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ABSTRACT When faults occur in mechanical components, the faulty information is usually manifested as
a series of periodic impulses which correspond to the faulty feature frequencies. However, due to the non-
stationary characteristic of the raw vibration signals, the faulty feature frequencies are difficult extracted.
In this paper, a novel strategy using variational mode decomposition (VMD), L-Kurtosis and minimum
entropy deconvolution (MED) is proposed to detect mechanical faults. First, VMD is employed to decompose
the raw vibration signal into a set of intrinsic mode functions (IMFs) to eliminate the interference of the noise.
Second, the optimal intrinsic mode function (IMF) which contains the faulty information is determined using
L-Kurtosis. Then, the impact characteristic of the periodic impulses in optimal IMF is enhanced through
MED. Finally, a Hilbert envelope spectrum analysis is performed to the enhanced signal to extract the faulty
feature frequency. In order to illustrate the performance of the proposed strategy, the simulation signal
and real experimental signals collected from faulty rolling element bearings and gears are analyzed. The
results show that the strategy using the VMD, L-Kurtosis, andMED can detect mechanical component faults
effectively.

INDEX TERMS Variational mode decomposition, L-Kurtosis, minimum entropy deconvolution, rotary
mechanical component, fault detection.

I. INTRODUCTION
As the rotary components widely used in modern machin-
ery, rolling element bearing and gear play an increasingly
important role. Once faults occur in bearing and gear, may
lead to the direct economic losses and heavy casualties [1].
Therefore, it is of particular importance to exactly detect the
faults in bearings and gears.

In the field of fault diagnosis and condition monitoring,
vibration analysis has been proved to be the most commonly
used and effective technique [2], [3]. For bearing and gear,
the faulty information is usually manifested as a series of
periodic impulses which correspond to the faulty feature
frequencies [4], [5]. However, due to the interference of the
environmental noise and other vibration sources, the faulty
feature frequencies are difficult to be extracted.

With the rapid development of fault diagnosis techniques,
plenty of signal processing methods have been proposed,

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Li.

which can be divided into three categories, i.e., the time
domain methods, frequency domain methods and time-
frequency domain methods. Due to the strong time and
frequency localization ability [6], [7], the time-frequency
domain methods, such as empirical modes decomposition
(EMD) [8], local mean decomposition (LMD) [9]–[12],
intrinsic time-scale decomposition (ITD) [13], [14] etc. have
been widely applied in academic and engineering areas.
Among them, EMD is suitable to analyze the non-stationary
vibration signal. However, EMD has its intrinsic drawbacks,
i.e., the mode mixing phenomena and unreliable theoretical
basis. Similar to EMD, there are also insurmountable draw-
backs in LMD and ITD, such as signal mutation, end effects
and signal distortion etc. Compared with the above meth-
ods, variational mode decomposition (VMD) [15] not only
has good adaptive signal decomposition performance, but
also has solid theoretical basis. Each intrinsic mode function
(IMF) decomposed by VMD preserves the natural oscillatory
mode of the raw vibration signal [16]. Abdoos et al. verified
that VMD can effectively extract the faulty features from
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vibration signals, and its performance in separation and noise
robustness were confirmed in [17]–[22].

However, how to select the optimal IMF which contains
the faulty information is a very knotty problem. As a widely
used indicator, kurtosis [23] achieves good results in vibration
analysis [24], [25]. However, the performance of kurtosis
is greatly limited by its intrinsic drawback which makes
it very susceptible to the outliers. Compared to kurtosis,
L-Kurtosis [26] gives good impulse recognition performance
while overcoming the drawback of kurtosis. For faulty
bearing and gear, the IMF corresponding to the maximum
L-Kurtosis value might be the optimal signal which contains
the faulty information.

The minimum entropy deconvolution (MED) technique
[27] was first proposed by RalphWiggins, which can enhance
the periodic impulses through deconvolving the effect of
the transmission path. The technique was originally used to
identify and locate layers of subterranean minerals. After
that, Endo and Randall [28] applied MED to detect faults
in gear from the significantly enhanced impulses. There-
fore, MED may be a powerful tool to detect faults in rotary
components.

Based on the above, the combination of VMD, L-Kurtosis
and MED might be an effective fault detection strategy, and
the rest of this paper is structured as follows. Section II
is divided into three parts which give the representations
of the theoretical backgrounds of VMD, L-Kurtosis and
MED, respectively. Section III describes the proposed strat-
egy. In Section IV, verification of the proposed method is
performed using the simulated data and the experimental data
collected from faulty bearings and gears. Finally, the conclu-
sions are drawn in Section V.

