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ABSTRACT To improve the robustness of target tracking algorithms in a complex environment, this paper
proposes the moving target detection and tracking algorithm based on context information and closed-loop
learning. A context region is composed of the target region and its current neighboring background. For
every frame that follows from a video stream, the long-term tracking task is principally decomposed into four
parts of synchronous operation: tracking, detection, integration, and learning. First, the tracker obtains the
posterior probability of the target location and estimates the target state over succeeding frames by exploiting
the spatio-temporal local information. Meanwhile, the detector searches for the target in independent frames
combining with the context information of tracker, and automatically reinitialize the tracker when it fails.
Then, the integrator attains the best location of the target by merging the output results of tracker and
detector together through an optimal strategy. Finally, the learning process is designed as the feedback
and generates training samples to update the detector according to the results of tracker and detector.
Experimentally, we evaluate the performance against several latest techniques on various benchmarks, and
the results demonstrate that the proposed algorithm performs remarkably in terms of robustness and tracking
accuracy.

INDEX TERMS Target detection, target tracking, moving target, context information.

I. INTRODUCTION
Visual tracking is one of the most crucial issues in computer
vision due to its wide range of applications such as motion
analysis, image compression, monitoring, human-computer
interaction, and so forth. The main challenge in visual track-
ing is to cope with the appearance variations of target, specif-
ically including the intrinsic variations of pose, shape and
scale, as well as variations caused by illumination changes,
occlusion, background clutter and other extrinsic factors in
the environment [1].

A huge amount of research has been spent on visual
tracking and numerous tracking algorithms have been pro-
posed, which can be categorized into short-term tracking and
long-term tracking approaches.

Short-term tacking methods estimate the target’s motion
frame by frame under the assumption that the target is
in absence of disappearance and complete occlusion. The
research on this kind of method is focused on improv-
ing the speed, precision and robustness of tracking [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiachen Yang.

Traditional short-term tacking methods generally follow the
target by extracting the target features, such as color [3]–[6],
contour [7], texture [8], optical flow [9] and eigenbasis [1],
which can perform effectively in some specific scenes.
Considering the fact that these features are separately
subject to the disturbance in sourrundings, some existing
algorithms [10]–[12] improve the tracking performance by
integration of multiple features. Other algorithms, includ-
ing Kalman Fliter (KF) [13], Extended Kalman Fliter
(EKF) [14], and Particle Filter (PF) [15], regard tracking as
a problem of state estimation and calculate the posterior
probability about observation by introducing various pre-
diction solutions [16], [17]. Moreover, PF has been widely
applied in visual tracking owing to its ability of dealing with
multiple mode problems without the limitation of Gaussian
hypothesis and linearity [12], [18]. Recently, a novel kind of
algorithm [19]–[23] that exploits the information of target
local context has achieved success and caught much atten-
tion, for instance, the Spatio-Temporal Context (STC) algo-
rithm proposed by Zhang et al. [23], which can track target
fast and robustly with the help of spatio-temporal context
information.
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Short-term tracking methods can only work in short image
sequences and would inevitably fail as long as the target is
fully occluded or disappeared, thus limiting the scope of its
application. For this reason, they can not be directly applied
to long-term tracking problems, where one dominating trend
is to apply appearance-based detectors. With the capability
of detection to a certain extent, current long-term tracking
methods commonly are able to redetect the target when
the target appears again after disappearence [18], [24]–[27].
Williams et al. [24] applied an invariant detector trained
offline to evaluate the reliability of trajectory, resulting in
poor adaptability to the changes of target appearance. In [18],
with the detector integrated within a particle filtering frame-
work, the method depends only on information from the
past and is suitable for online applications. In [25]–[28],
the tracking is deemed as a binary classification matter
and realized by utilizing a strong classifier to discrimi-
nate the target from surrounding background. Meanwhile,
different sorts of learning algorithms are brought in to
update the classifier online [29], [30], therefore the tracker
can better handle the appearance changes and short-time
occlusion of the target in tacking process. Furthermore,
Kalal et al. [31], [32] investigated long-term tracking and
proposed the Tracking-Learning-Detection (TLD) algorithm
by integrating the short-term tracking, detection and learn-
ing mechanism into a coherent framework, where track-
ing and detection are independent processes and operate
synchronously.

