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ABSTRACT Text detection in natural scene image is challenging due to text variation in size, orientation,
color and complex background, contrast, and resolution. In this paper, we focus on the long text detection
in complex background. In order to deal with multi-scale text variation and exploit the recognition result
to enhance the detection performance, we propose a detection and verification model based on SSD and
encoder-decoder network for scene text detection. First, we present a text localization neural network based
on SSD, which incorporates a text detection layer into the standard SSD model and can detect horizontal
texts, especially long and dense Chinese texts in natural scenes more effectively. Second, a text verification
model based on the encoder-decoder network is designed to recognize and verify the initial detection results,
in order to eliminate non-text areas that are falsely detected as text areas. A series of experiments have been
conducted on our constructed horizontal text detection dataset, which is composed of the horizontal text
images in ICDAR 2017 Competition on Reading Chinese Text in the Wild (RCTW 2017) and some scene
images taken by cameras. Compared with previous approaches, experimental results show that our method
has achieved the highest recall rate of 0.784 and competitive precision rate in text detection, indicating the
effectiveness of our proposed method.

INDEX TERMS Scene text detection, SSD, encoder-decoder network, verification model.

I. INTRODUCTION
Text in natural scene image contains rich semantic infor-
mation and is of great value for image understanding. For
example, the texts embedded in packaging can promote the
commodity value, and the texts on street signs can improve
the precision of automatic navigation. The recognition and
understanding of text information in natural scenes is gradu-
ally becoming one of the hotspots of research and application
in recent years.

As the first step in text reading systems, text detection,
which aims at localizing text areas with bounding boxes of
words, plays a critical role in text information extraction
and understanding. Although there already exist some OCR
systems that can detect and recognize texts in formatted
documents, text detection in natural scene image is still a
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challenge due to text variation in size, orientation, color and
complex background, contrast, resolution, etc. In this paper,
we focus on the long text detection in complex background.

Traditional text detection methods are usually based on
sliding window [1]–[3] or connected component extrac-
tion [4]–[7]. The text detection methods based on sliding
window detect texts by traversing every area of the scene
image, which can achieve a high recall rate, however with
a high computational complexity. The other text detection
methods based on connected component extraction firstly
extract candidate texts from the input image with a low
computational complexity, but the accurate location of text
areas depends on a series of complex post-processing such
as filtering and fusion of candidate texts. Driven by the rapid
development of deep learning, text detection methods based
on deep learning are also becoming popular. While texts in
natural scenes can be regarded as a kind of specific objects,
it is easy to detect horizontal texts in natural scene images
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FIGURE 1. Model overview. The whole procedure mainly takes two steps:
(1) Initial text detection with text localization neural network.
(2) Eliminating background regions with text verification model.

with the help of deep object detection network. However,
different from general objects, horizontal scene texts tend to
have more scales, and be distributed widely in any region of
the scene image, and easier to be disturbed by the background
of similar texts. Therefore, directly applying object detection
network for text detection is not an effective method.

To this end, we propose in this work a novel method for
natural scene horizontal text detection, which is based on Sin-
gle Shot MultiBox Detector (SSD) [8] and encoder-decoder
network. The part of this work was presented at the Interna-
tional Workshop on Deep Learning for Pattern Recognition
(DLPR 2018) [9]. An overview of the network architecture is
presented in Fig. 1.

The whole network mainly contains two parts: Text
Localization Neural Network and Text Verification Model.
We present a text localization neural network based on SSD,
which is designed for initial text candidate localization with
single forward pass as well as a standard Non-Maximum
Suppression (NMS), avoiding a series of complex inter-
mediate steps such as text candidate regions filtering and
fusion. Also, aiming at the problem that some background
areas are misjudged as texts by the text localization neu-
ral network, we propose a text verification model based on
encoder-decoder network, which further improves the preci-
sion of text detection by using recognition results to refine
initial detection results and eliminate the non-text areas.
The encoder network, which is composed of CNN model
and BiGRU network, encodes the input text image features
with rich context information. And the decoder network
adopts GRU network with attention mechanism to decode
the encoded feature vector sequences into words, and better
models the concerns of decoder network at current moment.

Specifically, in order to verify the validity of the proposed
method in this paper, we construct a text detection dataset
composed of images taken by cameras in natural scenes and
the horizontal text images from RCTW 2017 [10] dataset,
which contains 12k training images and 3k test images.
Compared with other approaches, experimental results on our
dataset show that our proposed method achieves a highest
recall rate of 78.4% and a competitive precision rate 83.0%,
which is second only to CTPN [11]. In detail, compared with
SSD model, the text localization neural network improves
the precision from 75.9% to 80.5%, and the recall rate
from 56.8% to 78.4%. Moreover, the text verification model
improves the detection precision by 3.1%.