II. THEORETICAL BACKGROUND
A. VARIATIONAL MODE DECOMPOSITION
As a widely used time-frequency analysis method, VMD
has good performance in signal decomposition. For the non-
stationary signals y(t), it can be decomposed into a set of
IMFs uk as [15]:

y(t) =
∑

k
uk (1)

The essence of VMD is to solve the optimal solution of
constrained variational model by:

min
{uk }{ωk }

{∑
k

∥∥∥∥∂t [(δ (t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2
2

}
(2)

where {uk} = {u1, . . . , uk} is the set of decomposed IMFs,
{ωk} = {ω1, . . . , ωk} is the set which contains the center
frequency corresponding to each decomposed IMF, ‖•‖2, δ
and ∗ are the Euclid norm, Dirac distribution and convolution
operator, respectively.

Here, a quadratic penalty term α and Lagrangian multipli-
ers λ(t) are introduced to convert the constrained problem into
unconstrained problem, and the unconstrained variational

model can be given by:

L ({uk} , {ωk} , λ)

= α
∑
k

∥∥∥∥∂t [(δ (t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2
2

+

∥∥∥∥∥y (t)−∑
k

uk (t)

∥∥∥∥∥
2

2

+

〈
λ (t) , y (t)−

∑
k

uk (t)

〉
(3)

The update equations of uk , ωk and λ(t) can be defined as:

ûn+1k (ω) =

ŷ (ω)−
∑
i>k

ûi (ω)+
λ̂(ω)
2

1+ 2α (ω − ωk)2
(4)

ω̂n+1k =

∫
∞

0 ω
∣∣ûk (ω)∣∣2 dω∫

∞

0

∣∣ûk (ω)∣∣2 dω (5)

λ̂n+1 (ω) = λ̂n (ω)+ τ

(
ŷ (ω)−

∑
k

ûn+1k (ω)

)
(6)

in which the mark ∧ represents the update value of uk , ωk ,
λ(t) and y, τ is update parameter.

B. L-KURTOSIS
As an effective indicator used in fault detection, L-Kurtosis
can give a more correct parameter estimates than kurtosis.
In this paper, L-Kurtosis is introduced to select the optimal
IMF which contains the faulty information [26].

Here, we suppose u1, . . . , uq is a continuous independent
sample from a cumulative distribution F(u) and u1:q, . . . uq:q
is the corresponding order statistics, respectively. The r th
L-moment ηr [26] can be defined as:

ηr =
1
r

r−1∑
k=0

(−1)r
(
r−1
k

)
E (ur−k:r ) , r = 1, 2, . . . (7)

E(ur−k:r ) is given by:
E(ur−k:r )

=
r !

(r-k− 1)!k!

∫ 1

0
u [F (u)]r−k−1 [1− F (u)]k dF (u) (8)

Therefore, the first four order L-moment can be described
as

η1 = EU = b0 =
∫ 1

0
udF (u) (9)

η2 =
1
2
E (u2:2 − u1:2) = 2b1 − b0

=

∫ 1

0
u (2F (u)− 1) dF (u) (10)

η3 =
1
3
E (u3:3 − 2u2:3 + u1:3) = 6b2 − 6b1 + b0

=

∫ 1

0
u
(
6F2 (u)− 6F (u)+ 1

)
dF (u) (11)

η4 =
1
4
E (u4:4 − 3u3:4 + 3u2:4 − u1:4)

= 20b3−30b2+12b1−b0

=

∫ 1

0
u
(
20F3 (u)−30F2 (u)+12F (u)−1

)
dF (u) (12)
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where bi =
∫ 1
0 uF (u)

idF (u) , i = 0, 1, 2, 3 is the ith order
weighted moment (i = 0, 1, 2, 3).
The L-Kurtosis value can be calculated by

L − Kurtosis

=
η4

η2
=
E (u4:4 − 3u3:4 + 3u2:4 − u1:4)

2E (u2:2 − u1:2)

=
E(u4:4)− E(u1:4)− 3 [E(u3:4)− E(u2:4)]

2 [E(u2:2)− E(u1:2)]
(13)

C. MINIMUM ENTROPY DECONVOLUTION
The essence of MED is an inverse filter which can counteract
the effect of the transmission path and its basic idea is shown
in Fig.1. For the optimal IMF uh, without any prior knowledge
about the impulsive sources, the MED filter could adaptively
adjust the filter coefficients by optimizing the objective func-
tion of the output uo(t). Generally, high order statistic (such
as kurtosis, skewness, etc.) is often employed as an objective
function to quantify the character of a signal. More details on
how to perform the MED analysis can be found in [30], [31].