In summary, STC algorithm can track target fast
and robustly with the help of spatio-temporal context
information, but it can’t track when the target is occluded
severely. The TLD algorithm has strong robustness to intrin-
sic variations and can be effectively applied to situation
where the target is partly occluded or disappeared, but it has
poor performance in complex environment with illumination
changes and severe occlusion. Taking into account the pre-
vious points of view of related work, this work proposed
the moving target detection and tracking algorithm based on
context information, which comprises tracking, detection as
well as learning process. Tracker takes advantage of the local
spatio-temporal information to determine the target location
over succeeding frames. It can stably track the target in
occasions with illumination changes and partial target occlu-
sion, whereas it would fail forever if the target disappeared.
When the tracker fails, detector performs a global search in
each independent frame and automatically reinitializes the
tracker. Otherwise, it will make use of the context information
of the tracker and consequently search in a smaller local
context region. The integrator combines the results of tracker
and detector into a best one through an optimal strategy.
Furthermore, learning process generates new training sam-
ples to update the detector according to the output results
of the tracker and detector. Making full use of local con-
text information of the target, the proposed algorithm has
not only strong recoverability after the target disappeared,
but also outstanding performance in complex environment

with dramatic lighting changes, severe occlusion and
so on.

The contribution of this paper is to propose a robust mov-
ing target detection and tracking method based on context
information and closed-loop learning framework. The pro-
posed method can track target fast and robustly when the
target undergoes rotation and scaling changes, and when the
target disappears with severely occlusion and reappears, it can
re-track the target stably.

The rest of the paper is organized as follows: Section II
briefly reviews the tracking and detection framework based
on context information and closed-loop control. On this basis,
details about the proposed algorithm in this paper are dis-
cussed in Section III, where we discuss the target represen-
tation and the implementation of each module. In Section IV,
we perform experiments which compare the proposed algo-
rithm with other latest algorithms, and report the experi-
mental results and analysis. Later, we conclude the paper in
Section V.

II. TRACKING AND DETECTION FRAMEWORK BASED ON
CONTEXT INFORMATION AND CLOSED-LOOP CONTROL
In this section, the tracking and detection framework based
on context information and closed-loop control is presented
for long-term tracking of an unknown target in video streams.
As depicted in Fig. 1, the framework mainly consists of four
components, that is the tracker, detector, learning process and
integrator.

The tracker based on context information estimates the tar-
get state over consecutive frames, assuming that the target’s
motion between adjacent frames is limited and the target is
visible. However, the tracker will fail and never recover by
itself in case that the target is occluded completely or moves
out of the view boundary.

The detector based on context information conducts a
search for the target in each independent frame and localize
all appearances that are similar to the target model, which
contains the target’s appearance information from initializa-
tion and learning process in tracking process. In addition,
the output results of detector will be applied to reinitialize
the tracker when it fails.

The integrator merges the output results of tracker and
detector together through an optimal strategy and eventually
attains a best bounding box that defines the target’s location.
If there are no outcomes in tracker and detector, the target is
considered as invisible and no tracking box will be returned
by integrator.

The learning process is designed as the feedback to eval-
uate detector’s error and correct them. Since the detector
searches for targets with known target model library, it is
likely to fail when the target’s appearance changes. In order to
avoid the same error in the subsequent tracking, the learning
process generates training samples according to the output
results of tracker and detector, so that it updates the target
model library and related parameters of detector in runtime.
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FIGURE 1. Tracking and detection framework based on closed-loop control.

FIGURE 2. Representation of context information.

III. DETECTION AND TRACKING ALGORITHM BASED ON
CONTEXT INFORMATION
A context region is composed of the target region and its
current neighboring background, and its size is determined
as twice the size of the target region [23]. As shown in Fig. 2,
the context region of target is inside the red box, including
the target region inside the blue one that centers at I (D0).
The symbolD stands for possible target center of target while
Di(i ∈ Z+) for the points in context region. The context
information of target can be represented by the coordinates
Di(x, y) and corresponding intensity I (Di) of points in the
context region Uc (See D1,D2,D3 in Fig. 2). Additionally,
vector α starts from Di and ends at target possible center D,
thus representing the relative distance and direction between
target and points in context.

