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ABSTRACT Over the past several decades, numerous scholars have studied the stability and Hopf bifur-
cation problem of integer-order delayed neural networks. However, the fruits about the stability and Hopf
bifurcation for fractional-order delayed neural networks are very scarce. In this paper, we will consider the
stability and the existence of Hopf bifurcation of fractional-order bidirectional associative memory (BAM)
neural networks with four delays. A set of sufficient criteria to ensure the stability and the existence of Hopf
bifurcation for the fractional-order BAM neural networks with four delays are established by choosing the
sum of two different delays as a bifurcation parameter. This paper manifests that the delay has an important
influence on the stability and Hopf bifurcation of involved networks. An example is displayed to test the
rationality of the derived theoretical findings. The derived results of this paper are new and play a key role
in optimizing networks and improving human life.

INDEX TERMS BAM neural networks, stability, Hopf bifurcation, fractional order, delay.

I. INTRODUCTION
At present, neural networks have attracted a great deal of
attention from various areas due to their promising appli-
cation in signal and image processing, optimization solvers,
intelligent control, quadratic optimization, automatic con-
trol and so on [1]. Since the classical work of Marcus and
Westervelt [2], great progress on the research on neural net-
works has been made during the last few decades. The study
on the dynamical behavior of neural networks plays an impor-
tant role in designing neural networks and serving human
beings.

Since the neuron amplifiers and the communication time
between two neurons have the finite switching speed, so it
is suitable to introduce the time delay into neural networks.
The investigation shows that time delay can affect the dynam-
ics of neural networks. Based on this point, the impact of
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time delay on the dynamical behaviors of delayed neural
networks has become a hot topic and focus issue in mathe-
matical fields and various engineering disciplines. In recent
years, numerous excellent and interesting results on various
dynamics on delayed neural networks are springing up. For
example, Li et al. [3] investigated the periodicity and stability
of impulsive neural networks, Li and Yang [4], Li and Li [5],
and Aouiti et al. [6] considered the almost automorphic solu-
tion, almost periodic solution, pseudo almost periodic solu-
tion of neural networks, Xu and Li [7], [8] pointed out that
leakage delay and proportional delay has important effect
on the global exponential convergence of neural networks,
Long [9] established new sufficient conditions to ensure the
existence and global exponentially stability of involved neu-
ral networks. For more detailed works, we refer the readers
to [10]–[29].

The fractional calculus is generalization of ordinary
differentiation and integration to arbitrary non-integer
order [27], [30], [57]–[60]. No progress about the fractional
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calculus has been made for a long time in virtue of the lack
of actual background and theoretical basis. Until recently,
a lot of researchers find that fractional-order differential
equations are important instruments which can be used to
model various phenomena in many areas and describe mem-
ory, hereditary nature of all sorts of materials and pro-
cesses. Thus it is more reasonable to depict the objective
problems by fractional-order derivatives than the classical
integer-order ones. The research shows that fractional-order
differential equations have widely applied in numerous
fields such as material sciences, fluid mechanics, biol-
ogy, medicine, etc. [31]. Based on the idea, the incorpora-
tion of memory element into neural networks will display
great theoretical value and practical significance. Nowadays,
the study on fractional-order neural networks has become a
hot issue with great development prospect. Many outstand-
ing results on this aspect have been available. For instance,
Ding et al. [30] studied the global Mittag-Leffler synchro-
nization for fractional-order neural networks, Yang et al. [31]
obtained the sufficient conditions to ensure the finite-
time stability of fractional-order delayed neural networks,
Chen et al. [32] discussed the global Mittag-Leffler stabil-
ity and synchronization issue of memristor-based fractional-
order neural networks. For more related works, we refer the
readers to [33]–[37], [61]–[63].

Hopf bifurcation is an important dynamical behavior of
delayed differential equations. Hopf bifurcation phenomena
of integer-order neural networks have been widely stud-
ied. A great deal of significant results have been reported
(see [38]–[44]). However, the analysis methods on Hopf bifu-
ration of inter-order systems can not be simply applied to
focus on the Hopf bifurcation of fractional-order differen-
tial equations. Recently, some authors have analyzed Hopf
bifurcation problems for fractional-order neural networks
(see [45]–[53]).

Here we would like to point out that the majority of the
papers mentioned above consider the Hopf bifurcation of
neural networks with single delay. Up to now, there are rare
papers that handle the Hopf bifurcation problem of neural
networks with multiple delays. Due to the increase of the
number of delay, the characteristic equation of involved neu-
ral networks will be more complicated than that of neural
networks with single delay. Maybe we will face some new
challenge.