FIGURE 1. The basic idea of MED.

III. THE STRARTEGY USING VMD, L-KURTOSIS AND MED
In order to identify the faults of mechanical components
(bearings and gears), a novel fault detection strategy using
VMD, L-Kurtosis and MED is proposed. As described in
Section II, VMD has the obvious advantage in decomposing
the non-stationary signal. The introduction of L-Kurtosis not
only solves the problem of how to select the optimal IMF
but also effectively tracks the faulty information. MED can
be employed to enhance the impact characteristic of periodic
impulses, which provides great convenience for subsequent
envelope analysis. Therefore, the combination of these three
methods might be a robust strategy and the flowchart of the
proposed strategy is given in Fig.2. The detailed procedure is
summarized as follows:

Step1: Decompose the raw vibration signals using VMD.
VMD is employed to decompose the signals into a set of

IMFs which contain the faulty information, and the interfer-
ence of noise can be almost eliminated.

Step2: Select the optimal IMF using L-Kurtosis.
Aiming at the problem of how to select the optimal IMF,

L-Kurtosis is introduced and the IMF corresponding to the
maximum L-Kurtosis value is the optimal.

Step3: Enhance impact characteristic using MED.
In order to highlight the faulty feature frequencies, MED is

further employed to enhance the impact characteristic of the
optimal IMF.

FIGURE 2. The flowchart of the proposed fault detection strategy.

Step4: Perform Hilbert envelope analysis and obtain the
detect result.

A Hilbert envelope analysis is performed to the enhanced
signal to extract the fault feature frequency. Through compar-
ing the demodulation frequency with the theoretical feature
value, the detection result is obtained.

IV. NUMERICAL SIMULATION
In this section, a numerical simulation is conducted to verify
the performance of the proposed strategy. By the compari-
son investigation, it shows that the combination of the three
methods is necessary and effective.

The simulation signal y(t) is constructed as:

y(t) = x(t + T )+ r(t)+ n(t) (14)

where x(t) is the impulse, T is the impulse period, r(t) is
the interference signal (rotating frequency) and its harmonic
components, n(t) is the noise component.

In Eq.(14),x(t) and r(t) are:

x(t) = e−St cos(2π fnt) (15)

r(t) = P×(5 sin(2π f0t)+1.5 sin(4π f0t)+0.5 sin(6π f0t))

(16)
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FIGURE 3. The simulation signal and corresponding Hilbert envelope
spectrum: (a) the simulation signal, (b) the Hilbert envelope spectrum.

FIGURE 4. The decomposition result by VMD.

in which fn and f0 is the natural frequency of bearing, the
rotating frequency of shafts, respectively, P is the amplitude
coefficient, and S is the attenuation coefficient which can be
defined as:

S = 2π fnγ (17)

where γ is the damping ratio.
In the simulation, the parameters are supposed as: fn =

4000Hz, f0 = 30Hz,P = 0.01,T = 0.01s, ω =

0.019894, S = 500, n(t) is a standard normal distribution

FIGURE 5. The Hilbert envelope spectra corresponding to: (a) the optimal
IMF, (b) the enhance signal, (c) the simulation signal only using MED.

with standard deviation 3, the sampling frequency fs =
20480Hz and the sampling points N = 4096.

Figs.3 (a) and (b) show the time domain waveform and
Hilbert envelope spectrum of the simulation signal, respec-
tively. As shown in Fig.3 (a), the periodic impulses are sub-
merged due to the interference of the heavy noise. From
Fig.3 (b), the faulty feature frequency (100Hz) is extracted
roughly and submerged by unknown frequencies, such as
80Hz etc. The decomposition result using VMD is shows
in Fig.4. In order to select the optimal IMF to track the faulty
information, L-Kurtosis is introduced and the L-Kurtosis
value corresponding to each IMF is shown in Table 1. From
Table 1, we can see that the maximum L-Kurtosis value
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FIGURE 6. The machinery fault simulator test rig.

FIGURE 7. The faulty components: (a) the bearing with inner race fault, (b) the bearing with outer race fault, (c) the gear
with a broken tooth.

corresponds to IMF3 and the Hilbert envelope spectrum of
IMF3 is shown in Fig.5 (a). From Fig.5 (a), we can see that
faulty feature frequency (100Hz) and its second harmonic
(200Hz) are roughly extracted but still submerged by other
frequencies. Therefore, MED is further employed to IMF3 to
enhance the impact characteristic and the Hilbert envelope
spectrum of the enhance signal is shown in Fig.5 (b). Fig.5
(c) shows the result of only using MED to the raw vibration
signal. By comparing Figs.5 (a), (b) and (c), we can see that
the faulty feature frequency (100Hz) and its second harmonic
(200Hz) are more clearly extracted in Fig.5 (b). Based on
the above analysis, the fault is detected successfully and the
performance of the proposed strategy is verified. Meanwhile,
the necessity of the combination of VMD, L-Kurtosis and
MED is further indicated.