Within the Bayesian framework, target tracking can be con-
sidered to be a problem of obtaining the posterior probability
P(D) of target location, exactly,

P(D) =
∑
Di∈UC

P(D|(I (Di),Di)) · P(I (Di),Di). (1)

The priori probability P(I (Di),Di) models the appear-
ance information of points in context with a weighted

function ω(•). It is noted that the closer points are to the
target, the larger their weights are supposed to be, thereby
P(I (Di),Di) is defined as below (k1 denotes a normalization
constant that limits P(I (Di),Di) into range from 0 to 1 that
satisfies the definition of probability):

P(I (Di),Di)
1
= I (Di) · ω(Di−D0)

= I (Di) · k1e
−
|Di−D0|

2

σ2 . (2)

The posterior probability P(D) describes the likelihood of
being the target center for every location D in the context
region [33]. When D0 is located, P(D) is defined as (Similar
to k1, k2 is a normalization constant, γ for a scale factor, and
β for a shape parameter):

P(D) 1= k2e
|
D−D0
γ
|
β

. (3)

The conditional probability P(D|(I (Di),Di) models the
spatial relationship between the target location D and its
context information. It is expressed as P(D|(I (Di),Di))

1
=

Osc(D−Di) = Osc(α), which can be learned from the prior
and the posteriori probability.

To update the spatio-temporal context model Ostc(α, t+1)
in the (t+1)-th frame, we weightOstc(α, t) andOsc(α, t) with
a weighting factor ρ, that is,

Ostc(α, t + 1) = (1− ρ)Ostc(α, t)+ ρOsc(α, t), (4)

where Ostc(α, t) refers to the spatio-temporal context model
and Osc(α, t) refers to the spatio context model in the t-th
frame.

A. TARGET TRACKING BASED ON CONTEXT INFORMATION
Fig. 3 illustrates the tracking process in the (t + 1)-th
frame.The main task for tracking is to learn Osc(α, t) and
Ostc(α, t + 1) according to the target location D0(t) and its
context Uc(t). Then, tracking is formulated by obtaining the
posterior probability distribution of the target location, and
the point that maximizes the probability is taken as the target
center.
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FIGURE 3. Tracking process in the (t + 1)-th frame.

Putting equation (1), (2) and (3) together, equation (1) is
formulated as

P(D)= k2e
|
D−D0
γ
|
β

= Osc(D)⊗ (I (D) · k1e
−
|D−D0|

2

σ2 ),

where⊗ denotes the convolution operator. Using fast fourier
transformation (FFT) algorithm, Osc(D) can be solved as

Osc(D) = F−1
F(k2e

|
D−D0
γ
|
β

)
F(I (D) · ω(D−D0))

, (5)

where F denotes the FFT function. Assembling equation (1)
and (4) with the learned Osc(D), the posterior probability in
the (t + 1)-th frame is formulated as

Pt+1(D) = F−1 (F(Ostc(D, t + 1)) · F(I (D) · ω(•))). (6)

The best target locationD0(t+1) is estimated by maximizing
Pt+1(D), and relevantly used to update the context region
Uc(t + 1) and spatial context model Osc(D, t + 1).
It is important to note that the tracker will necessarily

fail if the target is completely occluded or moves out of the
view boundary. To identify these occasions, the tracker is
supposed to be extended with the ability of failure detection,
which is realized by following method. Firstly, we obtain the
Euclidean distance between the predictedUc(t+1) in current
frame and the actual Uc(t) in previous frame. If it is larger
than a settled threshold d , that is,

|Uc(t + 1)− Uc(t)| > d, (7)

tracking is considered as a failure. Secondly, the confidence
of tracking tconf is obtained by evaluating the similar-
ity between the tracking result and target model library of
detector. Similarity between two patches pi, pj is define as
S(pi, pj) = 0.5(kn(pi, pj) + 1), where kn(pi, pj) is a Normal-
ized Cross-correlation coefficient [34]. If tconf is less than
settled threshold, tracker is also considered as unreliable and
returns no tracking box. In this way, tracker is able to confirm
the absence of target caused by occlusion or moving out of
view.

B. TARGET DETECTION BASED ON CONTEXT
INFORMATION
According to the size of the initial tracking box, the detector
generates 21 bounding boxes of different scales with step

of 1.2. Each of the boxes traverses the whole image with
horizontal step of width’s 10 percent and vertical step of
height’s 10 percent, thus producing all image patches that
may contain the target.

