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ABSTRACT Robotic exoskeletons have emerged as effective rehabilitation and ability-enhancement tools,
by mimicking or supporting natural body movements. The control schemes of exoskeletons are convention-
ally developed based on fixed torque-ankle state relationship or various human models, which are often
lack of flexibility and adaptability to accurately address personalized movement assistance needs. This
paper presents an adaptive control strategy for personalized robotic ankle exoskeleton in an effort to address
this limitation. The adaptation was implemented by applying the experience-based fuzzy rule interpolation
approach with the support of a muscle-tendon complex model. In particular, this control system is initialized
based on the most common requirements of a ‘‘standard human model,’’ which is then evolved during its
performance by effectively using the feedback collected from the wearer to support different body shapes and
assistance needs. The experimental results based on different human models with various support demands
demonstrate the power of the proposed control system in improving the adaptability, and thus applicability,
of robotic ankle exoskeletons.

INDEX TERMS Robotic ankle exoskeleton, muscle-tendon complex model, adaptive fuzzy rule interpola-
tion, rehabilitation support.

I. INTRODUCTION
The advent of the first active anthropomorphic exoskeleton
reported in [1] has led to a booming of developing wearable
robotics to support people to achieve different physical tasks.
Based on its purposes, exoskeletons can be classified into
two groups: assistance and therapeutic devices. Most of the
wearable exoskeletons are designed to assist individuals in
performing their daily living activities and enhance human
mobility [2], [3], whilst only a small number of devices focus
on therapeutic effects. Therapeutic devices are often used
for body training, in an effort to enhance patients’ capa-
bilities affected by neuromuscular injury, such as chronic
degenerative low back pain, head injuries, stroke, peripheral
neuropathies and cerebral palsy [4]. Upright balance training
is one of the activities to help patients retain neuro-sensory
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and muscular movement function [5]. The efforts required to
maintain balance effectively train the muscle activation and
movement coordination functions, which are the indispens-
able process towards the walking ability training stage.

The ankle-foot complex plays an important role in human
upright balance control. Balance control ensures a human
doesn’t fall down when feet are stationed, which involves
an intricate dynamic behavior of the lower limbs and their
interaction with the floor [6]. In this process, the ankle plantar
flexor and dorisiflexor muscles work together to keep the
body upright. The lack of ankle functionality led by neu-
romusclar injury represents a crucial limitation for standing
balance. The robotic ankle exoskeleton can support peo-
ple who suffer from ankle injuries to keep balance when
standing, and to train them to regain the ankle function
during rehabilitation. Extensive researches have been con-
ducted in understanding the human standing balance strategy
from physiology point of view in order to provide better
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support during rehabilitation and also design and build more
advanced ankle exoskeleton robot for standing support [7].

Robotic ankle exoskeleton devices are usually designed
and developed by simulating the mechanism of the human
body, and the control strategy of such devices are often devel-
oped using various sensor measurements [8]–[11]. Ankle
stiffness modulation was discovered to be a key factor
in human balancing, and a torsional spring-loaded fly-
wheel pendulum was proposed to approximate human body
dynamics [12]. In this work, stiffness adjustment was imple-
mented by a common mathematical model, which is lack
of flexibility to meet individual’s needs. To address this,
the stiffness of the ankle joint was varied proportionally to
its distance to the limits of stability in the work of [13].
In this case, a scaling factor needs to be provided for each
wearer, which is not very practical. Another way to solve
the inflexibility issue is the open-loop balance control as
proposed in [14], which requires pre-planned joint trajec-
tory. The planned joint trajectory is usually inconsistent with
human joint trajectory to some extent, which may cause
discomfort to the exoskeleton wearer, or even disturb human
balance.

This work proposes an adaptive robotic ankle exoskele-
ton controller, which is able to adaptively meet different
wearers’ individual needs. This is implemented by apply-
ing the recently proposed experience-based adaptive fuzzy
rule interpolation system [15], with the support of a muscle-
tendon complex model [16]. Briefly, the experience-based
adaptive fuzzy rule interpolation evolves its rule base through
an effective revision mechanism based on the performance
feedback of the controlled system, to address the issue of
lack of labeled data or expert knowledge. Particularly in this
project, a fuzzy inference system was initialised based on
a typical human model to provide the parameter required
by the muscle-tendon model, which works collaboratively
as a general control model for the ankle exoskeleton for all
wearers. Once the ankle exoskeleton is worn by an indi-
vidual, the adaptive fuzzy inference system will then adapt
the rule base according to the feedback collected from the
wearer tomeet thewearer’s personalized needs. The proposed
approach was validated and evaluated through simulations
implemented using OpenSim. The experimental results show
the working of the proposed control system for robotic ankle
exoskeleton inmeeting different wearers’ personalized needs.

The rest of the paper is organised as follows. Section II
reviews the technical background and related works.
Section III details the proposed personalized control
approach. Section IV reports the experimental results with
discussions. Section V concludes the paper and points out
important future work.

II. BACKGROUND
The two integral components of the proposed system,
including the muscle-tendon complex model and the
experience-based adaptive fuzzy inference system, are
reviewed in this section.