V. EXPERIMENTAL VERIFICATION
In this section, experimental vibration signals collected from
the bearings with inner race fault, outer race fault and a gear

TABLE 1. Details of the L-Kurtosis values corresponding to each IMF.

with a broken tooth are used to verify the effectiveness of the
proposed strategy.

Vibration measurements are conducted using the machin-
ery fault simulator test rig [33] which is shown in Fig.6,
and the experimental setup includes speed monitor, manual
speed governor, acceleration sensors, speed sensors, motors,
spindles and computer with VQ data acquisition software.
The sampling frequency fs is 25.6kHz.
The rolling bearings with the product type ER-12K and

bevel gear are used in the experiment. The faults of inner race,
outer race and broken tooth are the single pitting defections
processed by electro-discharge machining, which are shown
in Figs.7 (a), (b) and (c), respectively.
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FIGURE 8. The raw signal and corresponding Hilbert envelope spectrum:
(a) the raw signal, (b) the Hilbert envelope spectrum.

FIGURE 9. The decomposition result by VMD.

The parameters of the bearing are as follows: the number
of rolling elements Nb = 8, ball diameter Bd = 0.3125inch,
pitch diameter Pd = 1.318inch, the contact angle α = 0◦.
For the bearing with inner race fault, the signal length is
8192 points and the shaft rotating frequency fshaft = 39.84Hz.
Hence, the ball pass frequency of inner race (BPFI) is [33]:

BPFI =
Nb
2
fshaft

(
1+

Bd
Pd

cosα
)

= 4.9484 fshaft = 197.1Hz (18)

For the bearing with outer race fault, the signal length is
8192 points and the shaft rotating frequency fshaft = 36.86Hz.

FIGURE 10. The Hilbert envelope spectrum corresponding to: (a) the
optimal IMF, (b) the enhanced signal, (c) the raw signal only using VMD.

Hence, the ball pass frequency of the outer race (BPFO) is
[33]:

BPFO =
Nb
2
fshaft (1−

Bd
Pd

) cosα

= 3.0516 fshaft = 112.5Hz (19)

For the gear with a broken tooth, the signal length is 8192
points, the shaft rotating frequency fshaft = 29.63Hz and
the gear teeth z = 18. Different from bearing, the faulty
feature frequencies of the gear with a broken tooth are the
shaft rotating frequency and its harmonics [32], [34]. The gear
mesh frequency fm is equal to the product of the number of
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FIGURE 11. The raw signal and corresponding Hilbert envelope spectrum:
(a) the raw signal, (b) the Hilbert envelope spectrum.

FIGURE 12. The decomposition result by VMD.

gear teeth and the shaft rotating frequency as:

fm = z× fshaft = 18× 29.63 = 533.34Hz (20)

A. INNER RACE FAULT DETECTION
The raw signal with inner race fault and its Hilbert envelope
spectrum are shown in Figs.8 (a) and (b), respectively. From
Fig.8, the periodic response signal and the faulty feature
frequency cannot be seen. Therefore, the proposed strategy
is applied.

FIGURE 13. The Hilbert envelope spectrum corresponding to: (a) the
optimal IMF, (b) the enhanced signal, (c) the raw signal only using VMD.

TABLE 2. Details of the L-kurtosis values corresponding to each IMF.

VMD is used to the raw signal and the decomposition result
is shown in Fig.9. Then, L-Kurtosis is used to each IMF
and the corresponding L-Kurtosis value is shown in Table 2.
As shown in Table 2, the maximum L-Kurtosis value corre-
sponds to IMF3 and its Hilbert envelope spectrum is shown
in Fig.10 (a). From Fig.10 (a), we can see that the faulty
feature frequency (197.6Hz) is heavily submerged by numer-
ous unknown frequency components. In order to extract fault
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FIGURE 14. The raw signal and corresponding Hilbert envelope spectrum:
(a) the raw signal, (b) the Hilbert envelope spectrum.

feature frequency, MED is further employed to IMF3 and the
Hilbert envelope spectrum of the enhanced signal is shown
in Fig.10 (b). As shown in Fig.10 (b), the faulty feature
frequency (197.6Hz) and its second harmonic (395.2Hz) are
accurately extracted, which are matched with the theoretical
calculation value 197.1Hz (show in Eq.(18)) and its harmonic
394.2 Hz. Therefore, the bearing with inner race fault is defi-
nitely detected and the performance of the proposed strategy
is verified.