Stimulated by the discussion above, it is necessary for us
to investigate the Hopf bifurcation of neural networks with
multiple delays. It is well known that the delayed BAMneural
networks take the following form:

u̇l(t) = −αlul(t)+
m∑
p=1

aplhl(vj(t − σpl))+ Ul,

v̇p(t) = −βpvp(t)+
n∑
l=1

blprp(ui(t − %lp))+ Vp,

(1)

where l = 1, 2, · · · , n; p = 1, 2, · · · ,m, apl, blp(l =
1, 2, · · · , n; p = 1, 2, · · · ,m) are the connection weights

through neurons in two layers: the U -layer and V -layer; αl
and βp describe the stability of internal neuron processes
on the U -layer and V -layer, respectively. On the U -layer,
the neurons whose states are denoted by ul(t) receive the
inputs Ul and the inputs outputted by those neurons in the
J -layer via activation functions hl , while on the V -layer,
the neurons whose associated states are denoted by vp(t)
receive the inputs Vp and the inputs outputted by those neu-
rons in the U -layer via activation functions rp (see [49]).
Although system (1) can be mathematically regarded as
Hopfied-type neural networks with dimension n + m, it is
really produces many nice properties due to the special struc-
ture of connection weights and has practical applications
in storing paired patterns or memories. In details, one can
see [50].

For model (1), Huang et al. [48] assumed that there are
two neurons on the U -layer and one neuron on the V -layer
and the time delay from the neuron v1 on V -layer to neurons
u1, u2 onU -layer are σ1 and σ2, respectively; The time delays
from the neurons u1 and σ2 onU -layer to the neuron v1 on V -
layer are σ3 and σ4, respectively. Then he obtain the following
simplified BAM neural network

u̇1(t) = −α1u1(t)+ γ11h1(v1(t − σ1)),
u̇2(t) = −α2u2(t)+ γ12h2(v1(t − σ2)),
v̇1(t) = −α3v1(t)+ γ13h3(u1(t − σ3))
+γ23h3(u2(t − σ4)),

(2)

where αi(i = 1, 2) and α3 describe the stability of internal
neuron processes on the U -layer and V -layer, respectively,
γ11, γ12, γ13, γ23 are the connection weights through neurons
in two layers, h1, h2 and h3 stand for different activation
functions, σi(i = 1, 2, 3, 4) is time delay. Taking the sum of
the delays σ = σ1 + σ3 = σ2 + σ4 as a parameter, the author
investigated the stability and the existence ofHopf bifurcation
and Hopf bifurcation nature. In addition, the estimation of the
length of delay to preserve stability had been analyzed. The
global existence of Hopf bifurcation of system (2)was studied
by S1-equivariant degree ([51-52]).

Based on the analysis above, we establish a fractional-order
version of model (2) as follows:

Dϑu1(t) = −α1u1(t)+ γ11h1(v1(t − σ1)),
Dϑu2(t) = −α2u2(t)+ γ12h2(v1(t − σ2)),
Dϑv1(t) = −α3v1(t)+ γ13h3(u1(t − σ3))
+γ23h3(u2(t − σ4)),

(3)

where ϑ ∈ (0, 1] and αi > 0(i = 1, 2, 3). All other
parameters have the same implication as those in (2).

The main object of this article is to consider the impact
of time delay on the stability and the existence of Hopf
bifurcation of system (3).

In order to obtain the key results of system (3), the follow-
ing assumptions are made:

(A1) For i = 1, 2, 3, αi > 0, hi ∈ C1, hi(0) = 0.
(A2) σ1 + σ3 = σ2 + σ4 = σ .
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The highlights of this manuscript are listed as follows:
(a)We extend the integer-order neural networks with mul-

tiple delays to fractional-order neural networks with multiple
delays, which can describe the memory and hereditary prop-
erties of neural networks better.

(b) The sufficient conditions of stability and the existence
of Hopf bifurcation of fractional-order neural networks with
multiple delays have been established. The study shows that
the delay has important influence on the stability and the
existence of Hopf bifurcation of involved networks.

(c) Up to now, there are rare papers that investigate the
Hopf bifurcation on fractional-order differential models with
multiple delays. Many works focus on the Hopf bifurcation
of fractional-order differential equations with single delay.
Our obtained results enrich the Hopf bifurcation theory of
fractional-order delayed differential equations and complete
the earlier published manuscripts.

(d) The idea of this research can be transferred to discuss
numerous other fractional-order delayed differential models.

The rest of this article is planned as follows. In segment 2,
we some notations and preliminary results on fractional cal-
culus are prepared. In segment 3, the influence of delay
on stability and Hopf bifurcation of (3) has been revealed.
Numerical simulations to illustrate the correctness of the the-
oretical findings are conducted in segment 4. At last, a brief
conclusion is included.