In summary, the main contributions of this paper are thus
two-fold:

(1) We propose a Text Localization Neural Network based
on SSD, which improves the SSD model according to the
characteristics of scene texts, so that it can better adapt to nat-
ural scene text detection. The network directly predicts text
areas of the input images and obtains candidate text bound-
ing boxes through a standard non-maximum suppression
process, eliminating several time-consuming intermediate
stages.

(2) A Text Verification Model based on encoder-decoder
network is designed. The model recognizes the texts in can-
didate bounding boxes detected by the text localization neu-
ral network, and eliminates non-text areas that are falsely
detected as text areas, thereby further improving the precision
of natural scene text detection.

The remainder of this paper is organized as follows:
In Sec.2, we briefly review the previously related work.
In Sec.3, we describe the proposed method in detail, includ-
ing Text Localization Neural Network and Text Verifica-
tion Model. Experimental results are presented in Sec.4.
Finally, some conclusion remarks and future works are given
in Sec.5.

II. RELATED WORK
Text localization and recognition in natural scene images are
derived from the analysis and recognition of scanned docu-
ments and images in traditional research [12]. With the rapid
development of computer vision technology, text detection
and recognition tasks are no longer two independent sub-
tasks, but tend to be realized through end-to-end systems [3].
Detecting text in natural scenes has been a hot research topic
in the field of computer vision, and plenty of excellent works
and effective strategies have been proposed.

Previous works on text detection can be roughly
divided into two categories, one is the traditional method
based on sliding window [1]–[3] or connected component
extraction [4]–[7] and the other is the method based on deep
learning in recent years. Sliding window based methods
adopt the sliding window to look over the whole image
and extract the features in the window. Then the pre-trained
classifier is used to classify the character/non-character in the
window area. Finally, the candidate characters are merged to
obtain the final text area. Kim et al. [1] took the pixel value
of the original image as the input of SVM classifier, trained
the text/non-text classifier according to the labeled training
data, then performed connected domain texture analysis on
the candidate text areas discriminated by SVM classifier, and
obtained the final text areas. Pan et al. [2] combined LBP [13]
features with HOG [14] features, extracted candidate char-
acter regions using the cascaded Adaboost [15] classifier,
and further fused the character regions to obtain the final
text areas. Connected component extraction based methods
mainly decide on how to design an effective algorithm for
text candidates extraction. Stroke Width Transform (SWT)
[4] and Maximally Stable Extremal Regions (MSER) [7]
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are two representable algorithms with leading performance
in ICDAR 2011 [16] and ICDAR 2013 [17]. Yao et al. [6]
sought candidate texts with the help of SWT, and designed a
multi-oriented text detection algorithm combined with region
color and shape features. Sun et al. [18], Lei et al. [19] pro-
posed color enhancement extremal regions based on MSER
for candidate texts generation.

In recent years, with the rapid development of deep
learning, text detection algorithms based on deep learning
have become the mainstream in the field of text detection.
According to the shape of the text bounding boxes to be
detected in scene images, the methods of detecting horizontal
texts [11], [20], [21] and multi-oriented texts [22], [23] are
derived.

Deep learning technologies have advanced performance
of text detection in the past years. A technique similar to
text detection is general object detection. In the object detec-
tion networks based on CNN, on the one hand, the network
relies on the region extraction, such as R-CNN [24], Fast
R-CNN [25] and Faster R-CNN [26]. On the other hand,
SSD [8] and YOLO [27] directly predict the location of
objects. Owing to the rapid development of deep object detec-
tion networks, horizontal scene text detection can be realized
based on those networks, in which the text is regarded as a
special kind of objects. Huang et al. [20] firstly sought candi-
date texts viaMSER, CNNwas then used to classify text/non-
text regions. Based on Faster R-CNN [26], DeepText [21]
proposed Inception-RPN and made further optimization to
adapt text detection. Tian et al. [11] designed a network
called Connectionist Text Proposal Network (CTPN), which
combined CNN and LSTM to detect the text line by pre-
dicting a sequence of fine-scale text components. Inspired by
YOLO [27], Gupta et al. [28] proposed a fully convolutional
regression network, which made predictions through a single
forward pass.

Multi-oriented text detection task can be regarded as a spe-
cial pixel-level image segmentation problem. Multi-oriented
text detection based on deep learning is usually implemented
by FCN [22]. Zhang et al. [23] made use of FCN to train
and predict the saliency map of text areas, then combined
the saliency map and text elements to estimate the line where
the text is located, and used another full convolution model
classifier to estimate the center of each character, thus elimi-
nated false detection areas. EAST [29] adopted FCN network
to output feature layers and generate geometric text boxes in
multiple channels of image. By introducing two geometric
shapes, RBOX and QUAD, it can detect multi-oriented texts
in scene images.