A. MUSCLE-TENDON COMPLEX MODEL
A typical human ankle joint is driven by two groups of
muscles, the plantar flexor muscle group and the dorsiflexor
muscle group. The former mainly consists of soleus (SOL)
and gastrocnemius (GAS), whilst the latter primarily refers
to the tibialis anterior (TIB). Both muscle groups can each
be simplified as a muscle-tendon complex (MTC) model,
with other related but marginally influenced muscles ignored.
The MTC model can be simulated by a combination of a
contractile element (CE) and a series elastic element (SEE),
as shown in Fig. 1, with the muscle fibers and the tendon
represented by the CE and the SEE, respectively. The CE and
SEE are connected in series, where the SEE is a non-linear,
unidirectional spring representing the Achilles tendon [17].

FIGURE 1. The muscle-tendon complex model.

The CE consists of three unidirectional components,
including an active Hill-type muscle fibers tissue (MF) [18]
with a positive force feedback reflex scheme, a high-limit par-
allel elastic component (HPE), and a low-limit parallel elastic
component (LPE). The optimal length of the MF, denoted as
lopt , is equal to the length of the CE when the CE provides the
maximum isometric force (Fmax), i.e., lCE = lopt . If the CE
stretches beyond its optimal length, i.e., lCE > lopt , the HPE
engages. That is, the HPE effectively prevents the CE from
overstretching. Conversely, the LPE prevents the CE from
over-shrinking, if the SEE is unengaged.

1) CONTRACTILE ELEMENT
The active component of a CE is the MF with a positive force
feedback reflex scheme which exerts an unidirectional force.
The force of theMF (FMF ) is determined by the muscle fibers
length (lCE ), the contraction velocity (vCE ), the activation
value (a), and the pre-learned maximum muscle fibers force
(Fmax) [16], as expressed below:

FMF = aFmaxfl(lCE )fv(vCE ), (1)

where fl(lCE ) represents the force-length relationship func-
tion of the Hill-type muscle model, and fv(vCE ) is the
force-velocity relationship function of the CE.

The force-length relationship function fl(lCE ) is a
bell-shaped curve as illustrated in Fig. 2(a), which is defined
as [16]:

fl(lCE ) = exp

[
c

∣∣∣∣ lCE − loptloptω

∣∣∣∣3
]
, (2)

where ω denotes the width of the bell-shaped curve, and c
represents the curve’s magnitude near the extreme of the bell
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FIGURE 2. Contraction dynamics of a CE for a typical muscle group. (a) Isomeric force fiber length relationship. (b) Isomeric
force fiber shortening velocity relationship. (c) Parallel elasticity force fiber length relationship.

(which is defined as ln(0.05) in this work) fulfilling:

fl(lCE = (1± ω)lopt ) = 0.05. (3)

The force-velocity relationship function, fv(vCE ), of CE fol-
lows the Hill equation [18] as illustrated in Fig. 2(a), which
is defined by:

fv(vCE ) =

(vmax − vCE )/(vmax + KvCE ), vCE < 0

N + (N − 1)
vmax + vCE

7.56KvCE − vmax
, vCE ≥ 0, (4)

where vmax indicates the maximum contractile velocity of the
muscle fibers, K stands for a curvature constant, N describes
the dimensionless muscle force which is normalised by Fmax .
The force-length relationship function for HPE is shown in
the right side of Fig. 2(c), which is given by [10]:

FHPE (lCE ) =

{
Fmax[(lCE − lopt )/(loptω)]2, lCE > lopt
0, otherwise.

(5)

The force-length relationship function for LPE is illustrated
in the left side of Fig. 2(c), which is expressed as [10]:

FLPE (lCE )

=

Fmax
[(lCE − lopt (1− ω))/lopt ]2

(ω/2)
, lCE ≤ lopt (1− ω)

0, otherwise.
(6)

The overall force of CE, i.e., (FCE ), is then:

FCE = FMF (lCE , vCE , a)+ FHPE − FLPE . (7)

Since the CE and SEE are connected in series, the following
equation holds:

FCE = FSEE = FMTC , (8)

where the FSEE denotes the force of the SEE and FMTC
represents the force of the entire MTC.

2) SERIES ELASTIC ELEMENT
The SSE operates as a tendon which is connected in series
with the CE as introduced above. The SEE can be described
as a nonlinear spring:

FSEE =

{
Fmax(ε/εref )2, ε > 0
0, ε ≤ 0,

(9)

where ε is the tendon strain, and εref is the reference ten-
don strain as FSEE = Fmax when ε > 0. As reported
in [14], this quadratic form was used as an approximation of
the commonly-modeled piecewise exponential-linear tendon
stiffness curve, to reduce the number of themodel parameters.
In particular, the tendon strain is defined as:

ε =
lSSE − ls

ls
, (10)

where lSSE is the length of the SSE, and ls is the resting length
of the tendon.

3) POSITIVE FEEDBACK REFLEX SCHEME
The MF activation value (i.e., a) of the CE can be generated
by the positive force feedback reflex scheme [10], [16], [19].
Denote the signal-propagation time delay as 1t . The cur-
rent stimulation of MF, (S(t)), at any time before 1t is S0;
otherwise, S(t) equals to the pre-stimulation (S0) plus the
production of the CE force (FCE ) at time (t−1t) and a reflex
gain (G). S(t) can then be expressed as:

S(t) =

{
S0, t < 1t
S0 + GFCE (t −1t), t ≥ 1t,

0 ≤ S(t) ≤ 1.

(11)

The stimulation is low-pass filtered with a constant of time
to simulate the muscle excitation-contraction coupling. The
resulting signal is constrained to the range between 0 and 1,
which is used as the MF activation value (a) in Eq. 1.