II. PRELIMINARY RESULTS
In this section, the related knowledge about fractional calcu-
lus will be prepared.
Definition 1 [54]: The fractional integral of order θ for a

function h(ς ) is defined as follows:

Iϑh(ς ) =
1

0(ϑ)

∫ ς

ς0

(ς − s)ϑ−1h(s)ds,

where ς ≥ ς0, ϑ > 0, 0(s) =
∫
∞

0 ς s−1e−ςdς.
Definition 2 [54]: Let h(ς ) ∈ ([ς0,∞),R). Define the

Caputo fractional-order derivative of order ϑ as follows:

Dϑh(ς ) =
1

0(ι− ϑ)

∫ ς

ς0

h(ι)(s)
(ς − s)ϑ−ι+1

ds,

where ς ≥ ς0 and ι is a positive integer which satisfies ι−1 ≤
ϑ < ι. Typically, if 0 < ϑ < 1, then

Dϑh(v) =
1

0(1− ϑ)

∫ ς

ς0

h′(s)
(ς − s)ϑ

ds.

Lemma 1 [55]: Give the autonomous system
Dϑ z = Az, z(0) = z0 where 0 < ϑ < 1, z ∈ Rm,A ∈ Rm×m.
Let λi(i = 1, 2, · · · ,m) be the root of the characteristic equa-
tion of Dϑ z = Az. Then system Dϑ z = Az is asymptotically
stable ⇔ |arg(λi)| > ϑπ

2 (i = 1, 2, · · · ,m). this system is
stable⇔ |arg(λi)| > ϑπ

2 (i = 1, 2, · · · ,m) and those critical
eigenvalues that satisfy |arg(λi)| = ϑπ

2 (i = 1, 2, · · · ,m)
possess geometric multiplicity one.

III. IMPACT OF DELAY ON HOPF BIFURCATION FOR
FRACTIONAL BAM NEURAL NETWORKS
In this section, we will discuss the impact of time delay on
the Hopf bifurcation of the fractional BAM neural networks.
By (A1), we know that the equilibrium point of system is the
zero.

Let w1(t) = u1(t − σ3),w2(t) = u2(t − σ4),w3(t) = v1(t).
Then (3) can be written as

Dϑw1(t) = −α1w1(t)+ γ11h1(w3(t − σ )),
Dϑw2(t) = −α2w2(t)+ γ12h2(w3(t − σ )),
Dϑw3(t) = −α3w3(t)+ γ13h3(w1(t))
+γ23h3(w2(t)).

(4)

The linear equation of (4) near the zero equilibrium point can
be written as follows:

Dϑw1(t) = −α1w1(t)+ ρ11w3(t − σ ),
Dϑw2(t) = −α2w2(t)+ ρ12w3(t − σ ),
Dϑw3(t) = −α3w3(t)+ ρ13w1(t)+ ρ23w2(t),

(5)

where ρ1l = γ1lh′l(0)(l = 1, 2, 3), ρ23 = γ23h′3(0). The
corresponding characteristic equation of (5) is given by

det

 sϑ + α1 0 −ρ11e−sσ

0 sϑ + α2 −ρ12e−sσ

−ρ13 −ρ23 sϑ + α3

 . (6)

Then

s3ϑ + a1s2ϑ + a2sϑ + a3 +
(
a4sϑ + a5

)
e−sσ = 0, (7)

where

a1 = α1α2α3,

a2 = α1α2 + α1α3 + α2α3,

a3 = α1α2α3,

a4 = −(ρ11ρ13 + ρ12ρ23),

a5 = −(ρ11ρ13α2 + ρ12ρ23α1).

Denote

A1(s) = s3ϑ + a1s2ϑ + a2sϑ + a3,

A2(s) = a4sϑ + a5.

Then (7) takes the form:

A1(s)+A2(s)e−sσ = 0. (8)

If s = iϕ = ϕ
(
cos π2 + i sin

π
2

)
is a root of (8). By (8), one

gets{
A2R(ϕ) cosϕσ +A2I (ϕ) sinϕσ = −A1R(ϕ),
A2I (ϕ) cosϕσ −A2R(ϕ) sinϕσ = −A1I (ϕ),

(9)

where AiR,AiI are the real parts and imaginary parts of
Ai(s)(i = 1, 2), respectively, which are given by

A1R(ϕ) = ϕ3ϑ cos
3πϑ
2
+ a1ϕ2ϑ cosϑπ

+ a2ϕϑ cos
πϑ

2
+ a3,
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A1I (ϕ) = ϕ3ϑ sin
3πϑ
2
+ a1ϕ2ϑ sinϑπ

+ a2ϕϑ sin
πϑ

2
,

A2R(ϕ) = a4ϕϑ cos
πϑ

2
+ a5,

A2I (ϕ) = a4ϕϑ sin
πϑ

2
.