Our work is mainly inspired by recent work [8]. Similar
to SSD, we utilize multiple feature layers for text detection.
In addition, we introduce Text Detection Layers and three
improved strategies for default boxes generation, to better
detect long text lines. Also, we present a Text Verifica-
tion Model based on encoder-decoder network, to eliminate
non-text areas by recognizing the initial detection results,
which further improves the precision of text detection.

III. METHODOLOGY
In this section, we describe the proposed method in detail.
First, a text localization neural network is designed for initial
text detection, the key components of that are text detection
layers and three improved strategies. Then, false localized
text regions are eliminated by the text verification model,
which is based on encoder-decoder network.

A. TEXT LOCALIZATION NEURAL NETWORK
1) NETWORK DESIGN
The structure of our text localization neural network is illus-
trated in Fig. 2. The proposed network is a 28-layer fully
convolutional network including two parts, one consists of
several convolution layers and pooling layers, corresponding
to the first 13-layer base network in Fig. 2. It keeps the
conv1_1 to conv5_3 layers in VGG-16 [30] and the last two
fully connected layers in VGG-16 that are replaced with
conv6 and conv7 respectively. The other part is 15 extra
convolution layers, including 9 convolution layers, inserted
after conv7 (corresponding to the conv8 to conv11 in Fig. 2),
and 6 text detection layers responsible for outputting the pre-
dicted default text bounding boxes. The text detection layer
is the text localization model designed in this paper, which
can detect the core of different scale text areas. As shown
in Fig. 2, 6 text detection layers are inserted after 6 differ-
ent convolution layers (conv4_3, conv7, conv8_2, conv9_2,
conv10_2 and conv11_2).

After generating several predicted text bounding boxes via
the text detection layer, the text localization neural network
goes through a non-maximum suppression (NMS) process,
eliminates the redundant bounding boxes, and obtains the
final detection results. One important point is that our pro-
posed network does not need complex post-processing, such
as text areas filtering and fusion, and the detection process is
more compact and efficient.

2) TEXT DETECTION LAYERS
Similar to original SSD model, text detection layers make
use of multiple feature maps to predict default text bound-
ing boxes. The working principle of text detection layers is
illustrated in Fig. 3. For each position of a feature map cell,
a 84 dimensional vector is outputted via the convolution filter.
That is to say, among the 14(2× 7) default boxes responsible
for predicting text areas, each default box produces a 6 dimen-
sional output, which contains a 4 dimensional vector for
location information (center point coordinates and width and
height of the predicted bounding box) and a 2 dimensional
vector for text/non-text confidence.

As shown in Fig. 4 (a), each pixel in the convolution
feature map is mapped back to original image, corresponding
to a cell. The default text bounding box is a rectangular
bounding box, generated by taking the center of the cell as
center point coordinates. Then, the rectangular bounding box
is responsible for predicting a matched ground truth text box.
We assume that the size of input image is wI × hI , and
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FIGURE 2. Structure of text localization neural network. The network is a 28-layer fully convolutional network with two parts, one is a 13-layer base
network inherited from VGG-16, and another part is composed of 15 extra convolution layers. Six extra text detection layers are responsible for
prediction of scene text. Green rectangular boxes are examples of size increasing default text bounding boxes among different feature layers.

FIGURE 3. Working principle of text detection layers.

FIGURE 4. An example of default text bounding boxes generated by a
4× 4 feature map cell. The orange box in (a) is a default text bounding
box responsible for predicting the green ground truth text box,
corresponding to the dotted box b0 in (b).

the size of feature map used in prediction is wmap × hmap.
As shown in Fig. 4 (b), the pixel point with coordinate (i, j) in
feature map is mapped back to original image, corresponding
to a horizontal default text bounding box b0. Moreover, b0
is represented by (x0,y0,w0,h0), where (x0,y0) represents the
center point coordinates of default box, w0 and h0 represent
the width and height of default box, respectively.

The input image goes through a forward propagation.
The text detection layer predicts (1x,1y,1w,1h,c0,c1), and
generates a predicted box b = (x, y,w, h). The pre-
dicted bounding box also contains text/non-text confidence
c0 and c1.

