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ABSTRACT We propose a model of concurrent three-state spreading dynamics on multiplex networks to
study the co-evolution process of epidemic spreading and information diffusion. The spreading dynamics
and information diffusion process are both described by three-state models which can be used to address
a wide range of common spreading behaviors. As accurate prediction is important in understanding the
behaviors of complicated spreading dynamics, based on our proposed model, we develop a continuous-time
effective degree theory (EDT) to delicately analyze the concurrent dynamics. We show that compared to the
Monte Carlo simulations, this developed theory could predict the behavior of the dynamics in high accuracy,
outperforming the dominantly adopted heterogeneous mean field theory applied on relevant dynamics on
multiplex networks.

INDEX TERMS Effective degree theory, multiplex networks, concurrent spreading dynamics.

I. INTRODUCTION
During the past decades, many efforts have been devoted
to the research of epidemic spreading on complex networks
by use of computer simulations as well as approximate and
exact analytical treatments [1]–[3]. The study of this topic,
on one hand contributes to the understanding of behaviors
of epidemics on sociology level, and on the other hand pro-
vides a simple dynamical framework to demonstrate rich
phase diagrams. Several typical models have been proposed
to describe common infectious diseases, which include two-
state SISmodel and three-state SIRmodel with S standing for
susceptible, I for infected, and R for refractory in epidemi-
ological terminology [4]–[10]. A variety of methods have
been developed to analyze the epidemic spreading on com-
plex networks, which include generating function [11], [12],
pair-approximation [13], heterogeneous mean field theory
[14]–[16], probability generating function [17], [18], branch-
ing process approximation [19], [20], and Lie algebra
methods [21], [22].

Beyond the studies on single layered networks, recently
growing attention has been paid to the intertwined
effect of concurrent spreading dynamics on multiplex
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networks [23]–[28]. In multiplex networks, a set of nodes
are connected with different types of connections. Each type
of connections forms a corresponding configuration which
is represented by a layer of the networks. For concurrent
spreading dynamics in multiplex networks, each layer may
have a specific spreading process running on top of it, and
these dynamics in different layers may influence each other
and co-evolve. For example, the behaviors of two concur-
rent epidemic spreading processes have been studied [29]
where the characterization that the epidemic threshold of a
disease is conditioned by the prevalence of the other disease
is revealed. Further, the promotion and suppression effects
between two concurrent SIS processes, referred as SIS-
SIS model, is systematically studied [30]. In these studies,
to describe the concurrent epidemic spreading processes the
heterogeneous mean field theory (HMF) is adopted. Further,
another kind of concurrent spreading dynamics is considered
to study the co-evolution of epidemic spreading process and
information diffusion process, where the latter is acted as
an auxiliary process to influence the former. In this type
of concurrent spreading dynamics, the information diffusion
process is defined by a two-state unaware-aware-unaware
(UAU) model and the epidemic spreading process is defined
by a two-state susceptible-infected-susceptible (SIS) model,
referred as UAU-SIS model [31]. As both SIS-SIS model and
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UAU-SIS model possess two-state spreading dynamics
in each layer, we denoted them as concurrent two-state
spreading dynamics.

The analysis of the UAU-SIS process is based on a micro-
scopic Markov chain approach (MMCA) and a metacriti-
cal point is observed in this model [31]. The MMCA is
an approach to describe discrete-time processes which has
been previously adopted on single-layered quenched net-
works [32], [33]. Recently, it has been found that the MMCA
will return to the HMF when the discrete time step tends to
the continuous-time limit [34]. However, these studies have
exhibited that the prediction of HMF and MMCA on con-
current epidemic dynamics have noticeable discrepancy com-
paring to the Monte Carlo simulations, especially when the
infection rate is slightly above the epidemic threshold [35].
Since accurate prediction of spreading dynamics is important
in understanding the behavior and dynamical features of the
process, an effective degree has been introduced to describe
the behavior of epidemic spreading on single-layered net-
works [36]. The key idea of EDT is to compartment the
individuals according to the number of neighbors in different
states and a set of master equations is derived to approx-
imate the dynamics. This method has been shown to be
able to provide high-accuracy approximation of the epidemic
dynamics. However, despite the progress of EDT on two-
state SIS model [37]–[39] and three-state SIR model [36],
an EDT pertinent to concurrent three-state process is still
missing. Since three-state dynamics is common in various
circumstances, an EDT for concurrent three-state spreading
dynamics is in demand.