If the tracker fails, the detector has to perform a global
search in all image patches. Otherwise, the posterior prob-
ability Pt (D) derived in tracking can be used to narrow the
search of detector. To be specific, the detector acquires the
median value Pm of Pt (D) as

Pm = Median(Pt (D)), (8)

and afterwards limit the search scope to patches whose pos-
terior probability at center is larger than Pm.

The detector is realized by a cascade classifier, which is
constituted of three stages: variance classifier (VC), ensemble
classifier (EC), and nearest neighbor classifier (NNC). Fig. 4
shows the block diagram of the detector. The input image
patche is firstly resampled to a normlized resolution, and then
the three classifiers respectively reject the patch or pass it to
the next stage.

FIGURE 4. Block diagram of detector.

VC is the first stage of the cascade. It computes the
image variance for input patches through integral image
algorithm [35], and filters out all patches whose gray-value
variance is smaller than 50 percent of variance of the patch in
the initial tracking box.

EC is the second stage of the cascade and composed
of n base classifiers which are based on a set of binary
features [36], [37]. To extract features, each base classifier
performs a set of pixel comparisons on the patch respec-
tively. The discrete pixel coordinates of pixel comparisons are
generated randomly in initialization and allocated averagely
into base classifiers and remain unchanged in runtime. Each
comparison returns 0 or 1 and these measurements are con-
catenated into a binary code x which indexes to an array of
posterior probability distributions Pi(y|x), where y ∈ {0, 1}.
If there are k pixel comparisons performed by each base clas-
sifier, the distribution would have 2k entries. The posteriors
are initialized as zero and estimated as Pi(y|x) =

PC
PC+NC

,
where PC and NC respectively stand for the count of positive
and negative patches that are assigned the same binary code x
in learning process. EC eliminates all patches whose average
posterior of individual base classifiers is less than 0.5.

NNC is used to classify the patches that have passed the
first two stages. It separately obtain their similarity with
positive and negative samples in the target model library by
means of normalized cross-correlation method [34], thereby
determining the classification and relevant confidence of the
patches. Also, NNC is applied to evaluate the confidence of
tracker’s result tconf .
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FIGURE 5. Flow chart of the proposed algorithm.

C. INTEGRATING AND TARGET LEARNING
The tracker and the detector operate in parallel and output
bounding boxes of target individually. The tracker outputs
only one box in a frame, where detector may localize several
ones. The targetive of the integrator is to obtain a opti-
mal bounding box from the results of the tracker and the
detector. To this end, integrator clusters the output boxes of
detector into several classes and assesses their confidence
dconf through NNC of detector. If there exists a class with
dconf higher than tconf , integrator will take it as the final
output regardless of tracker’s result; Otherwise, integrator
determines the final output by weighting tracker’s result and
the class with the highest dconf .
The learning process is designed to evaluate the error of

detector by using P-N learning algorithm [32], and generate
labeled samples to update its EC and NNC in runtime. When
trajectory is fairly reliable, that is, the confidence tconf is
larger than settled threshold, it can be used as the basis of
samples selection. For EC, samples are selected from the
patches in the neighbourhood of integrator’s output result.
If EC classifies these samples incorrectly, the corresponding
PC and NC are updated, which consequently updates Pi(y|x).
For NNC, samples includes all the patches that passed the
EC. Similarly, the samples that are classified incorrectly by
NNC will be added into the target model library. In this way,
tracker will bring in new data for detector whenever it finds
new appearances of the target.

D. THE PROPOSED ALGORITHM
The flow chart of the proposed algorithm is illustrated
in Fig. 5, and the algorithm flow is described as follows:

Manually select the target, and initialize the detector and
the tracker in the first frame;

1). The tracker obtains the target location by utilizing
local spatio-temporal information and evaluates its confi-
dence tconf in NNC of detector;
2). When the tracker fails, detector performs a global

search for targets and reinitialize tracker; otherwise it per-
forms a local search based in context region of tracker; detec-
tor clusters its outputs into several classes and assesses their
confidence dconf through NNC;

3). The integrator merges the trajectory and detections
together through an optimal strategy and eventually produces
a best bounding box; if integrator has no outputs, it directly
jumps to 1);

4). If tconf is larger than threshold T , the learning process
generates new training samples to update EC and NNC of
detector according to the output results of the tracker and
detector. Otherwise, it will be skipped;

5). If the video doesn’t end, it goes to the next frame and
the procedure returns to 1).