3) DEFAULT TEXT BOUNDING BOXES GENERATION
In order to better adapt to the distribution characteristics of
Chinese text areas in natural scene, we propose two improved
strategies for default boxes generation in text detection layers.

a: LARGER ASPECT RATIOS
While predicting, the text detection layer combines feature
map information of different layers. Then, each position of
the feature map is mapped back to original image, and wewill
obtain a fixed-size feature map cell. In this paper, we preset
a base default box with the same width and height in the
cell center, and the base default box will produce a series
of boxes with different width and height, according to the
defined aspect ratios. Assuming that the text detection layer
uses m feature maps for prediction, for the k-th feature map,
the size of base default box is defined as:

Sk = Smin +
Smax − Smin
m− 1

(k − 1) , k ∈ [1,m] (1)

Assuming that the aspect ratio of default box is ar , for each
position of the k-th feature map cell, the width and height of
the corresponding default box in original image are defined
as:

wak = Sk
√
ar (2)

hak = Sk/
√
ar (3)

For object detection, SSD sets three different aspect ratios
for object default boxes ar = (1, 2, 3). However, the
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FIGURE 5. Examples of default text bounding boxes in a 4× 4 feature
map cell. Default boxes locate at the center of a feature map cell. The
green box is base default box, corresponding ar = 1. The blue box is a
generated default box, corresponding ar = 5.

horizontal scene texts, especially Chinese texts, are different
from general objects, and tend to have more scales and larger
aspect ratios. Therefore, on the basis of original ar of SSD,
we define 4 more aspect ratios (5,7,9,10) for default boxes to
better adapt to the horizontal text detection.

For the k-th feature map, when ar 6= 1, according to (2)
and (3), every featuremap cell will generate two default boxes
based on each ar . Also, for 7 different aspect ratios, every
feature map cell will generate 14(2× 7) default boxes. When
ar = 1, every feature map cell will generate a base default
box with the same width and height. At this point, we adopt
the same strategy as original SSDmodel, i.e., adding a square
default box with width and height of

√
SkSk+1. As shown

in Fig. 5, default text bounding boxes with larger aspect
ratios are illustrated. Note that for simplicity, only aspect
ratios 1 and 5 are plotted.

b: DEFAULT BOXES WITH VERTICAL OFFSETS
Different from the fixed locations of general objects in natural
scene images, scene texts may be densely distributed in the
local area, and the limited default text bounding boxes can-
not match all ground truth text boxes. Therefore, we design
a method to increase the number of default text bounding
boxes. Centering on the feature map cell, we make offsets
to default text bounding boxes about half of the height of
each feature map cell in vertical direction, in order to generate
more default text bounding boxes. Through this improve-
ment, more ground truth text boxes will be exactly matched,
and the probability of missed detection is decreased.

As shown in Fig. 6, the green dotted boxes in (a) and (b) are
default text bounding boxes in the 3×3 feature map cell. It is
obvious that part of text areas in the image cannot be fully
covered, so that the locations of them will not be predicted.
The yellow dotted boxes in (a) and (b) are obtained bymaking
offsets to the green dotted boxes about half of the height of
each feature map cell in vertical direction, from the center of
the feature map cell. These yellow dotted boxes can exactly
match the text areas that are not covered by green dotted
boxes, and predict the locations of these areas.

4) IMPROVED CONVOLUTION FILTER
Our text localization neural network obtains the output of text
detection layers via the convolution filter based on different

FIGURE 6. Vertical offsets to default text bounding boxes in 3× 3 feature
map cell. Through vertical offsets, yellow bounding boxes can be
produced, and more text areas will be able to be covered.

FIGURE 7. Comparison examples of convolution kernel sizes 3× 3
and 1× 5.

level featuremaps. Different fromSSD,we draw lessons from
the design of the Inception module of Pan et al. in SSTD [31]
(Single Shot Text Detector), replacing the original 3× 3 con-
volution kernel with a 1 × 5 rectangular convolution kernel.
As shown in Fig. 7, the green box is the ground truth text
box, and the red box is the default text bounding box, which
is responsible for predicting the location and confidence of
text in the ground truth text box. Since the horizontal text in
scene images usually has a larger aspect ratio, the 3×3 regular
convolution kernel (shown as the blue box in (a)) does not
fully match the features of long texts. Therefore, it is possible
to extract non-text features, and bring unnecessary errors to
the text/non-text classification task of default boxes. Unlike
the setting of 3× 3 convolution kernel, the 1× 5 convolution
kernel (shown as the blue box in (b)) will extract the features
in horizontal text areas more effectively, reducing the risk of
bringing in the background noise. Therefore, the accuracy of
the classification task can be improved.