In this work, we introduce a model of concurrent three-
state spreading dynamics. The concurrent dynamics is com-
posed of a three-state epidemic model pertained to the
SIR process and a three-state information diffusion process
related to the individual awareness of the epidemic. The
two three-state dynamics are running on the two layers of
multiplex networks, respectively, and co-evolve. In order to
provide an accurate description of the concurrent three-state
spreading dynamics, we develop an effective degree theory
for the purpose. With the comparison to the Monte Carlo
simulations, it shows that our proposed theory could suc-
cessfully predict the concurrent dynamics in high accuracy,
outperforming the dominantly used HMF in existing stud-
ies. Following we outline the main framework of this work:
(i) We first propose a model of concurrent three-state spread-
ing dynamics on multiplex networks in Sec. II; (ii) We pro-
pose an effective degree theory to predict the behavior of the
concurrent dynamics in Sec. III; (iii) We compare the results
of the proposed EDT and Monte Carlo simulation as well as
the HMF on synthetic networks and an empirical network
in Sec. IV. Results show that the EDT could predict the
behavior of the networks in high accuracy, while the results of
HMF have obvious deviations; (iv) Finally, we conclude our
work in Sec. V with some discussions and outlook of future
directions.

FIGURE 1. The structure of multiplex networks used in our model. The
upper layer represents the networks where the news of the epidemic
diffuses. Nodes in this layer can be in three kinds of states: Unaware (U),
aware (A), and passive (P). The lower layer represents the networks
where the epidemic spreads. Nodes in this layer can be in the states:
Susceptible (S), infected (I), and refractory (R). Therefore, a node could be
in a combination of nine states: Unaware and susceptible (US), unaware
and infected (UI), unaware and refractory (UR), aware and
susceptible (AS), aware and infected (AI), aware and refractory (AR),
passive and susceptible (PS), passive and infected (PI), passive and
refractory (PR).

II. UAP-SIR MODEL
We consider a multiplex network composed of two layers,
which have the same number of individuals N but different
connectivity configurations. In the lower layer (see Fig. 1),
an epidemic may spread on it, which is referred as epi-
demic layer. In this layer, the state of an individual could
be in three states, which are susceptible (S), infected (I),
and refractory (R). A susceptible individual is susceptible to
the epidemic; an infected individual has been infected and
is able to spread the epidemic to its neighbors; a refractory
individual has recovered from an infection and is immune
to the epidemic permanently meanwhile will not spread the
epidemic to others. In the upper layer individuals’ awareness
of an epidemic diffuses, which is referred as awareness layer.
In this layer, the state of an individual could be in three
states, which are unaware (U), aware (A), and passive (P).
An unaware individual is unaware of the epidemic; an aware
individual is aware of the epidemic and is willing to spread
it to its neighbors; a passive individual has been aware of the
epidemic but has lost the interest to spread. Therefore, in each
time step each individual in this multiplex networks can be in
one of the nine kinds of states: unaware and susceptible (US),
unaware and infected (UI), unaware and refractory (UR),
aware and susceptible (AS), aware and infected (AI), aware
and refractory (AR), passive and susceptible (PS), passive and
infected (PI), passive and refractory (PR),

The evolution of the awareness process in the awareness
layer is composed of two parts. On one hand, an unaware
individual may become aware due to two reasons: First,
it may be informed by its aware neighbors, and each aware
neighbor could send the news to it with a rate α. Second, if an
unaware individual is also an infected one in the epidemic
layer, it may be aware of the epidemic with a rate τ because of
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self-awareness of the epidemic. On the other hand, an aware
individual may turn to be passive at a rate γ because of losing
the interest to spread the news.

In the epidemic layer, individuals’ dynamics are similar to
the SIR epidemic process, but a difference is that it can be
influenced by the awareness layer as follows. A susceptible
individual can be infected by an infectious neighbor. If this
susceptible individual is unaware (aware or passive) of the
epidemic, the infection rate coming from an infected neighbor
will be βU (βA), where βA ≤ βU as an effect of preventive
measures taken by the aware or passive ones. For the sake
of simplicity, we assume βA = θβU with θ ∈ [0, 1] and
βU is abbreviated as β in the rest part of the paper. Besides,
an infected individual can recover to be refractory at a rate µ.

III. EFFECTIVE DEGREE THEORY FOR UAP-SIR MODEL
We now develop the EDT for the concurrent three-state
UAP-SIR model on multiplex networks. In the EDT, besides
the states of the individuals, the states of its neighbors are
also tracked. For example, a US individual will be further
classified according to the number of its neighbors in different
states. Specifically, we classify an individual into a class of
XuapYsir depending on its states and its neighbors’ states,
where X ∈ {U ,A,P} and Y ∈ {S, I ,R} and subscripts
u, a, p, s, i, r denote the number of unaware, aware, passive,
susceptible, infected, refractory neighbors it has, respectively.