B. FUZZY INFERENCE
Fuzzy inference is the process of formulating the mapping
from an input space to an output space using fuzzy logic
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which is able to represent non-linear, high dimensional, and
vague models using fuzzy rule bases representing the knowl-
edge. The rule bases are generated using prior knowledge
which can be either human expertise or labelled training
data instances [20], [21]. Due to the sparsity and imbalanced
distribution of expert knowledge or labelled training data
samples, the generated rule bases may be sparse at some
parts of the problem domain. In this case, conventional
fuzzy inference systems will fail to generate any conclu-
sions for the inputs that are not covered by the rule bases.
Fuzzy rule interpolation (FRI) was developed to address this
limitation [22]–[25].

FRI is a generalization of crisp linear interpolation under
the uncertainty representation framework of fuzzy logic.
Given an input that does not overlap with any rule antecedent
due to the sparseness of rule bases, the two closest neigh-
boring rules are selected based on a given fuzzy distance
metric for interpolation or extrapolation. If the widely applied
transformation-based interpolation approach [25] is used,
an intermediate rule is generated first such that its antecedent
representation value is as âĂĲcloseâĂİ to the given input
as possible. From this, a conclusion is derived by ensuring
the shape distinguishability between the conclusion and the
consequence of the intermediate rule is equal to that between
the antecedents of the interpolated rule and intermediate rule.
In addition to being able to work with sparse rule bases,
FRI can also reduce system complexity if the fuzzy model
is too complex. FRI approaches have been further devel-
oped from different perspectives, such as, rough-FRI [26],
dynamic version of FRI [27], adaptive FRI [22], [28], [29],
and experience-based FRI [15].

The experience-based FRI (E-FRI) is able to adapt to dif-
ferent applications with limited human expert knowledge or
labelled training data instances, which is thus applied in this
work. In particular, the system first initialises the rule base,
for a given application, with a very limited number of rules
representing the incomplete, or standard system knowledge
based on the most common model. A typical single input and
single output rule Ri is of the following format:

Ri : IF x is Ai,THEN y is Bi (wi,EFi, (12)

where Ai and Bi are fuzzy sets, wi stands for the inherent
weight of the rule expressing its confidence degrees, EFi is
the experience factor representing the usage and effectiveness
information of the rule during the performance, CDi is the
cooling down factor indicating the timeliness of the rule.

The importance factor IF of each rule, regarding a given
input, can be calculated as a function of the weight and the
distance between the input and the existing rule antecedents
using:

IFi =

√
1/di∑n
i=1 1/di

wi, (13)

where, di is the defuzzified distance between the input and
rule antecedent, wi represents the weight of the rule, n is the

number of rules in the existing rule base. By this equation,
the two most ‘‘informative’’ rules are selected for FRI to
generate the output.

The rule base evolves whilst it performs inferences by a
revision mechanism. Specifically, the historic inference per-
formance indicators are used to provide the system the expe-
rience feedback to determine the inherent weights of rules,
in addition to the timeliness information to avoid the inclusion
of too many out of date rules. Based on the feedback, three
types of revisions effectively ensure the conciseness, timeli-
ness, effectiveness, and efficiency of the rule base, including
updating theweights of existing rules, removing useless rules,
and adding new rules. More technical details of the E-FRI can
be found in [15].

III. PERSONALIZED CONTROL OF ROBOTIC ANKLE
EXOSKELETON
The proposed personalized control system is able to learn to
adapt whilst it performs, and thus the controlled exoskeleton
is expected to work better along time through control sys-
tem evolving. Following an overall overview of the system,
the two key components of the control system, including the
control of the simulated muscle actuator and system adap-
tation through the experience-based FRI are detailed in this
section.

A. SYSTEM OVERVIEW
The overall architecture of the robotic ankle exoskeleton
systemwith the proposed personalized control system is illus-
trated in Fig. 3. The robotic ankle exoskeleton is driven by two
actuators that simulate the effects of the two groups of muscle
in the ankle, including the plantar flexor muscle group and
the dorsiflexor muscle group, as introduced at the beginning
of Section II-A. The working mechanism of these actuators
for robotic ankle exoskeleton is detailed in Section III-B. The
control signals of these actuators are generated through the
MTC model as discussed in Section II-A, with its parameter
adaptively adjusted by the E-FRI as detailed in Section III-C.

The data flow in the interconnected closed control loops
guarantees the strong adaptability of the proposed control
approach. The inputs of the MTC model are calculated using
the Geometric Attachment component based on the current
state of the exoskeleton ankle; the inputs include the length
of MTC (lMTC ), the length of CE (lCE ), the fiber contrac-
tion velocity (vCE ), and the moment arm of MTC force
(rarm). The output of the MTC is the flexor torque (Tflexor )
based on its parameters provided by the E-FRI, which is
then passed to the torque actuator component to drive the
exoskeleton to perform the next action. The rule base of the
E-FRI system was initialised based on a ‘‘standard human’’
model, which is then evolved using the performance feed-
back of the ankle exoskeleton from the actual wearer; the
feedback can be collected in multiple ways, such as through
electromyography [30], but this is out of the scope of this
paper.
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FIGURE 3. The overview of the proposed personalised control architecture.

FIGURE 4. The geometry of an exoskeleton including the angle between
the variable moment arm and the ankle for the MTC model.