5) LOSS FUNCTION
In the text localization neural network, the default text bound-
ing box is responsible for predicting the location and con-
fidence of text areas. Therefore, the loss function of the
network training is a joint loss function of classification loss
and regression loss. In this paper, the loss function for initial
text detection uses the form of multi-task loss [8], which is
defined as:

L (x, c, b, g) =
1
N

(
Lconf (x, c)+ αLloc(x, b, g)

)
(4)
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where N is the matched numbers of default text bounding
boxes to ground truth text boxes, α is the weight term.
If N = 0, we set the loss L = 0. Different from SSD,
our text localization neural network only predicts text areas
and outputs the confidence of text/non-text. Thus, Lconf is
2-softmax loss produced by classification, and we define the
loss as:

Lconf (x, c) = −
N∑

i∈Pos

xij log
(
ĉ1i
)
−

∑
i∈Neg

log
(
ĉ0i
)

(5)

Let xij = {1, 0} be an indicator for matching the i-th default
text bounding box to the j-th ground truth text box. If it is
matched, xij = 1, i.e. when the network is training, the default
box can be used as a positive sample of the prediction task;
otherwise, xij = 0, the default box is a negative sample.
Moreover, c1i is the confidence of that the predicted text
box contains text areas, and c0i is the confidence of that the
predicted text box contains background. Pos is the positive
sample set matched with the ground truth text boxes, and Neg
is the negative sample set.
Lloc is the regression loss generated by a default box

regressing to corresponding ground truth text box. We use the
predicted text box b = (cx, cy,w, h) to regress the matched
ground truth text box g, and adopt the smooth-L1 loss function
with corresponding parameters. Where (cx, cy) is the center
point coordinate of b, w and h are respectively the width and
height of b. We define the regression loss as:

Lloc (x, b, g) =
N∑

i∈Pos

∑
m∈{cx,cy,w,h}

xijsmoothL1
(
bmi −ĝ

m
j

)
(6)

ĝcxj =
gcxj − d

cx
i

dwi

ĝcyj =
gcyj − d

cy
i

dhi

ĝwj = log

(
gwj
dwi

)

ĝhj = log

(
ghj
dhi

)
(7)

where the smooth-L1 loss function is defined as:

smoothL1 (x) =

{
0.5x2 |x| < 1
|x| − 0.5 |x| ≥ 1

(8)

B. TEXT VERIFICATION MODEL
1) OVERVIEW
Encoder-decoder network is a method of organizing recur-
rent neural networks to deal with the prediction problem of
sequence-to-sequence. It was first proposed by Dzmitry [32]
to solve the problem of machine translation, and was widely
used in machine translation systems. Similar to machine
translation, which converts the input word sequences that
are source language into the output word sequences that

FIGURE 8. Architecture of text verification model.

are target language, text recognition can also be viewed as
‘translating’ image data into character sequences. Thus the
encoder-decoder network can also be used in text recognition.

Natural scene images usually have complex background,
as well as rich text and non-text styles, so that some non-text
areas are misjudged as text areas by text localization network.
To address the above issues, we propose text verification
model based on the encoder-decoder network. The model
uses the encoder network to encode text areas of the input
image, and translates the encoded features into text sequences
through the decoder network. Via recognizing the texts in
candidate text boxes outputted from the text localization net-
work, the model further eliminates the non-text areas.

Architecture of our text verification model is depicted
in Fig. 8. The whole model is based on encoder-decoder
network, and makes use of text recognition results to refine
the detection. The encoder network is composed of CNN
and BiGRU network. It encodes the input image and obtains
an encoded feature vector sequence, which combines the
context features of the image. The decoder network adopts
GRU network to decode the feature vectors. Meanwhile,
we introduce attention mechanism in the decoding process,
to better model the concerns of decoder network at different
times. When training, the text verification model maximizes
the probability of generating labelingword sequences in input
images. Via correctly recognizing text areas in candidate
text boxes generated by text localization network, the model
further eliminates the background areas that are misjudged as
texts.

2) ENCODER NETWORK
Our encoder network, which is composed of CNN Model
and BiGRU Network, encodes the input image with context
information to obtain the encoded feature vector sequence.
In detail, a CNN model is used to extract image features.
To better learn the dependencies and relationships between
characters in input image, we then apply BiGRU to encode
these features.

As shown in Fig.9, the input image has a size of 100× 32,
via the CNN model extracting features, we obtain a feature
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FIGURE 9. Architecture of encoder network.