Without causing confusion, we also use XuapYsir to indi-
cate the fraction of individuals in respective class. Thus,
the compartments XuapYsir satisfy the conservation law as∑

u,a,p,s,i,r [(UuapSsir + UuapIsir + UuapRsir ) + (AuapSsir +
AuapIsir + AuapRsir )+ (PuapSsir + PuapIsir + PuapRsir )] = 1.
For the initial condition, we suppose initially in the awareness
layer a fraction a0 of individuals are aware of the epidemics
and the rest are unaware of the epidemics, and in the epidemic
layer a fraction i0 of individuals and the rest are susceptible of
the epidemics. These a0 and i0 initial fraction of individuals
are randomly distributed in the respective layers with no cor-
relation. Thus, we have XuapYsir (0) = Xuap(0) ·Ysir (0), where
Xuap(Ysir ) denotes the fraction of individuals in the state
X (Y ) with u unaware (s susceptible), a aware (i infected),
and p passive (r refractory) neighbors. Suppose the degree
distributions of the awareness layer and epidemic layer are pi
and qk respectively, one obtains

Ui−j,j,0(0) = (1− a0)pi

(
i
j

)
aj0(1− a0)

(i−j), (1a)

Ai−j,j,0(0) = a0pi

(
i
j

)
aj0(1− a0)

(i−j), (1b)

Sk−l,l,0(0) = (1− i0)qk

(
k
l

)
il0(1− i0)

(k−l), (1c)

Ik−l,l,0(0) = i0qk

(
k
l

)
il0(1− i0)

(k−l). (1d)

We take Eq. (1a) to show the reasoning of the above equa-
tions. Ui−j,j,0(0) denotes the initial fraction of unaware (U)
individuals which has i − j unaware neighbors, j aware

neighbors, and 0 passive neighbors (initially there is no
passive individuals in the network) in the awareness layer.
Therefore, the total number of neighbors of a Ui−j,j,0 one
equals to (i− j)+ j+0 = i. Thus, the possibility of randomly
choosing such an individual in the awareness layer can be
separated into three independent events. First, the possibility
of choosing an individual with degree i equals to pi. Secondly,
the possibility that this individual is in the unawareness state
equals to (1 − a0). Thirdly, the possibility that this i degree
individual has i− j unaware neighbors and j aware neighbors
follows the binomial distribution

(
i
j

)
aj0(1− a0)

(i−j). Hence,
multiplying all the three parts gives the Eq. (1a). It is easy to
see the conservation law of

∑
i,j≤i[Ui−j,j,0(0)+Ai−j,j,0(0)] =

1 and
∑

i,j≤i[Sk−l,l,0(0) + Ik−l,l,0(0)] = 1. Note that since
in the beginning there is no passive ones and refractory ones,
we have Pi−j,j,0(0) = 0 for ∀i, j and Rk−l,l,0(0) = 0 for ∀k, l.

Our method is used for continuous-time process and the
evolution are described by a set of ordinary differential
equations (ODEs). To simplify the discussion, we sepa-
rate the whole process into four sub-processes, named as
infection process, refractory process, awareness process, and
passiveness process, respectively. For continuous-time pro-
cess, the time interval of each update is very small, during
which the mutual influences of these sub-processes could be
ignored. Therefore, for each class of individuals, we shall first
calculate their variations in the four sub-processes respec-
tively, and then sum them up to obtain the variation of the
whole process. Denoting the differential operators of the
ODEs for the four sub-processes and the whole process as
d I/dt , dR/dt , dA/dt , dP/dt , and d/dt , respectively, we have
d/dt(·) = d I/dt(·) + dR/dt(·) + dA/dt(·) + dP/dt(·).
All possible state transitions among different classes of
XuapYsir are presented in Fig. 2 for easy reference, and in the
following we will derive the governing equations of these
sub-processes accordingly.

We start from the infection process. In the EDT, besides
considering the change in the state of an individual itself,
the change of its neighbors’ states will also be tracked.
Since in the continuous-time description, the possibility of
two events happened in one time interval can be ignored,
the change in the states of an individual’s neighbor due to
the infection process could only be the case of XuapYsir →
XuapYs−1,i+1,r , i.e. a susceptible neighbour changes to be
infected through infection process. However, since this
susceptible neighbour could be in the US, AS, or PS
state, we use mean field approximation to estimate the
changing rate of this susceptible neighbour. For a UuapSsir
individual, one of its susceptible neighbour may be in a
class of Uu′a′p′Ss′i′r ′ , Au′a′p′Ss′i′r ′ , or Pu′a′p′Ss′i′r ′ . Suppose
this neighbour is an Au′a′p′Ss′i′r ′ one. This event happens
with a possibility of Au′a′p′Ss′i′r ′s′/