By (9), one has
cosϕσ = −

A1R(ϕ)A2R(ϕ)+A1I (ϕ)A2I (ϕ)
(A2R(ϕ))2 + (A2I (ϕ))2

,

sinϕσ =
A1I (ϕ)A2R(ϕ)−A1R(ϕ)A2I (ϕ)

(A2R(ϕ))2 + (A2I (ϕ))2
.

(10)

By (10), we get

[A1R(ϕ)A2R(ϕ)+A1I (ϕ)A2I (ϕ)]2

+ [A1I (ϕ)A2R(ϕ)−A1R(ϕ)A2I (ϕ)]2

= [(A2R(ϕ))2 + (A2I (ϕ))2]2. (11)

Notice that

[A1R(ϕ)A2R(ϕ)+A1I (ϕ)A2I (ϕ)]2

= b1ϕ8ϑ + b2ϕ7ϑ + b3ϕ6ϑ + b4ϕ5ϑ + b5ϕ4ϑ

+b6ϕ3ϑ + b7ϕ2ϑ + b8ϕϑ + b9, (12)

[A1I (ϕ)A2R(ϕ)−A1R(ϕ)A2I (ϕ)]2

= c1ϕ8ϑ + c2ϕ7ϑ + c3ϕ6ϑ + c4ϕ5ϑ

+c5ϕ4ϑ + c6ϕ3ϑ + c7ϕ2ϑ , (13)

[(A2R(ϕ))2 + (A2I (ϕ))2]2

= d1ϕ2ϑ + d2ϕϑ + d3, (14)

where

b1 = a24

(
cos

3πϑ
2

cos
πϑ

2
+ sin

3πϑ
2

sin
πϑ

2

)2

,

b2 = 2a4

(
cos

3πϑ
2

cos
πϑ

2
+ sin

3πϑ
2

sin
πϑ

2

)
×

[
a1a4

(
cosπϑ cos

πϑ

2
+ sinπϑ sin

πϑ

2

)
+a5 cos

3πϑ
2

]
,

b3 = 2a4

(
cosπϑ cos

πϑ

2
+ sinπϑ sin

πϑ

2

)
×(a2a4 + a1a5 cosπϑ)

×

[
a1a4

(
cosπϑ cos

πϑ

2
+ sinπϑ sin

πϑ

2

)
+a5 cos

3πϑ
2

]2
,

b4 = 2
[
a1a4

(
cosπϑ cos

πϑ

2
+ sinπϑ sin

πϑ

2

)
+a5 cos

3πϑ
2

]
(a2a4 + a1a5 cosπϑ),

b5 = (a2a4 + a1a5 cosπϑ)2 + 2a3a4a5

×

(
cos

πϑ

2
cos

3πϑ
2
+ sin

πϑ

2
sin

3πϑ
2

)
×2

[
a1a4

(
cosπϑ cos

πϑ

2
+ sinπϑ sin

πϑ

2

)
+a5 cos

3πϑ
2

](
a3a4 + a2a5 cos

πϑ

2

)
,

b6 = 2a3a5(a1a4 cosπϑ cos
πϑ

2
+ a5 cos

3πϑ
2

+a1a4 sinπϑ sin
πϑ

2
+ 2(a2a4

+a1a5 cosπϑ)(a3a4 + a2a5) cos
πϑ

2
,

b7 = 2a3a5(a2a4 + a1a5 cosπϑ),

b8 = 2a3a5(a3a5 + a2a4) cos
πϑ

2
,

b9 = (a3a5)2,

c1 =
[
a4 sin

3πϑ
2

(
cos

πϑ

2
− sin

πϑ

2

)]2
,

c2 = 2a4 sin
3πϑ
2

(
cos

πϑ

2
− sin

πϑ

2

)
×

[
a1a4 cosπϑ

(
cos

πϑ

2
− sin

πϑ

2

)
+a5 sin

3πϑ
2

]
,

c3 =
[
a1a4 sinπϑ

(
cos

πϑ

2
− sin

πϑ

2

)
+a5 sin

3πϑ
2

]2
+2a4 sin

3πϑ
2

(
cos

πϑ

2
− sin

πϑ

2

)
×

[
a2a4

(
cos

πϑ

2
sin

πϑ

2
− sin2

πϑ

2

)
+a1a5 sinπϑ] ,

c4 = 2a2a4a5 sin
πϑ

2
sin

3πϑ
2

(
cos

πϑ

2
− sin

πϑ

2

)
+2

[
a1a4 sinπϑ

(
cos

πϑ

2
− sin

πϑ

2

)
+a5 sin

3πϑ
2

]
×

[
a2a4

(
cos

πϑ

2
sin

πϑ

2
− sin2

πϑ

2

)
+a1a5 sinπϑ] ,

c5 =
[
a2a4

(
cos

πϑ

2
sin

πϑ

2
− sin2

πϑ

2

)
+a1a5 sinπϑ]2

+2
[
a1a4 sinπϑ

(
cos

πϑ

2
− sin

πϑ

2

)
+a5 sin

3πϑ
2

]
a2a5 sin

πϑ

2
,

c6 = 2
[
a2a4

(
cos

πϑ

2
sin

πϑ

2
− sin2

πϑ

2

)
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+a1a5 sinπϑ] a2a5 sin
πϑ

2
,

c7 =
(
a2a5 sin

πϑ

2

)2

,

d1 = a24,

d2 = 2a4a5 cos
πϑ

2
,

d3 = a25.