B. ACTUATOR CONTROL
The two simulated flexor muscle actuators are illustrated
in Fig. 4. The force of these simulated muscle groups can be
calculated using Eqs. 1, 7, and 8, from the muscle activation,
the length of MF in the CE, and its contraction velocity. The
results are then used to compute the ankle torque to drive the
torque actuator. The muscle activation value is determined by
the E-FRI which is detailed in the next subsection. The length
of the MF in the CE and the fiber contraction velocity can
be computed using the robotic exoskeleton ankle angle θfoot ,
which is defined as the angle between the foot and the shank
segment, as illustrated in Fig. 4. In particular, the length of
the MTC (lMTC ) is computed as [10]:

lMTC = rρ(sin(θfoot − θmax)− sin(θref − θmax))+ ls + lopt ,

(14)

where r is the attachment radius of plantar flexor muscle
and dorsiflexor muscle, ρ is a scaling factor representing
the pennation angle of the muscle fibers, θref is the ankle
reference angle at which lCE = lopt , and θmax is a constant
ankle angle value subject to max(rarm) = rcos(θfoot − θmax)
with (θfoot ) being the robotic exoskeleton ankle angle.

The MF length can be calculated by:

lCE = lMTC − lSSE , (15)

where lSSE is the length of SSE as calculated using Eq. 10.
The muscle fiber contraction velocity can be obtained via the
differentiation of muscle fiber length. From this, the force of
MTC, i.e., FMTC , can by calculated using Eqs. 7 and 8. The
relationship between FMTC and the resulting flexor contribu-
tion to flexor torque Tflexor , is given by:

Tflexor = FMTCrarm. (16)

The MTCmodel is generally a dynamical system mapping
from a single input θfoot to a single output Tflexor , through
which the torque demand for the plantar flexor muscle group,
i.e., TP and the dorsiflexor muscle group, i.e., TD can be
calculated. From this, the overall ankle torque, Tankle, in the
sagittal plane is obtained as the summation of these two
torques:

Tankle = TP + TD. (17)

C. SYSTEM ADAPTATION
The MTC model can adapt to different body shapes with
various support needs by changing its parameter, i.e, the MF
activation value. This is achieved by employing the E-FRI
in this work through the muscle force positive feedback
reflex scheme. The framework of the adapted E-FRI is shown
in Fig. 5, which comprises of mainly three parts: 1) rule base
initialization, 2) fuzzy rule interpolation, and 3) rule base
revision. In particular, the rule base is initialized based on a
small set of data collected using the MTC based on a typical
human model. The transformation-based (T-based) FRI is
particularly applied in this work to perform FRI inference due
to its effectiveness [15], [25], [31]–[33] for muscle activation
estimation. Upon deployment, the rule base is constantly
revised by a rule base revision mechanism whilst the ankle
exoskeleton performs to provide extra moving assistance.
The implementation of these three main components of the
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FIGURE 5. Adaptive MTC parameter generation through experience-based
fuzzy interpolation for personalized ankle exoskeleton control.

adaptive E-FRI for personalized ankle exoskeleton control are
detailed in the following subsections.

1) RULE BASE INITIALISATION
The rule base is initialised with a data set collected from a
human upright balance keeping experiment based on a typical
human model. Each rule in the rule base is of the form as
expressed in Eq. 12, where the input x represents the MTC
force (FMTC ) provided by the MTC model, and the output y
is the MF activation value (i.e., a). For simplicity, triangular
membership functions are employed in this work to represent
fuzzy sets. EF is initialised based on empirical experience;
generally, a large EF value leads to a longer convergence
time, and a smaller EF value may result to unexpected rule
removal. CD is initialised as 0. These two factors jointly
determine the inherent weight of the corresponding rule by:

w = (
2

1+ e−
EF
n

− 1)(1−
1

1+ 5e−
CD
a +b

), (18)

where a, b, n are sensitivity factors. The values of these
factors are empirically determined in this work.

Note that the initialized rule base only works optimally
for the ‘‘typical human model’’ used in the data collection
process, and the needs from different wearers vary. Therefore,
the rule base needs to be adaptively revised as discussed in
Section III-C.3 when the fuzzy model performs inferences as
detailed in Section III-C.2 below.

2) T-BASED FUZZY RULE INTERPOLATION
Given a MTC force demand (FMTC ) represented by fuzzy
set A∗, the most ‘‘informative’’ rules regarding this demand
in the rule base can be identified using Eq. 13, to support
the interpolation inference. Suppose the selected rules for
interpolation are Ri and Rj, and denote the interpolated result
as B∗. An intermediate rule R∗, ‘‘IF x is A∗′,THEN y is B∗′’’
is interpolated first using analogy-based reasoning [34],
[35], where the A∗′ and A∗ share the same representative
value [24]. From this, the shape difference between the given
input A∗ and the antecedent of intermediate rule A∗′ can be
calculated using a transformationmetric, which can be imple-
mented in multiple ways as reported in the literature [36].

In particular, the scale and move transformation-based
approach [37], [38] is applied in this work due to its wide
application. Once the scale rate (S) and move transformation
rate (M ) are calculated, the corresponding consequence B∗

can be computed by applying S and M to the consequence
of the intermediate rule B∗′. After deffuzification, the con-
sequence is then sent to the MTC, in addition to the infor-
mation from the Geometric Attachment component as shown
in Fig. 3, for actuator torque calculation, which in turn drives
the exoskeleton to provide body movement support to the
wearer.