∑
u′a′p′s′i′r ′ (Uu′a′p′Ss′i′r ′ +

Au′a′p′Ss′i′r ′ + Pu′a′p′Ss′i′r ′ )s′ under non-correlation assump-
tion, which is proportional to s′, and the dominator
serves as the normalization condition. Thus, the rate of
a UuapSsir individual having an Au′a′p′Ss′i′r ′ neighbour
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FIGURE 2. State transitions and respective rates among different classes
of individuals, where XuapYsir denotes the fraction of individuals in the
XY state, X ∈ {U,A,P} and Y ∈ {S, I,R}, with u unaware, a aware, and p
passive neighbors in the awareness layer and s susceptible, i infected,
and r refractory neighbors in the epidemic layer. (a) Transitions happened
on the individuals of respective classes; (b) Transitions happened on the
neighbors of the individuals of respective classes. Direction of the arrows
indicate the direction of the transitions. The definitions of the rates are
provided in the text.

meanwhile this neighbour is infected equals to θβi′Au′a′p′
Ss′i′r ′s′/

∑
u′a′p′s′i′r ′ (Uu′a′p′Ss′i′r ′+Au′a′p′Ss′i′r ′+Pu′a′p′Ss′i′r ′ )s

′

since this susceptible individual has i′ neighbors. Similarly,
for an Uu′a′p′Ss′i′r ′ neighbour the corresponding rate
equals to βi′Uu′a′p′Ss′i′r ′s′/

∑
u′a′s′i′ (Uu′a′Ss′i′ + Au′a′Ss′i′ +

Pu′a′p′Ss′i′r ′ )s′, and for a Pu′a′p′Ss′i′r ′ the rate is θβi′Pu′a′p′
Ss′i′r ′s′/

∑
u′a′p′s′i′r ′ (Uu′a′p′Ss′i′r ′+Au′a′p′Ss′i′r ′+Pu′a′p′Ss′i′r ′ )s

′.
Summing all the possible classes gives the effective rate of a
susceptible neighbour to be infected, defined as βS, as shown
in Eq. (2a), as shown at the bottom of this page. One may
further find that a susceptible neighbour of an AuapSsir and
an PuapSsir individual has the same effective infection rate
βS. With similar reason, the effective rate of a susceptible
neighbour of a UuaIsi, AuaIsi, and PuaIsi one, defined as βI,
is shown as Eq. (2b), as shown at the bottom of this page;
and the effective rate of a susceptible neighbour of a UuaRsi,
AuaRsi, and PuaRsi one, defined as βR, is shown as Eq. (2c),
as shown at the bottom of this page. Hence, one may obtain

the evolution equations of the infection process as follows:

d I(XuapSsir )
dt

= −β∗iXuapSsir − βSXuapSsirs

+βSXuapSs+1,i−1,r (s+ 1), (3a)

d I(XuapIsir )
dt

= +β∗iXuapIsir − βIXuapIsirs

+βIXuapIs+1,i−1,r (s+ 1), (3b)

d I(XuapRsir )
dt

= −βRXuapRsirs

+βRXuapRs+1,i−1,r (s+ 1), (3c)

in which when X = U , β∗ = β and when X = A or P,
β∗ = θβ.
Thus, in Eq. (3a), when X = U , β∗ = β, the left hand

side of Eq. (3a) is d I(UuapSsir )
dt , and the first term on the right

hand side is −βiUuapSsir . This term −βiUuapSsir describes
the decrement in the fraction of UuapSsir due to the infection
process. In fact, a UuapSsir individual has i infected neigh-
bors and each infected neighbor could infect this individual
with the rate β, which lead to the decreasing of UuapSsir
by the amount of βiUuapSsir . Note that when X = A and
P, the corresponding individuals are AuapSsir and PuapSsir ,
which have been aware of the living epidemic, resulting
β∗ = θβ. In this case, the decrement of fraction of these
individuals are−θβiAuapSsir and−θβiPuapSsir , respectively.
Now, let us turn to the second term on the right hand side
of Eq. (3a) for X = U , which is −βSUuapSsirs. This term
corresponds to the process of UuapSsir → UuapSs−1,i+1,r ,
which happens when the state of an susceptible neighbour of
UuapSsir individuals is changed. Indeed, as introduced above,
βS defined in Eq. (2a) equals to the rate that a susceptible
neighbor of a UuapSsir is infected, and further consider the s
number susceptible neighbors that a UuapSsir individual has,
this term tells the variation in the amount of the UuapSsir
according to this process. Similarly, the third term on the
right hand side of Eq. (3a), βSXuapSs+1,i−1,r (s + 1), gives
the incremental amount of the UuapSsir due to the process of
UuapSs+1,i−1,r → UuapSsir . Equations (3b) and (3c) show
the variation of XuapIsir and XuapRsir , respectively. It is worth
noting that the rate of a susceptible neighbor of an XuapSsir
one and an XuapIsir one to be infected are different, which are
βS and βI, respectively. This difference is actually come from
the fact that XuapSsir and XuapIsir have different possibilities
to connect with Uu′a′p′Ss′i′r ′ , Au′a′p′Ss′i′r ′ , and Pu′a′p′Ss′i′r ′ ,
embodied in the different weights of s′ and i′, respectively.