It follows from (11) that

K1ϕ
8ϑ
+ K2ϕ

7ϑ
+ K3ϕ

6ϑ
+ K4ϕ

5ϑ
+ K5ϕ

4ϑ

+K6ϕ
3ϑ
+ K7ϕ

2ϑ
+ K8ϕ

ϑ
+ K9 = 0, (15)

where Ki = bi + ci(i = 1, 2, 3, 4, 5, 6),K7 = b7 + c7 −
d1,K8 = b8 − d2,K9 = b9 − d3.
Denote

g(ϕ) = K1ϕ
8ϑ
+ K2ϕ

7ϑ
+ K3ϕ

6ϑ
+ K4ϕ

5ϑ

+K5ϕ
4ϑ
+ K6ϕ

3ϑ
+ K7ϕ

2ϑ
+ K8ϕ

ϑ
+ K9. (16)

and

l(µ) = K1µ
8
+ K2µ

7
+ K3µ

6
+ K4µ

5
+ K5µ

4

+K6µ
3
+ K7µ

2
+ K8µ+ K9. (17)

The following hypothesis is given:
(A3) α1α2α3 − (ρ11ρ13α2 + ρ12ρ23α1) 6= 0.
Lemma 2: For (7), the following results are true:

(a) If Ki > 0(i = 1, 2, · · · , 9) holds, then (7) has no root with
zero real parts.
(b) If K9 < 0, then (7) has at least pair of purely imaginary
roots.
(c) If K9 > 0 and ∃ θ0 > 0 which satisfies l(θ0) < 0, then
(3.4) has at least two pairs of purely imaginary roots.
(d) If Ki > 0(i = 1, 2, · · · , 7),K8 < 0,K9 > 0 and ∃ θ0 > 0
which satisfies l(θ0) < 0, then (7) has at least two pairs of
purely imaginary roots.
(e) If Ki > 0(i = 1, 2, · · · , 6),K7 < 0,K9 > 0 and ∃ θ0 > 0
such that l(θ0) < 0, then (7) has at least two pairs of purely
imaginary roots.

Proof:We will prove the five cases, respectively.
(a) It follows from (16) that

dg(ϕ)
dϕ

= 8ϑK1ϕ
8ϑ−1
+ 7ϑK2ϕ

7ϑ−1
+ 6ϑK3ϕ

6ϑ

+5ϑK4ϕ
5ϑ−1
+ 4ϑK5ϕ

4ϑ−1
+ 3ϑK6ϕ

3ϑ−1

+2ϑK7ϕ
2ϑ−1
+ ϑK8ϕ

ϑ−1.

In view of Ki > 0(i = 1, 2, · · · , 9), we know that dg(ϕ)dϕ > 0
∀ ϕ > 0. Notice that g(0) = K9 > 0, then Eq. (15) has no
positive real root. By (A3), one knows that a3+ a5 6= 0, then
s = 0 is not the root of (7). The proof of (a) is complete.

(b) Obviously, g(0) = K9 < 0 and limϕ→+∞ g(ϕ) = +∞.
Then (15) has at least one positive real root. Thus (7) has at
least one pair of purely imaginary roots. The proof of (b) is
complete.

(c) Since l(0) = K9 > 0, l(θ0) < 0(θ0 > 0) and
limµ→+∞ l(µ) = +∞, then ∃ θ01 ∈ (0, θ0) and θ02 ∈
(θ0,+∞) which satisfy l(θ01) = l(θ02) = 0, Then Eq. (15)
has at least two positive real roots. Thus (7) has at least two
pairs of purely imaginary roots. The proof of (c) ends.

(d) Clearly, in view of Ki > 0(i = 1, 2, · · · , 7), one has
d2l(µ)
dµ > 0, ∀ µ > 0. In addition, dl(µ)

dµ |µ=0 = K8 < 0

and limµ→+∞
dl(µ)
dµ = +∞, then dl(µ)

dµ = 0 has only one
positive real root. So l(µ) has a unique stationary point for
µ > 0. Since l(0) = K9 > 0, l(θ0) < 0(θ0 > 0) and
limµ→+∞ l(µ) = +∞, one can conclude that l(µ) = 0 has
two positive real roots. Hence g(ϕ) has two positive real roots.
Thus (7) has two pairs of purely imaginary roots. The proof
of (d) is complete.