3) RULE BASE REVISION
Note that the performance of the exoskeleton may not be
accurately suitable for the wearer as the original system
is developed based on a ‘‘typical human model’’ and the
wearer’s needmay change over time. In the proposed adaptive
control system, the rule base keeps being revised based on
the performance feedback whilst the control system performs
fuzzy inferences. There are three types of revisions, including
updating theweights of existing rules, removing useless rules,
and adding new rules. In specific, if a rule has been selected
to perform the T-Based FRI and the performance feedback
is positive, the EF value of this rule will be increased by
1 and the CD value will be reset to 0; otherwise, if the
performance feedback of the selected rule is negative, the EF
value will be decreased and the CD value will be reset to 0.
In the meantime, the CD values of all the unused rules will
be increased by 1, and their EF value will remain the same.
Accordingly, the inherent weight of each rule in the current
rule base will be updated utilizing Eq. 18.
Suppose that there are n rules {R1,R2, · · · ,Rn} in

the existing rule base, and the interpolated rule is R∗,
the rule base revision process is summarised in Fig. 6.
When a new interpolated rule R∗ is generated, the sim-
ilarity degree between each rule in the existing rule
base and the interpolated rule is calculated. Suppose that
the interpolated rule R∗ is ‘‘IF x is A∗,THEN y is
B∗ (w∗,EF∗,CD∗)’’, and an existing rule Ri (1 ≤ i ≤ n)
is ‘‘IF x is Ai,THEN y is Bi (wi,EFi,CDi)’’. The similarity
degree between the two rules, S(R∗,Ri), can be calculated as:

Si =
S(Ai,A∗)+ S(Bi,B∗)

2
, (19)

where S(Ai,A∗) and S(Bi,B∗) indicate the similarity degrees
between the antecedents and the consequences of the interpo-
lated rule R∗ and the existing rule Ri, respectively. There are
many approaches available for similarity degree calculation
between fuzzy sets [39]. In this work, the degrees of similar-
ity between two triangular fuzzy sets A∗ = (a∗1, a

∗

2, a
∗

3) and
Ai = (ai1, ai2, ai3) are calculated as:

S(Ai,A∗) = 1−
|ai1 − a∗1| + |ai2 − a

∗

2| + |ai3 − a
∗

3|

|ai1 − ai3|
. (20)

The similarity degree between two fuzzy sets B∗ and Bi can
be calculated in the same way.
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FIGURE 6. The flowchart of rule base revision.

The value of i in Fig. 6 is initialised as 0. Note that Fig. 6
can be optimised for better efficiency during implementation
(as R∗ may be added for multiple times based on the pro-
cedure presented in Fig. 6), but Fig. 6 is employed here to
facilitate the description. If the interpolated rule is proven
negative based on the performance feedback collected from
the wearer, the interpolated rule will be discarded and the
weights of the rules in the rule base will be updated. Oth-
erwise, based on a pre-defined similarity degree threshold δ,
there are two potential actions in addition to weight updates:
1) if there is not any similar rule in the existing rule base based
on Eq. 20, the interpolated rule will be added into the rule
base; 2) if there are similar rules but their inherent weights are
smaller than that of the interpolated rule, the similar rules in
the rule base will be removed whilst the interpolated rule will
be added into the rule base; otherwise, the interpolated will
be discarded and no extra action is required. This rule base
revision mechanism ensures that only the most accurate and
timely important rules are included in the rule base, such that
the rule base is concise to lead to good performance based on
the wearer’s personalized and also possibly changing needs.

IV. EXPERIMENTATION
The proposed adaptive control system was applied to a
robotic ankle exoskeleton mounted on different human mod-
els with various assistance needs for standing balance control
and upright control on a moving vehicle for system validation
and evaluation. A common simple version of the robotic ankle

FIGURE 7. Simulated human models and the robotic ankle exoskeleton
(a) The humanoid musculoskeletal model. (b) The robotic ankle
exoskeleton. (c) The exoskeleton mounted on the human model.

exoskeleton comprising of two links connected by a rotary
joint was used in the experimentation, as shown in Fig. 7(b).
The ankle exoskeleton was driven by two actuators to simu-
late the two group of muscles as introduced in the beginning
of Section II-A. The exoskeleton was mounted to the human
model’s ankle as illustrated in Fig. 7(c) in order to provide
movement support for the wearer.

In order to facilitate the experiments, a ‘‘standard human’’
model with the most typical body shape and a ‘‘varied
human’’ model with different body shape were constructed
using the OpenSim platform with all the data processed using
Matlab. Briefly, the OpenSim is an open source platform
for modelling, simulating, and analysing musculoskeletal
systems [40]. It supports the construction of the muscu-
loskeletal model with motion visualisation, as illustrated
in Fig. 7(a), in addition to extracting meaningful informa-
tion by a set of integrated tools. Therefore, both actuators
of the exoskeleton were also simulated using the OpenSim
platform.

A. HUMAN MODEL CONSTRUCTION
To facilitate the verification of the proposed exoskeleton con-
trol system, two human models were constructed. In particu-
lar, the 12 segments, 29 degree-of-freedoms (DOF) generic
musculoskeletal model [41] was adopted as the ‘‘typical
human’’, which is denoted as Standard Human Model,
as shown in Fig. 7(a). From this, a further different human
model was also constructed by reconfiguring the anthropo-
metric parameters of the generic model based on the work
of [42], which is denoted as VariantModel and used for verify
the adaptability of proposed control system. The parameters
of these modules are listed in Table 1, where ‘COM’ stands
for the vertical position of the center of human body mass.
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TABLE 1. Parameters of human models.