βS =

∑
u′a′p′s′i′r ′ (βUu′a′p′Ss′i′r ′s

′
+ θβAu′a′p′Ss′i′r ′s′ + θβPu′a′p′Ss′i′r ′s′)i′∑

u′a′p′s′i′r ′ (Uu′a′p′Ss′i′r ′s′ + Au′a′p′Ss′i′r ′s′ + Pu′a′p′Ss′i′r ′s′)
(2a)

βI =

∑
u′a′p′s′i′r ′ (βUu′a′p′Ss′i′r ′ i

′
+ θβAu′a′p′Ss′i′r ′ i′ + θβPu′a′p′Ss′i′r ′ i′)i′∑

u′a′p′s′i′r ′ (Uu′a′p′Ss′i′r ′ i′ + Au′a′p′Ss′i′r ′ i′ + Pu′a′p′Ss′i′r ′ i′)
(2b)

βR =

∑
u′a′p′s′i′r ′ (βUu′a′p′Ss′i′r ′r

′
+ θβAu′a′p′Ss′i′r ′r ′ + θβPu′a′p′Ss′i′r ′r ′)i′∑

u′a′p′s′i′r ′ (Uu′a′p′Ss′i′r ′r ′ + Au′a′p′Ss′i′r ′r ′ + Pu′a′p′Ss′i′r ′r ′)
(2c)
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Similar arguments apply to theXuapRsir .With the understand-
ing of these points and the reference of Eq. (3a), Eqs. (3b)
and (3c) could then be readily understood.

The refractory process is relatively simple and its evolution
equations are given as follows:

dR(XuapSsir )
dt

= −µXuapSsir i

+µXuapSs,i+1,r−1(i+ 1), (4a)

dR(XuapIsir )
dt

= −µXuapIsir − µXuapIsir i

+µXuapIs,i+1,r−1(i+ 1), (4b)

dR(XuapRsir )
dt

= +µXuapIsir − µXuapRsir i

+µXuapRs,i+1,r−1(i+ 1), (4c)

with X ∈ {U ,A,P} respectively.
In Eq. (4a), the two terms on the right hand side

describe the processes of XuapSs,i,r → XuapSs,i−1,r+1 and
XuapSs,i+1,r−1→ XuapSsir , respectively. These two processes
are all caused from the state change on their neighbors of the
individuals. Particularly, for the first term, since an XuapSs,i,r
individual has i infected neighbors and each of them may
become refractory with rate µ, this process contributes to the
variation of XuapSs,i,r in an amount of µXuapSsir i. Since an
XuapSs,i,r individual is in the susceptible state, the refractory
process will not take place on it. However, as the refractory
process could change an XuapIs,i,r one to be an XuapRs,i,r one
with a rate µ, this event contributes to the first terms on the
right hand side of Eqs. (4b) and (4c), with one for decrement
and the other for increment.

Similar to the infection process, the evolution equations of
awareness process are as follows:

dA(UuapYsir )
dt

= −αUuapYsira− (αU + τU)UuapYsiru

+(αU + τU)Uu+1,a−1,pYs,i,r (u+ 1),

− τUuapIsir when Y = I , (5a)

dA(AuapYsir )
dt

= +αUuapYsira− (αA + τA)AuapYsiru

+ (αA + τA)Au+1,a−1,pYs,i,r (u+ 1),

+ τUuapIsir when Y = I , (5b)

dA(PuapYsir )
dt

= −(αP + τP)PuapYsiru

+ (αP + τP)Pu+1,a−1,pYs,i,r (u+ 1), (5c)

with Y ∈ {S, I ,R}. In Eqs. (5a) and (5b), the last terms,
i.e. −τUuapIsir and τUuapIsir , account for the self-awareness