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL RESULTS
In this section, the proposed algorithm is evaluated by four
typical public benchmark videos, which contain scenes of
various challenging factors, such as disappearance, scale and
pose variations of target, drastic illumination changes, severe
occlusion, and so on. Table 1 shows the detailed information
of benchmarks(‘‘Frames’’ stands for the total frame number
of of a sequence, ‘‘OP’’ for the number of frames where the
target presents, ‘‘OCC/DIS’’ for the number of frames with
occlusion/disappearance, ‘‘I/P/S’’ for whether there exists
illumination/position/scale changes in a sequence), and the
regions inside bounding boxes in the screenshots presents the
target we need to track.

TABLE 1. Detailed information of benchmark videos.

We compare our method with other latest algorithms,
namely, TLD [31], STC [23], CT [38] and WMT [28]. Some
experimental results of these methods are illustrated in
Fig. 6-Fig. 9. Additionally, the frame numbers of screenshots
appear in the upper left corner, and the presence of a colored
dot indicates that the corresponding methods returned noth-
ing in the frame.

Fig. 6 displays the tracking results on the David sequence,
which contains drastic illumination changes (See #100, #194,
#283, #338, #393) as well as gradual pose and scale variations
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FIGURE 6. Screenshots of tracking results in the video David .

FIGURE 7. Screenshots of tracking results in the video Pedestrian.

FIGURE 8. Screenshots of tracking results in the video Car .

(See #440, #455, #473, #500). STC, CT and proposedmethod
perform favorably on this sequence, and WMT gradually
deviates from the target, whereas TLD either loses the target
or returns wrong bounding boxes in most of the time.

The tracking results on the Pedestrian sequence are shown
in Fig. 7. The target disappears in #54 frame and reappears
in #80 frame (See #54, #57, #80) due to the camera motion.
Owing to the capability of detection, TLD and the proposed
are able to recapture the target target when it appears again,
but the others fail in tracking as long as the target disappears.
Besides, our method does not export any bounding box due
to its ability of effective failure detection.

Fig. 8 shows the experiment results on the Car sequence,
which contains partial or several occlusion and pose variation
at times. The target partly moves out of the view boundary
in #40 frame, and all methods are able to track successfully.
In the subsequence, the target is severely occluded by trees
between #505 frame and #570 frame (See #512, #520, #544,
#550) and experiences partial occlusion with pose variation
(See #689, #788). In this situation, only the proposed method
achieves favorable performance during most of the periods.

In the Plane sequence, the target undergoes in-plane rota-
tion and temporary occlusion in the cluttered background,
which is shown in the Fig. 9. As it is close to the cluttered
background in #100 frame, TLD and WMT intend to deviate
from the target. There follows temporary occlusion in the
subsequence (See #286, #287). As a result, only STC and our

FIGURE 9. Screenshots of tracking results in the video Plane.

FIGURE 10. Screenshots of tracking results in the video
Plane with occlusion.

method perform well while the others drift to background.
Afterwards, the target encounters the cluttered background
with in-plane rotation. Since the texture is pretty similar to
that of the target (See #480, #500, #530, #590, #286, #287),
most trackers fail to track the target. Since the tracker of our
method brings in new appearance information of local context
background and update detector constantly by learning. As a
consequence, our method can stably track the target.

The tracking results on the Plane with occlusion sequence
are shown in Fig. 10. The plane target undergoes rotation
and scaling changes before the occlusion occurs. Both the
proposed method and the WMT method can stably track
the target. When the target disappears in #568 frame and
reappears in #689 frame, the others fail in tracking as long as
the target disappears, only the proposed method can re-track
the target stably(See #788, #827, #1032).

From the experimental results above, it can be seen that our
method has ability of failure detection and a strong recov-
erability after the target disappeared. Furthermore, it is still
able to track the target stably even in complex environments
with a variety of challenges, such as drastic illumination, pose
variation, several occlusion and cluttered background.

B. QUANTITATIVE ANALYSIS
In this section, our method is quantitatively evaluated in terms
of success rate (SR) of tracking and center location error
(CLE). The tracking in one frame is considered as a success
if its overlap degree (OD) is larger than 0.5, where OD is
formulated as

(ROIt ∩ ROIgt )/(ROIt ∪ ROIgt ), (9)

whereROIt andROIgt respectively denote a tracked bounding
box and a ground truth one. SR is defined as SR = SF/TF ,
where SF denotes the number of successful frames and TF
denotes the total number of frames in the sequence. CLE
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TABLE 2. Success Rate (SR)(%) of each method on different video
sequences.

refers to the pixel distance between the centers of ROIt and
ROIgt .