The standing balance ability and upright balance ability on
a moving vehicle of the ‘‘standard human’’ model were tested
to ensure the working of the constructed human models,
whichwere also used to initialise the rule base of the proposed
adaptive control system. Recall that the human ankle is com-
prised of soleus (SOL), gastrocnemius (GAS), and tibialis
anterior (TIB), as introduced in the beginning of Section II-A.
As a common practice, three MTCs were used to function
these muscles, with their parameters listed in Table 2.

TABLE 2. Parameter of MTCs for the Standard Human Model.

1) HUMAN MODEL UPRIGHT BALANCE CONTROL
ON A STATIC PLATFORM
In this simulation, the humanoid musculoskeletal reported
in [41], that is the Standard HumanModel, was implemented.
The human model was not standing stable in the beginning
when the feet started to take control of the body upright
whilst other support for the body was removed. As shown
in Fig. 8, after a lean forward to about −4.8◦, and then lean
backward to about −2.0◦, the body gradually stabilised at
around −2.9◦ ∼ −2.8◦ which is consistent with the research
results regarding the human upright equilibrium position as
reported in the work of [43].

The simulated ankle torque requirement and the corre-
sponding MTC forces implementing such torque, along the
timeline are summarised in Fig. 8. At the initial stage of
the simulation, the tilt forward was corresponding to the
equilibrium position with the unbalanced force form the sole.
In this case, the change of the humanoid gravity produced
the forward rotation torque, and the ankle flexor muscle
simulator produced the backward rotation torque. That is,
theMTC force of SOL and GASwere increased and theMTC
force of TIB was decreased. These factors jointly impact the
sole’s imbalanced force to restore the body to the equilibrium
position.

2) HUMAN MODEL UPRIGHT BALANCE CONTROL
ON A MOVING VEHICLE
This simulation was the continuation of the first simulation,
with the extra condition that the platform was a moving
vehicle. The vehicle was given a 1.5m/s2 acceleration at
time point 5s for 0.1s and the vehicle maintained the speed
of 0.15m/s until time point 9s; this is followed by a -1.5m/s2

FIGURE 8. Simulation of human upright balance control on the static
platform. (a) Human body tilt angle. (b) Ankle torque. (c) MTC force of
SOL and GAS. (d) MTC force of TIB.

FIGURE 9. Simulation results of human upright control on the moving
vehicle. (a) Human body tilt angle. (b) Ankle torque. (c) MTC force of SOL
and GAS. (d) MTC force of TIB.

acceleration for 0.1s, and the vehicle returned to its static
state. In this simulation, the main balance disturbance was
the vehicle acceleration which produced a passive force to
the human body.

The human body tilt angle, MTC forces, and ankle torque
are illustrated in Fig. 9. When the vehicle was imposed a
positive forward acceleration at time point 5s, the body leaned
backward, compared with the equilibrium position, about
−0.3◦. The corresponding change of humanoid gravity led to
some backwards rotation torque, and the ankle flexor muscle
simulator reacted on this by producing appropriate forward
rotation torque. That is, the MTC forces of SOL and GAS
were decreased and the MTC force of TIB was increased.
In contrast, when the vehicle was provided a negative accel-
eration at time point 9s, the body leaned forward, in ref-
erence to the equilibrium position, to about −4.5◦. In this
case, the ankle flexor muscle simulator produced backward
rotation torque to reflect on the forward rotation torque led
by the humanoid gravity change. That is, the MTC force of
SOL and GAS were increased and the MTC force of TIB
was decreased. These factors jointly restored the body to
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TABLE 3. The Initialised rule base.

the equilibrium position. The tilt angle of the body finally
stabilised at around −2.9◦ ∼ −2.8◦.

During the above human model construction and experi-
mental task simulation, a small data set was also collected,
which was used for the initialisation of the rule base for the
E-FRI of the proposed control system as detailed in the next
sub-section.

B. EXOSKELETON FOR THE STANDARD HUMAN MODEL
As detailed in Section III-B, two MTC models are used
in this work to simulate the plantar muscle group and the
dorsiflexor muscle group, whilst the MF activation values fo
the MTC models are estimated by the E-FRI in an effort to
meet different individual’s needs. For convenience, the E-FRI
for plantar muscle group is denoted as PMG-FRI, and that
for the dorsiflexor muscle group is denoted as DMG-FRI
in this work. The MTC models can be readily set up based
on the parameters of the constructed human models and
the experimental environments as detailed in the last sub-
section. The inference mechanism of the E-FRI is detailed
in Section III-C, and thus the focus of this section is the
construction and the evolving of the fuzzy rule base.

With the support of the data set collected during human
model construction and experimental environment simulation
as introduced in the last subsection, three initial rules were
learned to form the initial rule base for PMG-FRI, and three
other rules for DMG-FRI, which are all in the format of
Eq. 12. Through empirical study, the experience factor of all
rules were initially configured as 200, the cooling down factor
were initialised as as 0, the similarity threshold was set as 0.7.
From this, the weight of each rule was updated using Eq. 18,
and in this experimentation, the parameters of E-FRI were
valued as n = 800, a = 100 and b = 6. The rules in the
initialised rule base are summarised in Table 3, which are
extracted using the domain knowledge of the MTC models.