process which happen when Y = I . In Eq. (5a), the first term
on the right hand side, −αUuapYsira, describes the process
of UuapYsir → AuapYsir , which happens on the individuals
UuapYsir themselves. The second term on the right hand side,
−(αU + τU)UuapYsiru, describes the process of UuapYsir →
Uu−1,a+1,pYsir , which happens on the neighbour of UuapYsir
individuals. Obviously, this term is combined with two parts,
αUUuapYsiru and τUUuapYsiru, where αU (τU) denotes the
possibility that a unaware neighbor of UuapYsir becomes
aware through the awareness process (self-awareness pro-
cess). The third term in the right hand side could be under-
stood similarly. The interpretation of Eqs. (5b) and (5c) is
analogous to the Eq. (5a), in which the definitions of αA, τA,
αP, τP, are provided in Eq. (6), as shown at the bottom of
this page. Moreover, we note that as the awareness process
happens between the states U and A, in Eq. (5c) the PuapYsir
individuals themselves will not participate in this process.

Finally, the evolution equations of passiveness process are
as follows:

dP(UuapYsir )
dt

= −γUuapYsira

+ γUu,a+1,p−1Ys,i,r (a+ 1), (7a)

dP(AuapYsir )
dt

= −γAuapYsir − γAuapYsira

+ γAu,a+1,p−1Ys,i,r (a+ 1), (7b)

dP(PuapYsir )
dt

= +γPuapYsir − γPuapYsira

+ γPu,a+1,p−1Ys,i,r (a+ 1), (7c)

with Y ∈ {S, I ,R}. The passiveness process described in
Eq. (7) mirrors the refractory process in Eq. (4), where all the
terms in both equations could be understood based on a one-
to-one correspondence.

IV. NUMERICAL RESULTS
In this work, we examine the performance of the EDT onmul-
tiplex networks inwhich each layer has a truncated power-law
degree distribution with pk = qk ∼ k−δ when 0 < k ≤ kT
and pk = qk = 0 otherwise. As comparison, the results of
HMF and the Monte Carlo simulations are also presented.
The results of HMF are obtained from the evolution equations
in Appendix V. In the Monte Carlo simulations, the results
are constructed with configuration model with the same
degree distribution, where the number of nodes is 104 and
the exponent of the degree distribution is δ = 2.2. The results
of simulations are averaged from 100 different realizations
and the error-bars stand for the standard deviation. Besides,
we perform synchronous updating method in the simulations,

αX =

∑
u′a′p′s′i′r ′ αa

′(Uu′a′p′Ss′i′r ′ + Uu′a′p′ Is′i′r ′ + Uu′a′p′Rs′i′r ′ )x ′∑
u′a′p′s′i′r ′ (Uu′a′p′Ss′i′r ′ + Uu′a′p′ Is′i′r ′ + Uu′a′p′Rs′i′r ′ )x ′

(6a)

τX =

∑
u′a′p′s′i′r ′ τUu′a′p′ Is′i′r ′x

′∑
u′a′p′s′i′r ′ (Uu′a′p′Ss′i′r ′ + Uu′a′p′ Is′i′r ′ + Uu′a′p′Rs′i′r ′ )x ′

(6b)
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that is: in each time step, all the individuals will update their
states according to their current states and their neighbors’
current states. The updated states will be taken as those to be
used in the next time step and then the update process repeats
until the final stage is reached.

Since our method is for continuous-time spreading process
onmultiplex networks, in order to fulfill this condition we use
small dynamical parameters to realize the process, so that in
each time step the increments of the variables are small and
high order amounts can be neglected. Thus, in the simulation
we set the parameters β, µ, α, γ , and τ in an order of 10−3.
Figure 3 shows the results of time evolutions of the fraction of
aware individuals ρA(t) and the fraction of infected individu-
als ρI (t) for the two kinds of networks. For the convenience
of comparison, besides the results of simulation and the EDT,
the results of heterogeneous mean field method (HMF) are
also presented. One can see that the EDT has an excellent
agreement with the simulations, while HMF overestimate the
results.

FIGURE 3. (Color online) Time evolution of the fractions of (a) aware
individuals ρA(t) and (b) infected individuals ρI (t), respectively. Results
are obtained from numerical simulations (blue open circles), EDT (black
curves), and HMF (red curves). The network is constructed with
uncorrelated configuration model with power-law degree distribution
pk ∼ k−δ , where δ = 2.2 and kT = 10. The network size is N = 10000.
Results are obtained with 100 different realizations. Other parameter
values are β = µ = α = γ = τ = 10−3 and θ = 0.5.