FIGURE 10. Architecture of CNN model.

map output that has a size of 1×25 and 512 channels. Taking
the channel as the dimension to stitch features, we further
obtain a feature vector sequence of length 25 with 512 dimen-
sion of each. Then we use BiGRU to encode the feature
vectors. The hidden unit has a size of 512 in BiGRU. For
each moment, the two 512 dimensional vectors propagating
along positive and negative time sequence respectively are
spliced. Therefore we obtain a 1024 dimensional encoded
feature vector sequence of length 25.

a: CNN MODEL
Our CNNmodel adopt the same CNN architecture as in Con-
volution Recurrent Neural Network (CRNN) [33]. As shown
in Fig.10, the CNNmodel is composed of 18 layers, including
7 convolution layers, 7 activation function layers and 4 max-
pooling layers. The last two max-pooling layers adopt a 2×1
rectangular convolution kernel respectively, i.e. the stride_h
is 2 and the stride_w is 1. Therefore the length of encoded
feature vector sequence will not be compressed and keeps
the constant 25. A longer encoded feature vector sequence
in a certain range is beneficial for BiGRU network to extract
the context features, and further improve the accuracy of
following decoding classification.

b: BiGRU NETWORK
As shown in Fig.11, the BiGRU network uses two GRU
(Gated Recurrent Unit) [34] units as the basic components.
One propagates along positive time sequence and the other
propagates along negative time sequence, which is beneficial
to capture context information of the input image at the same
time. The two GRU units propagating in opposite directions
receive an image feature vector sequence of length 25 and
generate 512 dimensional output with the same length. Each
encoded feature vector is spliced by two feature vectors

FIGURE 11. Architecture of BiGRU network.

FIGURE 12. Architecture of proposed decoder network.

propagating along positive and negative time sequence
respectively, which dimension is 1024 and also carries the
context information of input text line images.

3) DECODER NETWORK
a: BASIC STRUCTURE
We adopt GRU network with attention mechanism [35] to
decode the feature sequences into words. As shown in Fig.12,
the decoder network is composed of Attention Unit, GRU
Network and Text Classifier. Attention unit is responsible for
assigning different attention weights to encoded features at
different times, synthesizing new image context vectors as
an input of GRU. GRU network receives the image context
vectors and the output of network at previous moment, gen-
erating decoded feature vectors. Finally, the text classifier
recognizes texts at current moment according to the current
decoded feature vectors.

b: WORKING PRINCIPLE
As shown in Fig.13, our text verification model generates a
context feature sequence [h1, h2, ..., hT ] of text line images
via encoding features in CNN and BiGRU network. For the
different moment t , the encoded feature ht of current input
corresponds to the specific receptive field of the input text line
image, i.e. the specific text area. Therefore, in order to better
predict the output text classification at the time t , the decoder
network introduces the same attention function as in [32] to
better model the current concerns.
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FIGURE 13. Word sequence generation process.

Assume that ct ′ is the context vector of image at time t ′, and
st ′ is the hidden layer output of GRU network. st ′ is defined
as:

st ′ = g
(
yt ′−1, ct ′ , st ′−1

)
(9)

where yt ′−1 is the precious prediction from the decoder net-
work, st ′−1 is the output of GRU network at time t ′ − 1, g
is the activation function. In addition, ct ′ , the input context
vector of decoder network at time t ′, is the weighted average
of the output of encoder network at different times. We define
ct ′ as:

ct ′ =
T∑
t=1

αt ′tht (10)

We define the attention weight αt ′t at time t ′ as:

αt ′t =
exp (et ′t)∑T
k=1 exp (et ′k)

(11)

where et ′t is correlated with the output st ′−1 of GRU network
at time t ′ − 1 and the output ht of encoder network at time t ,
it is defined as:

et ′t = vT tanh
(
Wsst ′−1 +Whht

)
(12)

where v, Ws, Wh are parameters to be learned.
As shown in Fig.14, (a) and (b) are candidate bounding

boxes generated by the text localization network. After image
preprocessing, the network obtains gray images of 100× 32
size, which are all positive samples of the text verification
model. The green texts above image are labeling sequence,
which represents the text sequence to be recognized from the
image. (c) and (d) are background areas that are misjudged
as texts by the text localization network. The background
areas will be recognized by the encoder-decoder network that
constitutes the text verification model, and then be correctly
eliminated as non-texts. Since the background areas do not
contain any texts, we uniformly represent them with a special
character ‘#’, and the length of the background sequence is
25, which is the same as the length of the encoded feature
sequence.

In this paper, the output space takes 3775 common Chi-
nese characters into account, also ‘#’ character is used for
background areas, and a special ‘EOS’(End Of Sequence)

FIGURE 14. Some input image examples of text verification model.

token is used to denote the end of the text sequence
to be recognized. That’s to say, output space has a size
of 3777.

Text recognition will be achieved through the text classi-
fier in Fig.13. For different moments, the GRU network in
decoder network first decodes the encoded feature sequence
and outputs a 1024 dimensional decoded vector. In order
to predict the probability of outputting the specific word
at current moment, we adopt the fully connected layer
with 1024 × 3777 dimension as the output of text clas-
sifier. The output vector is normalized by the softmax
function, predicting the probability of occurrence for every
word.