Based on this rule base, the proposed system can per-
form control tasks for a robotic ankle exoskeleton. Note that,
despite the generality, the simple initialised rule base was
not able to produce a highly accurate performance, but the
proposed system is able to evolve the rule base while it per-
forms for better performance. To validate this functionality,
the initialised controller was applied to perform the simulated
upright control tasks as discussed in Section III-A. The feed-
back from the wearer is usually not available immediately

after the performance; therefore, the rule base revision pro-
cess only occurs once the feedback becomes available. The
rule base will be stabilized after a number of performance
iterations unless the wearer or the support demand is changed
(which will be discussed in the next sub-section). After
5000 inference performances the system rule base stablised
with 70 rules.

Take the PMG-FRI as an example for the description of
the inference process. A random snapshot of the rule base
is summarised in Table 4, given the next input of observed
MTC force 385N, the process of inference performance and
rule revision are summarised below:

TABLE 4. The random snapshot of the evolved rule base for plantar
flexor MTC model of ‘‘Typical Human’’.

Step 1:Fuzzify the input as fuzzy setA∗ = (340, 390, 425).
Step 2:Select the two most ‘‘informative’’ rules for inter-

polation using Eq. 13. In this case, R6 and R7 were
selected.

Step 3:Interpolate the rule. The parameters are: rela-
tive placement factor λ = −1.43, the move
rate m = 0.32, and the scale rate s =

0.53. From this, the resulted interpolated rule is:
‘‘IF x is (340, 390, 425), THEN y is (0.099, 0.113,
0.123)’’.

Step 4:Defuzzify the consequence B∗ = (0.099, 0.113,
0.123) to crisp value 0.112, which was then passed
to the MTC as its MF activation value.

Step 5:Generate the torque value by the MTC based on
the parameter value and other inputs from the Geo-
metric Attachment component, and apply the torque
to the ankle exoskeleton to performance movement
assistance.

Step 6:Revise the rule base based on performance feed-
back. In this case, the feedback was positive. Thus
the experience factors of rules R6 and R7 were
incremented; the cooling down factors reset to 0; the
cooling down factor of all other rules decremented,
and the weight of all rules updated using Eq. 18.

Step 7:The experience factor of the newly interpolated
rule was 198 and the cooling down value was
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FIGURE 10. Simulation results of the robotic ankle exoskeleton based on
the Standard Human Model. (a) Body tilt angle. (b) Ankle torque.
(c) Plantar Flexor MTC Force. (d) Dorsiflexor MTC Force.

reset as 0; accordingly, the rule weight was ini-
tialised as 0.124 using Eq. 18. The maximum
similarity degree between each rule in the exist-
ing rule base and the interpolated one was 0.63,
which is smaller than the pre-defined threshold
0.7. Therefore, the interpolated rule is added into
the existing rule base as: ‘‘IF x is (340, 390, 425),
THEN y is (0.099, 0.113, 0.123) (0.124, 198, 0).’’

In order to extend the evaluation of the proposed system,
the experiment was also conducted on a moving vehicle.
In particular, the vehicle was providedwith a 1.5m/s2 acceler-
ation for 0.1s at the 15s time point, and the vehicle maintained
the speed of 0.15m/s until 30s time point, whichwas followed
by a -1.5m/s2 acceleration for 0.1s leading the vehicle to the
static state.

The experimental results regarding human body tilt angle,
flexorMTC force and the ankle torque is illustrated in Fig. 10.
The wearer leaned forward approximately−3.7◦, and robotic
ankle exoskeleton assisted the wearer to lean backwards to
about−2.5◦, and then gradually stabilised at around−2.9◦ ∼
−2.8◦. When the vehicle was imposed a positive forward
acceleration at time point 15s, the body leaned backward,
compared with the equilibrium position, about−0.3◦. At this
moment, the MTC force of plantar flexor was decreased and
the MTC force of dorsiflexor was increased, so the exoskele-
ton generates forward rotation assistance ankle torque to
reflect on the forward rotation torque led by wearer’s gravity
change and the wearer gradually stabilised at the equilibrium
position around −2.9◦ ∼ −2.8◦. Conversely, when the vehi-
cle was provided a negative acceleration at time point 30s,
the wearer leaned forward, in reference to the equilibrium
position, to about −4.7◦. The corresponding change of the
wearer’s gravity led to some forward rotation torque, and
the exoskeleton reacted on this by producing appropriate
backward rotation torque. That is, the MTC force of plantar
flexor was increased and the MTC force of dorsiflexor was
decreased. These forces worked together to take the wearer
to the equilibrium position around −2.9◦ ∼ −2.8◦.

FIGURE 11. The tilt angle evolving along with rule base adaptation.
(a) The ‘‘standard’’ rule base. (b) Evolved rule base after
2000 performance iterations. (c) Evolved rule base after
4000 performance iterations. (d) Evolved rule base
after 6000 performance iterations.

C. PERSONALIZED EXOSKELETON CONTROL FOR
DIFFERENT WEARERS
This simulation utilized a varied human model, i.e., the Vari-
ant Model, as shown in Table. 1 for the upright control to
verify the adaptivity of proposed control strategy. Due to the
change of the wearer model, the previous rule base will not
be able to generate satisfied ankle torque. Therefore, the rule
base would be updated based on the rule revision mechanism
which is detailed in Section III-C.3. In particular, the weights
of the dated rules would be decreased along time, and finally
be gradually excluded form the rule base; also, high quality
newly interpolated rules will be included in the rule base.
Along with the evolving of the PMG-FRI and DMG-FRI rule
bases, the exoskeleton performed increasingly better.