We further illustrate the fraction of passive individuals
ρP and refractory individuals ρR in the final stage of the
two kinds of networks in Fig. 4. One can also observe
the excellent agreements between the Monte Carlo simula-
tions and the EDT, while the results of HMF overestimate

FIGURE 4. (Color online) The fractions of (a) passive individuals ρP(∞)
and (b) refractory individuals ρR(∞) at the final stage as functions of
infection rate β. The multiplex networks and other parameters are the
same as those in Fig. 3.

the dynamics again. We remark that the overestimation of
HMF is due to the fact that the dynamical correlation is
neglected in the theory. The dynamical correlation in the
epidemic layer is that an infected individual is more likely
to connect with an infected neighbour since it must be
infected by an infected neighbour in previous time. However,
the neglect of this dynamical correlation will lead to more
susceptible neighbors than expected and therefore cause the
overestimation.

In the proposed EDT, each class of individuals are
described with six variables to denote the number of different
types of neighbors. Thus, the number of different equations
is in a scale of k6max with kmax being the largest degree, which
grows with the sixth power of the largest degree. For the
HMF (see Appendix V), the number of different equations
is in a scale of k2max. Therefore, the ratio of the computational
amounts between the EDT and the HMF will be in a scale
of k4max. This property makes the computational amount of
the proposed theory to be formidable when the kmax is large.
However, it could be a preferable approach for the scenario
when the kmax is relatively small. In the following, we present
the performance of the proposed theory on an empirical
network generated with a real dataset. Specifically, we select
a period of three years sexual contacts among individuals
from the data collected in Ref. [40]. The resulting network
is aggregated from the contacts during this period. The giant
component of this network is chosen to compose the epidemic
layer of the multiplex network, which has 11769 individuals,

VOLUME 7, 2019 70491



Y. Zhou et al.: Effective Degree Theory on Multiplex Networks for Concurrent Three-State Spreading Dynamics

FIGURE 5. (Color online) Comparisons among effective degree theory
(EDT), heterogeneous mean field theory (HMF), and numerical simulations
(Simu) on an empirical sexual network (details are in the text) for (a) time
evolution of aware individuals ρA(t), (b) time evolution of infected
individuals ρI(t), (c) the final fraction of passive individuals ρP(∞), and
(d) the final fraction of refractory individuals ρR(∞). The simulation
results are obtained from 100 different realizations. The parameter values
are µ = α = γ = τ = 10−3 and θ = 0.5 with β = 2× 10−3 in (a) and (b).

34404 connections, and kmax = 15. Furthermore, in lack
of the network data of the corresponding awareness layer,
we construct the awareness layer by randomly adding 2×104

edges on the same network of epidemic layer meanwhile
avoiding overlapping of existing contacts.

Figure 5 compares the results of proposed EDT, HMF, and
Monte Carlo simulations, for the time-evolutions of aware
individuals ρA(t) and infected individuals ρI(t), and the final
fractions of passive individuals ρP(∞) and refractory indi-
viduals ρR(∞). One may clearly find that the proposed EDT
could predict the behavior of the system in high accuracy
while the HMF overestimates the results. In Fig. 5(c), it can
be seen that ρP(∞) approaches 1, which means almost all
of the individuals have been aware of the epidemics in the
final stage. However, referring to Fig. 5(a), one may observe
that the awareness of the epidemic among the individuals
happens gradually. Such a gradual process co-evolves with
the epidemic spreading process shown in Fig. 5(b), and the
interplay between the two processes may lead to considerable
impact to the final results. Indeed, as shown in Fig. 5(d),
the predictions of EDT for the ρR(∞) excellently match
with the simulation results, while the HMF overestimates the
results for about 20%.

V. CONCLUSION
In summary, we proposed a model of concurrent three-state
spreading dynamics on multiplex networks. In this model,
a multiplex network is composed of two layers, where one
is the awareness layer described by the unaware-aware-
passive (UAP) process and the other one is the epidemic
layer described by the susceptible-infected-refractory (SIR)
process. An interesting point of this model is the introduction

of three-state UAP awareness process to describe individuals’
response to the epidemics. We remark that the effect of
individual awareness of epidemics has also been studied in
single layered network where different types of awareness
processes and degree-dependent infection rates are consid-
ered [41], [42]. These studies reflect the wide interest in
understanding the effect of awareness in epidemic spreading
dynamics. Based on this UAP-SIR model, a continuous-time
effective degree theory (EDT) is developed to predict the
behavior of the spreading dynamics. For the convenience
of discussion, we separate the whole spreading process into
four sub-processes, named as infection process, refractory
process, awareness process, and passiveness process, respec-
tively. Since the EDT not only considers the dynamical state
of individuals but also considers the states of their neighbors,
the dynamical correlation is taken into account. An important
practice of the EDT for the concurrent spreading dynamics is
that in order to address the changing rates of an individual’s
neighbour from one state to another, several effective rates are
defined to account for the changing under mean field approx-
imation which incorporates the mutual influence between the
layers. Our results show that the prediction from the EDT
provides excellent agreement with Monte Carlo simulation
results.