(e) According to l(0) = K9 > 0 and l(θ0) < 0, ∀ θ0 > 0,
∃ θ1 ∈ (0, θ0) which satisfies dl(µ)

dµ |µ=θ1 < 0. According

to limµ→+∞
dl(µ)
dµ = +∞, one has that dl(µ)

dµ = 0 has at

least one positive real root. Notice that d3l(µ)
dµ > 0(µ >

0), d
2l(µ)
dµ |µ=0 = 2K7 < 0 and limµ→+∞

d2l(µ)
dµ = +∞.

Thus d
2l(µ)
dµ = 0 has only one positive real root. Then dl(µ)

dµ has
only the unique stationary point forµ > 0, which implies that
dl(µ)
dµ = 0 has at most two positive real roots and l(µ) = 0 has
at most three positive real roots. In addition, in view of l(0) =
K9 > 0, l(θ0) < 0(θ0 > 0) and limµ→+∞

dl(µ)
dµ = +∞,

one has that l(µ) = 0 may have 2j(j = 1, 2, 3, 4) positive
real roots. Therefore l(µ) = 0 has two positive real roots and
g(ϕ) = 0 has two positive real roots. So (7) has two pairs of
purely imaginary roots. The proof of (e) ends.

Without loss of generality, if (15) has nine positive real
roots ϕj(j = 1, 2, · · · , 9). By (10), one gets

σ kj =
1
ϕj

[
arccos

(
−
A1R(ϕ)A2R(ϕ)+A1I (ϕ)A2I (ϕ)

(A2R(ϕ))2 + (A2I (ϕ))2

)
+ 2lπ

]
, (18)

where l = 0, 1, 2, · · · , j = 1, 2, · · · , 9. Denote

σ0 = min
j=1,2,··· ,9

{σ 0
j }, ϕ0 = ϕ|σ=σ0 . (19)

Now we give the following hypotheses:
(A4) L1S1 + L2S2 > 0, where

L1 = 3ϑϕ3ϑ−10 cos
(3ϑ − 1)π

2
+ 2a1ϑϕ

2ϑ−1
0

× cos
(2ϑ − 1)π

2
+ a2ϑϕ

(ϑ−1)
0 cos

(ϑ − 1)π
2

+a4ϑϕ
ϑ−1
0

[
cos

(ϑ − 1)π
2

cosϕ0σ0

+ cos
(ϑ − 1)π

2
cosϕ0σ0

]
,

L2 = 3ϑϕ3ϑ−10 sin
(3ϑ − 1)π

2
+ 2a1ϑϕ

2ϑ−1
0

× sin
(2ϑ − 1)π

2
+ a2ϑϕ

(ϑ−1)
0 sin

(ϑ − 1)π
2
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+a4ϑϕ
ϑ−1
0

[
cos

(ϑ − 1)π
2

sinϕ0σ0

− sin
(ϑ − 1)π

2
cosϕ0σ0

]
,

S1 = −a4ϕ
ϑ+1
0 sin

ϑπ

2
,

S2 = ϕ0

(
a4ϕϑ0 cos

ϑπ

2
+ a5

)
.

Lemma 3: If s(σ ) = µ(σ ) + iϕ(σ ) is the root of (7)
around σ = σ0 satisfying µ(σ0) = 0, ϕ(σ0) = ϕ0, then
Re
[ ds
dσ

] ∣∣∣
σ=σ0,ϕ=ϕ0

6= 0.

Proof: By (7), one gets[
ds
dσ

]−1
=
p(s)
q(s)
−
σ

s
, (20)

where

p(s) = 3ϑs3ϑ−1 + 2a1ϑs2ϑ−1 + a2ϑsϑ−1

+ a4ϑsϑ−1e−sσ ,

q(s) = s(a4sϑ + a5).

Then

Re

{[
ds
dσ

]−1}
= Re

{
p(s)
q(s)

}
. (21)

Therefore

Re

{[
ds
dσ

]−1} ∣∣∣∣
σ=σ0,ϕ=ϕ0

= Re
{
p(s)
q(s)

} ∣∣∣∣
σ=σ0,ϕ=ϕ0

=
L1S1 + L2S2

S2
1 + S2

2

.

By (A4), one has

Re

{[
ds
dσ

]−1} ∣∣∣∣
σ=σ0,ϕ=ϕ0

> 0.

Then the transversality condition holds. This ends the proof
of Lemma 2.

