SNR = −5dB.
Fig. 4 shows the target trajectory in different motion models.

The simulation consists of 100 Monte Carlo runs, and
simulation results are presented in Fig. 5. The parameters
for CSP-JDT are set as follows: αij = 1,

∑
i βij = 3,

βii = 1, βij = 1/3, cij(3k ) = 1 and cij(3k ) = 0. As shown
in Fig. 5. (a) and (c), the CV and CT models achieve a con-
sistent tracking performance when estimating the RMSE of
the target position in both tracking accuracy and convergence
speed: CSP-TBD is the best, CSP-JDT is in the middle, and
CSP-DBT is the worst. Here, CSP-TBD performs the best
because the tracking is performed first and then detection is
made based on the tracking results; thus, the weight of the
tracking risk is larger than the weight of the detection risk.
In CSP-DBT, the best detection is conducted first without
considering the tracking results, and then the tracking is
performed based on this detection. Thus, the detection risk
plays a more important role than the tracking risk. In the
CSP-JDT, we give equal importance to both the detection risk
and the tracking risk. However, for the joint performance,
as shown in Fig. 5. (b) and (d), CSP-JDT beats CSP-DBT
and CSP-TBD. This demonstrates that CSP-JDT can improve
the joint detection and tracking performance, which is most
important in a JDT problem.

V. CONCLUSION
In this paper, a joint optimization method for target detection
and tracking in compressive sensing and processing (CSP-
JDT) is proposed. Without signal reconstruction, our method

first judges whether there is a target in the compressive
samples with the proposed subspace detector, and then deter-
mines the target location and accomplishes target tracking
in a new JDT manner. To optimize the detection and track-
ing performance jointly, we propose a new JDT risk in the
CSP framework and derive the optimal CSP-JDT solution.
CSP-JDT takes advantage of the target spatial correlation in
the continuous radar echoes, which can effectively solve the
coupled detection and tracking problem with a low SNR. The
simulation results showed that the CSP-JDT method outper-
forms the two-stage strategy in CSP. Applying CSP-JDT to
multi-target and extended target problems will be studied in
the follow-up work.
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