To verify the necessity of the combination of three meth-
ods, the results of only using MED to the raw signal is given
in Fig.10 (c). From Fig.10 (c), we can see that the faulty
feature frequency cannot be extracted effectively.

B. OUTER RACE FAULT DETECTION
The raw signal with outer race fault and its Hilbert enve-
lope spectrum are shown in Figs.11 (a) and (b), respectively.
From Fig.11 (b), the faulty feature frequency (112.5Hz) is
submerged by other frequency, such as 71.88Hz etc. The fault
cannot be detected and the proposed strategy is applied.

Fig.12 and Table 3 show the decomposition result using
VMD and the detailed L-Kurtosis value of each IMF, respec-
tively. From Table 3, we can see that the optimal IMF is
IMF4 which corresponds to the maximum L-Kurtosis value.
The Hilbert envelope analysis is employed to IMF4 and the
result is shown in Fig.13 (a). As shown in Fig.13 (a), the faulty

FIGURE 15. The enhanced signal and corresponding Hilbert envelope
spectrum: (a) the enhanced signal, (b) the Hilbert envelope spectrum.

TABLE 3. Details of the L-Kurtosis values corresponding to each IMF.

feature frequency (112.5Hz) is hidden in numerous unknown
frequency components.

In order to make the faulty feature frequency more promi-
nent, MED is further used. Fig.13 (b) shows the Hilbert
envelope spectrum of the enhanced signal, we can see that the
faulty feature frequency (112.9Hz) and its 2 to 3 harmonics
(225.8Hz, 335.6Hz) are clearly extracted. By matching the
theoretical values 112.5Hz (show in Eq.(19)), the outer race
fault is successfully detected. The performance of the pro-
posed strategy is verified.

Meanwhile, the result of only using MED to the raw signal
is given in Fig.13 (c). As shown in Fig.13 (c), the faulty
feature frequency and its harmonics cannot be extracted
effectively. Hence, the necessity of the combination of three
methods is further confirmed.

C. BROKEN TEETH FAULT DETECTION
The raw signal with broken tooth fault and its Hilbert enve-
lope spectrum are shown in Figs.14 (a) and (b), respectively.
The next procedures are the same as the part 4.2.1 and
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TABLE 4. Details of the L-Kurtosis values corresponding to each IMF.

4.2.2. Table 4 shows the detailed L-Kurtosis value of each
decomposed IMF. Figs.15 (a) and (b) show the time domain
waveform of the enhanced signal and its corresponding
Hilbert envelope spectrum. By Comparing Fig.14 (a) and
Fig.15 (a), we can see that the impact characteristic is
clearer in the latter graphic. The performance of the pro-
posed strategy is further verified by comparing Fig.14 (b) and
Fig.15 (b). As shown in Fig.14 (b), the shafting frequency
(29.63Hz) and its harmonics (59.3Hz, 87Hz, 146.9Hz) are
shown clearly, but its forth harmonic (118.8Hz) is submerged
by the other frequency (103.1Hz). As shown in Fig.15 (b),
the shafting frequency (28.23Hz) and its 2 to 6 harmon-
ics (59.59Hz, 87.82Hz, 119.2Hz, 147.4Hz, 175.6Hz) are
all shown clearly. The gear mesh frequency (show in
Eq.(20)) are not shown in both Fig.14 (b) and Fig.15 (b).
Therefore, the teeth fault of the gear is successfully
detected.

VI. CONCLUSION
This paper proposed a strategy using VMD, L-Kurtosis and
MED to detect the faults of mechanical components and
achieve good effects. VMD has the obvious advantage in
decomposing the non-stationary signal. L-Kurtosis is suitable
to select the optimal IMF to track the faulty information.
MED is used to enhance the periodic impact characteristic
to make the fault feature more obvious. The introduction of
L-Kurtosis not only overcomes the difficulty of choosing the
optimal IMF, but also combines the strong non-stationary
vibration signal decomposition ability of VMD and periodic
impact characteristic enhancement ability of MED.

The effectiveness of the proposed strategy is veri-
fied by the numerical simulation and experimental inves-
tigations. Meanwhile, the necessity of the combination
of three methods is indicated through the comparison
investigations.
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