Now we consider the stability of (1.3) with σ = 0. The
following assumption is given:

(A5) a1 > 0, a1(a2+a4) > a3+a5, a1(a2+a4)(a3+a5) >
(a3 + a5)2.
It is not difficult to obtain the following lemma.
Lemma 3: If σ = 0 and (A5) are true, then model (3) is

asymptotically stable.
Proof: Let σ = 0, then (7) can be written as follows:

λ3 + a1λ2 + (a2 + a4)λ+ (a3 + a5) = 0. (22)

By (A5), one has that all the roots λi of (21) satisfies
|arg(λi)| > ϑπ

2 (i = 1, 2, 3, 4) According to Lemma 2, one
can conclude that model (3) with σ = 0 is asymptotically
stable. This ends the proof of Lemma 3.
Theorem 1: For model (3), if (A1)-(A5) hold true, then the

zero equilibrium point is global asymptotically stable when

FIGURE 1. The relation of t and u1(t) when σ1 = 1, σ2 = 0.7,
σ3 = 0.5, σ4 = 0.8, σ = σ1 + σ3 = σ1 + σ3 = 1.5 < σ0 = 1.7664.

FIGURE 2. The relation of t and u2(t) when σ1 = 1, σ2 = 0.7,
σ3 = 0.5, σ4 = 0.8, σ = σ1 + σ3 = σ1 + σ3 = 1.5 < σ0 = 1.7664.

σ ∈ [0, σ0) and a Hopf bifurcation appears around the zero
equilibrium point for σ = σ0.
Remark 1: In [38]–[44], [56], the authors studied the sta-

bility and Hopf bifurcation of integer-order neural networks
delays. In this article, we study the stability and Hopf bifur-
cation of fractional-order neural networks with four different
delays. All the derived results in [38]–[44], [56] can not
be applied to (3) to obtain the stability and the existence
of Hopf bifurcation for (3). Based on the reason, the main
results of this article on the stability and the existence of Hopf
bifurcation for (3) are completely new and complete previous
publications.
Remark 2: Huang and Cao [45] discussed the effect of

leakage delay on bifurcation in high-order fractional BAM
neural networks. In [47], the authors investigated the con-
trol problem of bifurcation for a delayed fractional gene
regulatory network. In [48], the authors studied the bifurca-
tion behavior on fractional complex-valued neural network.
In [49], Huang et al. discussed the effect of leakage delay

70960 VOLUME 7, 2019



C. Xu et al.: Influence of Time Delay on Bifurcation in Fractional-Order BAM Neural Networks With Four Delays

FIGURE 3. The relation of t and u3(t) when σ1 = 1, σ2 = 0.7,
σ3 = 0.5, σ4 = 0.8, σ = σ1 + σ3 = σ1 + σ3 = 1.5 < σ0 = 1.7664.

FIGURE 4. The relation of u1(t) and v1(t) when σ1 = 1, σ2 = 0.7,
σ3 = 0.5, σ4 = 0.8, σ = σ1 + σ3 = σ1 + σ3 = 1.5 < σ0 = 1.7664.

FIGURE 5. The relation of u2(t) and v1(t) when σ1 = 1, σ2 = 0.7,
σ3 = 0.5, σ4 = 0.8, σ = σ1 + σ3 = σ1 + σ3 = 1.5 < σ0 = 1.7664.

on bifurcation for fractional BAM neural networks. All the
publications [45], [47]–[49] only involve a single delay. In
this article, we investigate the Hopf bifurcation of involved

FIGURE 6. The relation of t , u1(t) and v1(t) when σ1 = 1, σ2 = 0.7,
σ3 = 0.5, σ4 = 0.8, σ = σ1 + σ3 = σ1 + σ3 = 1.5 < σ0 = 1.7664.

FIGURE 7. The relation of t , u2(t) and v1(t) when σ1 = 1, σ2 = 0.7,
σ3 = 0.5, σ4 = 0.8, σ = σ1 + σ3 = σ1 + σ3 = 1.5 < σ0 = 1.7664.

FIGURE 8. The relation of u1(t), u2(t) and v1(t) when σ1 = 1, σ2 = 0.7,
σ3 = 0.5, σ4 = 0.8, σ = σ1 + σ3 = σ1 + σ3 = 1.5 < σ0 = 1.7664.

models with four different delays by choosing the sum of two
different delays as bifurcation parameter. Up to now, there are
few results on Hopf bifurcation of fractional-order systems
with multiple delays. From the viewpoint, the main results of
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FIGURE 9. The relation of t and u1(t) when σ1 = 1, σ2 = 1.2,
σ3 = 0.8, σ4 = 0.6, σ = σ1 + σ3 = σ1 + σ3 = 1.8 > σ0 = 1.7664.