The decoder network makes use of encoded feature vectors
to generate text sequences, which is actually a sequence
classification process. At test time, the token with the highest
probability in previous output is selected as the input token
at next step. During the training, assuming that the output
sequence is y1, y2, ..., yT , the output at time t depends on the
previous output of decoder network and the current input con-
text vector c, we define the joint probability of the predicted
output sequence as:

P (y1, y2..., yT ) =
T∏
t ′=1

P
(
yt ′ |

{
y1, y2, ..., yt ′−1

}
, c
)

(13)

The training target of the text verification model is to
minimize the loss function, which is defined as:

L = − logP (y1, y2..., yT ) (14)

IV. EXPERIMENTS
In this section, we evaluate the proposed method on our text
detection dataset, the evaluation protocols include Precision,
Recall and F-Measure.

A. OUR DATASET
The dataset, RCTW 2017 (ICDAR 2017 Competition on
Reading Chinese Text in the Wild) [10], is a newly published
dataset in the ICDAR 2017 Text Reading Competition, which
is mainly prepared for Chinese text detection. In this dataset,
some scene texts are multi-oriented. In this paper, we focus
on the horizontal long text detection in complex background.
In order to test the effectiveness of our proposed method,
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FIGURE 15. Some examples of scene texts labeling in our dataset.

we construct our text detection dataset which is composed
of the horizontal text images from RCTW 2017 and some
scene images taken by ourselves. The training set contains
12k scene images, including 9k images taken using camera
by ourselves and 3k images selected from the RCTW 2017.
The test set contains 3k scene images, including 2k images
taken by ourselves and 1k images selected from the RCTW
2017.

In our dataset, the images are labeled with the minimum
rectangular box surrounding text areas. An example of label-
ing the scene text is shown in Fig.15 (a), and some exam-
ples of labeling images are shown in Fig.15 (b). The green
rectangular boxes are ground truth boxes surrounding text
areas.

B. EFFECTIVENESS OF TEXT LOCALIZATION NEURAL
NETWORK
To perform initial text detection in a fast and elegant way,
we design text detection layers based on SSD model, which
are able to predict text in single forward pass followed by a
standard non-maximum suppression. Besides, we add larger
aspect ratios for default text bounding boxes, make vertical
offsets to default boxes, and adopt a 1× 5 convolution kernel
instead of the 3 × 3 regular convolution kernel to extract
the features more effectively. In this section, we will verify
the effectiveness of the above designs through a series of
experiments.

1) IMPLEMENTATION DETAILS
Our text localization network based on SSD is pre-trained on
SynthText [28] and fine-tuned on our constructed dataset. For
both pre-training and fine-tuning, input images are resized to
512× 512. In pre-training, the learning rate is set to 10−3 for
the first 60k iterations, and decayed to 10−4 for the following
60k iterations, with a weight decay of 5× 10−4. During fine-
tuning, the learning rate is fixed to 10−4 for 20k iterations.
Our network is optimized by BGD (Batch Gradient Descent)
algorithm with a momentum of 0.9, then batch size is set
to 32.

The whole network is implemented on Caffe [36] and
encoded in Ubuntu 14.04. During training, the learning

TABLE 1. Performance comparisons after adding larger aspect ratios.

TABLE 2. Performance comparisons between SSD and Text Localization
Neural Network (with larger aspect ratios).

and optimization of all parameters are accelerated by
Titan X GPU.

2) LARGER ASPECT RATIOS
In this paper, we define 4 more aspect ratios on the basis
of the original ar in SSD, and ar = (1, 2, 3, 5, 7, 9, 10).
We can calculate the width and height of the default box via
(2) and (3). Therefore, as far as possible, we select the prime
number as ar to avoid the redundancy with other preseted
ar , and more text areas with different sizes and scales can be
exactly detected. In addition, we retains the two ratios of 9 and
10, in order to improve the robustness of detecting long Chi-
nese text in scene images via the text localization neural net-
work. Table 1 shows the comparison of the detection results,
obtained by adding larger aspect ratios to the default text
boxes.

As shown in table 1, via adding larger aspect ratios, the pre-
cision and recall rate of text localization are all improved
gradually. However the improvement rate becomes slower
with a larger aspect ratio. Besides, via the experiment, we find
that the precision and recall rate of text localization decrease
with ar > 10, which is mainly because that for the different
short text line areas in dataset, the longer text boxes will
falsely detect them as one merged text lines and cause the
false localization.

Table 2 compares results of SSD and our text localization
neural network with larger aspect ratios. The precision is
improved from 75.9% to 79.2%, the recall rate is improved
from 56.8% to 75.8%, and the F-Measure is improved from
65.0% to 77.5%, indicating that our model can improve the
detection performance effectively.