When the wearer stood on the static platform, the overall
tilt angle along with the evolving progress of the rule base
are illustrated in Fig. 11. From this figure, it is clear that
the wearer cannot stood upright in the beginning using the
rule base developed for the ‘‘standard human’’ model. After
2000 performance iterations, the revised rules base enabled
the wearer to gradually stabilise at around −5.9◦; at this
point, the stabilised forward angle was larger than the human
stabilised equilibrium position [43]. After 4000 performance
iterations, the rule base enabled the wearer to gradually sta-
bilise at around−3.3◦, which was still larger than the normal
human stabilised equilibrium position. The rule bases are
stabilised after 6000 performance iterations; the wearer at
this point stabilised at around −2.7◦ ∼ −2.8◦, which was
consistent with the human stabilised equilibrium position.
A snapshot of the rule base after 6000 performance iterations
is summarised in Table 5.
After the rule base was stabilized for the Variant Model on

a static platform, the next experiment was made on a moving
vehicle, and the vehicle moving process was the same with
that as introduced in Section IV-B. The simulation results
regarding human body tilt angle, each flexor MTC force, and
the ankle torque are illustrated in Fig. 12. Compared with
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TABLE 5. The random snapshot of the evolved rule base for plantar
flexor MTC model of ‘‘Individual Human’’.

FIGURE 12. Simulation results of robotic ankle exoskeleton for upright
balance control on the moving vehicle for the Variant Human Model.
(a) Body tilt angle. (b) Ankle torque. (c) Plantar Flexor MTC Force.
(d) Dorsiflexor MTC Force.

the simulation results as reported in Section IV-B based on
the Standard Human Model, the tilt range in this experiment
was wider for the Variant Model due to bigger body size, and
accordingly larger assistance ankle torque was required to
restore the equilibrium position for the wearer. In particular,
the wearer leaned forward approximately −3.7◦, and the
robotic ankle exoskeleton assisted the wearer to lean back-
ward to about −2.5◦; and then the body gradually stabilised
at around −2.9◦ ∼ −2.8◦, which is consistent with the
result as reported in [43]. As the vehicle imposed acceleration
(either positive or negative), the wearer gradually satbilised
at the equilibrium position around −3◦ ∼ −2.8◦. Compared
with the equilibrium position, the maximum leaned backward
position was−0◦ and maximum leaned forward position was
about−5.2◦. TheMTC force of plantar flexor and dorsiflexor
worked together to take the wearer to the equilibrium posi-
tion, with the same process as discussed in Section IV-B.

D. PERSONALIZED CONTROL FOR DIFFERENT WEARERS
WITH VARIOUS NEEDS
The assistance ankle torque demands can vary for different
purposes, such as the needs at different rehabilitation treat-
ment stages. To verify the power of the proposed approach in
dealing with this situation, this experiment assumed that the
wearer’s two ankle muscle groups were activated as 0.2 and

FIGURE 13. Simulation results based on different support needs. (a) Body
tilt angle as wearer muscle activation degree is 0. (b) Provide assistance
ankle torque as wearer muscle activation degree is 0. (c) Body tilt angle
as wearer muscle activation degree is 0.2. (d) Provide assistance ankle
torque as wearer muscle activation degree is 0.2. (e) Body tilt angle as
wearer muscle activation degree is 0.4. (f) Provide assistance ankle
torque as wearer muscle activation degree is 0.4.

TABLE 6. The random snapshot of the evolved rule base as wearer’s
muscle activation degree is 0.2.

0.4 compared with those of normal people, to simulate two
different stages of rehabilitation treatment. The rule base
revision process was the same as discussed above. A sample
of the revised rule bases in this simulation are illustrated
in Tables 6 and 7. Based on these rule bases, the robotic ankle
exoskeleton could assist the wearer to achieve upright balance
rehabilitation treatment on a moving platform.

In this simulation, the accelerating process of the vehicle
is the same with that as discussed in Section IV-B. In order
to facilitate the comparison, the wearer’s body tilt angle and
the corresponding exoskeleton assistance ankle torque are
illustrated in Fig. 13. From this figure, it can be seen that
the change trends of the wearer body tilt angles are very
similar for different levels of support, but the magnitudes are
significantly different. In specific, the exoskeleton assistance
ankle torque decreased due to the muscle activation degree
increased. This is reasonable as the wearer’s muscle was
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TABLE 7. The random snapshot of the evolved rule base as wearer’s
muscle activation degree is 0.4.

activated which could offer force to support the moments
when the body fell down, which therefore effectively imple-
mented the personalized support of robotic ankle exoskele-
ton, based on the individual’s needs.

V. CONCLUSION
Personalized control plays a key role to promote the devel-
opment and utilization of robotic exoskeletons. This paper
proposes an adaptive control system for the robotic ankle
exoskeleton, which is able to adaptively meet wearer’s indi-
vidual needs. The control system is implemented by utiliz-
ing experience-base FRI with the support of a MTC model,
which is able to adaptively evolve the rule base based on
the feedback collected from the wearer. The experimental
results based on different human models with various support
demands demonstrated the power of the proposed control sys-
tem in improving the adaptability of robotic ankle exoskele-
ton. This is of high pragmatic and financial interest towards
the commercial production of robotic ankle exoskeleton in
mass volume for personalized use but without consider-
ing the differences between individuals during production.
Although the proposed system in this paper only targets
the ankle exoskeleton, it is readily applicable to the whole
body exoskeleton, which remains as a piece of future work.
In addition, further work is also required to apply the pro-
posed control system to physical exoskeletons for extended
evaluation, in addition to the simulation-based experiments
as reported in this paper.
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