To manifest our theory, we also present the results of the
heterogeneous mean field theory (HMF). It is shown that
the HMF systematically overestimates the dynamics. The
reason of the overestimation comes from the neglecting of
dynamical correlation of the dynamics. Specifically, during
the spreading process, an infected (aware) individual is more
likely to connect with an infected (aware) neighbour because
it may be infected (informed) by this neighbour in previous
time. If this dynamical correlation is neglected, as performed
in HMF, an infected (aware) individual could have more
susceptible (unaware) neighbors than expected, which fur-
ther results in the overestimation of the whole extent of the
spreading. We note that the merit of high accuracy in EDT
causes greater computational burden than the HMF. To make
this approach to bemore effective, further improvement of the
efficiency of the theory is desired, for example considering
the conservation condition to reduce the number of evolution
equations or other methods in the network science [43]–[47],
which could be our future works.

In this work, the developed EDT captures the transition
relations of the dynamical states of individuals and their
neighbors, and the governing evolution equations of all the
dynamical states are carefully addressed. The excellent match
with the simulation results confirms that the EDT could be
developed and applied to dynamical processes on compli-
cated multiplex networks. Since the multiplex networks is
becoming an evenmore important topic in complex networks,
our work is expected to be useful for the future study of multi-
plex networks, for example on other spreading dynamics, e. g.
opinion spreading dynamics [48] or state-dependent adaptive
spreading processes [39].
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APPENDIX A
HETEROGENEOUS MEAN FIELD THEORY
FOR UAP-SIR MODEL
In the heterogeneous mean field theory, we classify the indi-
viduals in to compartments XjYk with X ∈ {U ,A,P} and Y ∈
{S, I ,R}, where j and k represent the number of neighbors
of XY individuals in the awareness layer and epidemic layer,
respectively. The evolution of the whole process could also be
divided into four sub-processes, which are infection process,
refractory process, awareness process (including the self-
awareness process), and passiveness process, respectively,
with the corresponding changing rates as β, µ, α (τ ), and γ .

Now, we provide the evolution equations of the processes
as follows:
dUjSk
dt
= −β̄kUjSk − ᾱjUjSk , (8a)

dUjIk
dt
= +β̄kUjSk − µUjIk − ᾱjUjSk − τUjIk , (8b)

dUjRk
dt
= +µUjIk − ᾱjUjRk , (8c)

dAjSk
dt
= −θβ̄kAjSk + ᾱjUjSk − γAjSk , (8d)

dAjIk
dt
= +θβ̄kAjSk − µAjIk + ᾱjUjIk + τUjIk − γAjIk ,

(8e)
dAjRk
dt
= +µAjIk + ᾱjUjRk − γAjRk , (8f)

dPjSk
dt
= −θβ̄kPjSk + γAjSk , (8g)

dPjIk
dt
= +θβ̄kPjSk − µPjIk + γAjIk , (8h)

dPjRk
dt
= +µPjIk + γAjRk , (8i)

where ᾱ and β̄ are given as

ᾱ =

∑
j′k ′ α(Aj′Sk ′ + Aj′ Ik ′ + Aj′Rk ′ )j

′∑
k ′ k
′pk ′

, (9a)

β̄ =

∑
j′k ′ β(Uj′ Ik ′ + Aj′ Ik ′ + Pj′ Ik ′ )k

′∑
k ′ k
′qk ′

. (9b)

For the convenience of representation, an effective aware-
ness (infection) rate ᾱ (β̄) is introduced to describe the vari-
ation in the awareness (infection) process, which is defined
in Eq. (9a) [Eq. (9b)]. In Eq. (9b), the term

∑
j′k ′ (Uj′ Ik ′ +

Aj′ Ik ′ + Pj′ Ik ′ )k ′ is proportional to the probability that a
randomly chosen link in the epidemic layer connects to an
infected individual, and the denominator

∑
k ′ k
′qk ′ severs for

the normalization condition. Multiplying this probability by
β gives the possibility that an infection event happens through
a randomly chosen link in the epidemic layer. Similarly,
the effective awareness rate ᾱ represents the possibility that
an awareness event happens through a randomly chosen link
in the awareness layer.

Therefore, one may find that the first term on the right
hand side of Eq. (8c) describes the incremental rate of
UjIk → UjRk due to the refractory process, and the second

term on the right hand side of Eq. (8c) describes the decre-
mental rate ofUjRk due to the awareness process. Other terms
in Eq. (8) could be read in similar way, and all these processes
correspond to the their respective changing rates, i.e. β̄, µ, ᾱ,
γ , and τ .
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