3) DEFAULT BOXES WITH VERTICAL OFFSETS
In case of some dense text areas in natural scene images,
we make offsets to default text bounding boxes in the feature
map cell, and more ground truth text boxes can be matched.
As shown in table 3, via this improvement, the precision and
recall rate raises by 0.3% and 2.0%.
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FIGURE 16. Some detection examples of Text Localization Neural Network on our dataset.Green solid boxes are the correctly detected scene texts.
Red solid boxes are the falsely detected scene texts. Red dashed boxes are the ignored scene texts.

TABLE 3. Performance comparisons after expanding default boxes.

TABLE 4. Performance comparisons after improving the convolution filter.

4) IMPROVED CONVOLUTION FILTER
Table 4 shows that adopting a 1×5 convolution kernel instead
of the 3 × 3 regular convolution kernel can more effectively
extract the text features of input images, which obtains 80.5%
precision and 78.4% recall rate.

5) EXAMPLE RESULTS
Fig. 16 shows some detection results on test dataset. As can
be seen, our text localization neural network can detect
horizontal scene text especially long and dense text as far
as possible, with the low probability of missed detection,
which proves the effectiveness of our proposed method.
However, for some background areas, the text localization
network will also misjudge them as text areas with high con-
fidence, which reduces the accuracy of location to a certain
extent.

FIGURE 17. Results comparison between our text localization network
and SSD. The left green boxes are results of our text localization network,
and the right blue boxes are results of SSD.

6) COMPARISON WITH SSD
As shown in Fig. 17, the left green boxes are results of
our text localization network, and the right blue boxes are
results of the general object detection model SSD. As can
be seen from the figure, our text localization network can
correctly detect long texts, instead of dividing long text lines
into several independent short text lines. The network is more
robust to long text detection. Moreover, the text localization
network can detect the text areas that have been missed by
SSD model.
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TABLE 5. Performance comparisons with SSD.

FIGURE 18. Some detection results of our text verification model. The
green boxes are text areas detected by the text localization network,
the red boxes are non-text areas detected falsely, and the texts in orange
boxes are the recognition results of our text verification model.

In summary, table 5 compares results of our text localiza-
tion neural network and SSD. In terms of precision, recall and
F-Measure, the text localization neural network outperforms
SSD by a large margin.

C. EFFECTIVENESS OF TEXT VERIFICATION MODEL
To train our text verification model, we take the candidate
text box images generated from the text localization network
as the positive samples, and the falsely detected background
images as the negative samples. The input images are uni-
formly resized to 100×32, and the training set contains 200k
images, the test set contains 20k images.

As shown in Fig. 18, (a) is the detection results of our text
localization neural network. To get more background bound-
ing boxes, we set the threshold to 0.95 in the non-maximum
suppression (NMS) stage of our text localization neural net-
work. (b) shows the recognition results of our text verification
model for the bounding boxes. It can be seen that the text
verification model can correctly recognize the text inside text
bounding boxes and the background as the pre-defined char-
acters ‘##...#’, therefore it can be able to eliminate non-text
detection areas. Figure (c) is the final localization result of the
input image, which is detected by our text localization neural
network and refined by our text verification model.

Table 6 shows the evaluation results after adopting our text
verification model. Since the text verification model can only
eliminate the false location of background areas, and cannot
recall the missing text areas, it only affects the precision of
text location. After eliminating False Positive (FP) detections,
our detection precision raises by 2.5%.

D. COMPARISON WITH OTHER METHODS
Table 7 compares the results of the proposed method and
other state-of-the-art methods. As we can see, our method

TABLE 6. Performance comparisons after applying our text verification
model.

TABLE 7. Performance comparisons with some of the state-of-the-art
methods.

achieves the highest recall rate of 78.4%, while only slightly
lower in precision than CTPN [11]. Overall, our proposed
method has a better performance for natural scene text detec-
tion, especially for the horizontal long and dense Chinese
texts in natural scenes.

V. CONCLUSION
We have presented an effective method for natural scene
text detection based on SSD and encoder-decoder network.
We make improvements on SSD to better handle horizontal
text detection, especially long Chinese text in natural scenes.
In detail, we add larger aspect ratios for default text bounding
boxes, make vertical offsets to them, and adopt a 1 × 5
convolution kernel instead of the 3 × 3 regular convolution
kernel. Besides, we propose an encoder-decoder network and
make use of recognition results to refine the detection results.
The encoder network, which is composed of CNN model
and BiGRU network, encodes the text image features with
rich context information. And the decoder network adopts
GRU network with attentionmechanism to decode the feature
sequences into words. Comprehensive evaluations on our
constructed dataset well demonstrate the effectiveness of our
proposed method.
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