FIGURE 10. The relation of t and u2(t) when σ1 = 1, σ2 = 1.2,
σ3 = 0.8, σ4 = 0.6, σ = σ1 + σ3 = σ1 + σ3 = 1.8 > σ0 = 1.7664.

FIGURE 11. The relation of t and u3(t) when σ1 = 1, σ2 = 1.2,
σ3 = 0.8, σ4 = 0.6, σ = σ1 + σ3 = σ1 + σ3 = 1.8 > σ0 = 1.7664.

this article on stability and existence of Hopf bifurcation of
neural networks are essentially innovative.
Remark 3: The results on the considered fractional-order

neural networks with four delays can not extend the

FIGURE 12. The relation of u1(t) and v1(t) when σ1 = 1, σ2 = 1.2,
σ3 = 0.8, σ4 = 0.6, σ = σ1 + σ3 = σ1 + σ3 = 1.8 > σ0 = 1.7664.

FIGURE 13. The relation of u2(t) and v1(t) when σ1 = 1, σ2 = 1.2,
σ3 = 0.8, σ4 = 0.6, σ = σ1 + σ3 = σ1 + σ3 = 1.8 > σ0 = 1.7664.

FIGURE 14. The relation of t , u1(t) and v1(t) when σ1 = 1, σ2 = 1.2,
σ3 = 0.8, σ4 = 0.6, σ = σ1 + σ3 = σ1 + σ3 = 1.8 > σ0 = 1.7664.

result with n-delays since the characteristic equation of
fractional-order neural networks with n-delays is more
complex.
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FIGURE 15. The relation of t , u2(t) and v1(t) when σ1 = 1, σ2 = 1.2,
σ3 = 0.8, σ4 = 0.6, σ = σ1 + σ3 = σ1 + σ3 = 1.8 > σ0 = 1.7664.

FIGURE 16. The relation of u1(t), u2(t) and v1(t) when σ1 = 1, σ2 = 1.2,
σ3 = 0.8, σ4 = 0.6, σ = σ1 + σ3 = σ1 + σ3 = 1.8 > σ0 = 1.7664.

Remark 4: In order to obtain the stability and the existence
of Hopf bifurcation of model (3), we carried out some complex
computation. If the parameters are given, we can compute
corresponding value by computer.

IV. COMPUTER SIMULATIONS
Consider the following fractional-order model:

Dϑu1(t) = −0.5u1(t)− 0.5 tanh(v1(t − σ1)),
Dϑu2(t) = −0.5u2(t)− tanh(v1(t − σ2)),
Dϑv1(t) = −0.5v1(t)+ 2 tanh(u1(t − σ3))
+0.6 tanh(u2(t − σ4)).

(23)

All the coefficients and functions are same as those in
Xu [38]). Set ϑ = 0.82. Then ϕ0 = 0.6759 and σ0 = 1.7664.
We can verify that (A1)-(A5) of Theorem 1 are fulfilled. Let
σ1 = 1, σ2 = 0.7, σ3 = 0.5, σ4 = 0.8, then σ = σ1 + σ3 =
σ1 + σ3 = 1.5 < σ0 = 1.7664. In this case, we can conclude
that the zero equilibrium point ofmodel (23) is locally asymp-

totically stable. Figures 1-8 indicate that the zero equilibrium
point of model (23) is locally asymptotically stable for σ ∈
[0, σ0). Let σ1 = 1, σ2 = 1.2, σ3 = 0.8, σ4 = 0.6, then
σ = σ1 + σ3 = σ1 + σ3 = 1.8 > σ0 = 1.7664. In this case,
model (23) becomes unstable and a Hopf bifurcation exists.
Figures 9-16 manifest that model (23) becomes unstable and
a Hopf bifurcation takes place for σ ∈ [σ0,+∞). In addition,
we can see that the order can postpone the onset of Hopf
bifurcation (compared with Xu [38]).

V. CONCLUSIONS
The bifurcation issue of fractional order delayed BAM neural
networks has been analyzed in details. By discussing the
distribution of characteristic roots of corresponding charac-
teristic equation of involved system and choosing the sum of
different delays as bifurcation parameter, we establish a set of
sufficient conditions to ensure the stability and the existence
of Hopf bifurcation of considered neural networks. The study
reveals that the delay has important effect on the stability and
Hopf bifurcation of involved neural networks. We find that
when the sum of delays remain the suitable interval, then the
equilibrium point of involved system is locally asymptotically
stable, while the Hopf bifurcation appears when the sum of
delays exceed some critical values. The obtained results on
the stability and the existence of Hopf bifurcation of frac-
tional order delayed BAM neural networks can be applied
to design and optimize neural networks. It will be widely
applied in artificial intelligence, automatic control, disease
diagnosis, image processing, etc. So we can say that the study
of this manuscript plays an important role in serving human
beings.
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