1) COMPARISON OF TACKING RATES
Considering the randomness of the algorithms, we repeat
experiments on each video sequence many times, and then
take the experimental results in average. Table 2 shows SR of
each method on different benchmarks. The bold figures indi-
cate the highest SR in each sequence.

Compared with TLD, the SR of our method is slightly
lower in sequence 2, but certainly much higher in other
sequences. Since the sequence 2 contains disappearance of
target, STC and CT can not redetect the target after it dis-
appeared, resulting in a much lower SR. Compared with
STC, our method obtains a lower SR in sequence 1 due
to the illumination changes that have adverse effects on
appearance-based detector.Meanwhile, our method performs
better than the other methods in all benchmarks.

Generally, our method achieves the best performance in
two sequences and the second best in others, thus achieving
the best comprehensive performance. This can be ascribed
to the utilization of context information of target. Despite
the appearance of target changes significantly due to various
factors, most of the local context surrounding has little change
over succeeding frames, which helps to predict the target
location in the next frame.

2) COMPARISONS OF TACKING ERROR
Table 3 shows CLE of each method on different benchmarks.
As it is with the Table 2, the italic figures with underline
denote the best performance in each sequence. It can be seen
from Table 2 and Table 3 that, there exist a negative correla-
tion between SR and CLE. Compared with the experiment
results of [39], our proposed method also shows excellent
performance.

In order to directly show the changes of tracking error in
tracking process, the curve graphs of OD and CLE for TLD,
STC, CT, WMT and our method are illustrated by using the
experimental results in sequence 3 and 4, which relatively
contain more frames challenges. Note that CLE and OD are
respectively set to 150 and 0 when tracking fails according to
the experimental results.

The curve graph of OD and CLE in sequence 3 is shown
in Fig. 11. In interval 1 where the target is heavily occluded,

TABLE 3. Center Location Error (CLE)(pixels) of each method on different
video sequences.

FIGURE 11. OD and CLE in car sequence.

FIGURE 12. OD and CLE in plane sequence.

our method and STC can still track the target effectively with
the tracking error increasing a little, but TLD comes to a
failure due to the occlusion. In interval 2 and 3, the target is
temporarily occluded with pose variation. As a result, STC,
CT and WMT almost lose the target with a large error, but
our method are able to acquire the target again after occlusion
with a smaller fluctuation of error than TLD.

Fig. 12 shows the changes of OD and CLE in sequence 4.
The target is approaching the cluttered background in inter-
val 1, giving rise to an increased tracking error of TLD.
Similarly, TLD fails to track in interval 2 on account of severe
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occlusion while STC and our method are able to track accu-
rately. Afterwards, the target begins to enter into cluttered
background in interval 3. Affected by this, TLD, STC and CT
start to drift to the background and the tracking error of them
increase evidently, and the error of WMT is relatively small.
Overall, our method performs robustly in the whole process
of tracking despite the minor fluctuation in interval 3.

In summary, our method has higher success rate as well
as smaller tracking error than TLD, STC, CT and WMT at
the same time, and performs remarkably in complex environ-
ments that are characterized by various challenges.

V. CONCLUSION
In this paper, we investigated the problem of long-term
tracking of an unknown target in a video stream. Aimed
at improving the robustness of target tracking algorithms in
complex environment, this work proposes the moving target
detection and tracking algorithm based on context infor-
mation. It mainly decomposes the long-term tracking task
into four parts of synchronous operation: tracking, detection,
integration and learning, which are described in previous
sections. Five typical public benchmark videos are selected
to evaluate the proposed algorithm, which is compared to
other latest algorithms. Experimental results demonstrate that
the proposed method not only has strong recoverability after
target disappeared, but also tracks effectively and robustly in
complex environment with dramatic lighting changes, severe
occlusion, cluttered background and so on. On the other hand,
it is noted that the learning process only updates detector
while tracker is kept invariant in the framework. Hence,
in future work we plan to investigate the update of tracker
in long-term tracking process.
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