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ABSTRACT This survey focuses on deep learning-based aspect-level sentiment classification (ASC), which
aims to decide the sentiment polarity for an aspect mentioned within the document. Along with the success
of applying deep learning in many applications, deep learning-based ASC has attracted a lot of interest
from both academia and industry in recent years. However, there still lack a systematic taxonomy of
existing approaches and comparison of their performance, which are the gaps that our survey aims to fill.
Furthermore, to quantitatively evaluate the performance of various approaches, the standardization of the
evaluation methodology and shared datasets is necessary. In this paper, an in-depth overview of the current
state-of-the-art deep learning-based methods is given, showing the tremendous progress that has already
been made in ASC. In particular, first, a comprehensive review of recent research efforts on deep learning-
based ASC is provided. More concretely, we design a taxonomy of deep learning-based ASC and provide
a comprehensive summary of the state-of-the-art methods. Then, we collect all benchmark ASC datasets
for researchers to study and conduct extensive experiments over five public standard datasets with various
commonly used evaluation measures. Finally, we discuss some of the most challenging open problems and
point out promising future research directions in this field.

INDEX TERMS Aspect based sentiment analysis, aspect-level sentiment classification, attention, convolu-
tional neural network (CNN), deep learning, memory network, neural networks, recurrent neural network
(RNN).

I. INTRODUCTION
Sentiment analysis can be divided into three levels, namely
the document level, the sentence level, and the aspect
level [1]. The document-level sentiment analysis comes with
an assumption that the whole document only contains opin-
ions about one topic. Obviously, this is not reasonable in
many cases. The sentence-level sentiment analysis similarly
assumes that only one topic is expressed in one sentence.
However, it is often the case that one sentence contains

The associate editor coordinating the review of this manuscript and
approving it for publication was Arif Ur Rahman.

multiple topics (i.e., aspects) or that the opinions are opposite
within the same sentence. For both the document-level and
the sentence-level sentiment analysis, the decided sentiment
polarities are based on the whole document/sentence rather
than the topics given in the document/sentence. In contrast,
aspect-level sentiment analysis aims to judge the sentiment
polarity expressed for each aspect being discussed. This
allows for a more detailed analysis that makes use of more
information given by the review/tweet.

As a fundamental subtask of sentiment analysis [2],
aspect-level sentiment analysis has received a lot of atten-
tion from both industries and academic communities.
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FIGURE 1. An example of aspect-level sentiment classification.

Recently, aspect-level sentiment analysis is a central concern
in the research communities of semantic Web and computa-
tional linguistics [3]–[5]. The goal of aspect-level sentiment
analysis is to identify the aspects (aspect extraction) and
infer the sentiment expressed for each aspect (also known as
aspect-level sentiment classification). In this paper, we focus
on the problem of deep learning based aspect-level sentiment
classification (ASC). This allows us to cover more recent
developments, instead of repeating established insights pro-
vided in other surveys [1], [6]–[8]. Evidently, the field of deep
learning in ASC is flourishing. The goal of ASC is to deter-
mine whether user opinions expressed in reviews/tweets on
given aspects (aspect categories or aspect terms) are positive,
negative, or neutral [1]. An example in Figure 1 presents a
sample sentence taken from the SemEval 2014 [3] dataset
(e.g., Restaurants14). An aspect category implicitly describes
a general category of the entities. For instance, in the sen-
tence ‘‘The salmon is tasty while the waiter is very rude’’,
the user expresses positive and negative sentiments towards
two aspect categories ‘‘food’’ and ‘‘service’’ respectively.
An aspect term characterizes a specific entity that explic-
itly occurs in a sentence. For the same sentence, the aspect
terms are ‘‘salmon’’ and ‘‘waiter’’, where the user expresses
positive and negative sentiments over them respectively. The
aspect category is coarse-grained while the aspect term is
fine-grained in terms of the aspect granularity [9].

In recent years, several surveys in the field of tradi-
tional sentiment analysis have been published. For example,
in 2008, Pang et al. [6] presented a good review of senti-
ment analysis. Various techniques and applications were dis-
cussed, and the considerations of ethics, theory, and practice
were covered. However, they mainly focused on traditional
machine learning approaches for document-level sentiment
analysis. In 2009, Tang et al. [8] introduced a survey which
also mainly paid attention to the machine learning meth-
ods for document-level sentiment analysis on the consumer
reviews domain. In 2011, Tsytsarau and Palpanas [7] pub-
lished a survey, which focused on document-level sentiment
analysis as well and discussed four different approaches for
predicting the sentiment polarity, namely machine learning
based, dictionary-based, semantic-based and statistical-based
respectively. In 2012, Liu [1] presented a survey, which pro-
vided an introduction of the entire field of sentiment analysis.
A list of sub-problems when implementing an actual solution
were given in the section about aspect-level sentiment analy-
sis: 1) the definitions of aspect extraction, including various

challenges like solving implicit and explicit entities and opin-
ions; 2) how to identify the aspects and sentiment polarities
and linked to each another (a.k.a. ASC). The most related
survey work to ours is [10] that focused on aspect-level senti-
ment analysis. It gave an in-depth overview of the traditional
machine learning methods for aspect-level sentiment analy-
sis, including aspect extraction and ASC. However, none of
the existing work focuses on deep learning based ASC though
it has achieved great success in recent years. Furthermore,
a systematic classification of deep learning based approaches
for ASC and reports of their performance over benchmark
datasets are missing, which are the gaps that this survey is
aiming to fill.

This survey aims to thoroughly review the literature on
the advances of deep learning based ASC. It provides an
overview with which readers can quickly understand and
step into the field of deep learning based ASC. This survey
serves the researchers, practitioners, and educators who are
interested in ASC, with the hope that they will have a rough
guidelinewhen it comes to choosing the deep learningmodels
to solve ASC tasks at hand. To summarize, the differences
between this survey and former ones include: (1) to the best
of our knowledge, this is the first time to well summarize
the field of deep learning based ASC and organize existing
works and current progress. 2) we collect and analyze almost
all of the benchmark datasets of ASC; 3) we implement the
classical state-of-the-art models and evaluate them on five
classical datasets with widely used evaluation measures.

The key contributions of this paper can be summarized as
follows.

1) In light of the significantly increasing number of stud-
ies on deep learning for ASC, it is necessary to make
a comprehensive summarization of existing literature.
To this end, we are the first to provide a detailed review
over representative approaches and summarize current
work with a classification scheme. The existing meth-
ods are categorized into five main groups: RecNN for
ASC, RNN for ASC, attention-based RNN for ASC,
CNN for ASC and memory network for ASC.

2) This survey provides the most comprehensive overview
of modern deep learning techniques for ASC. For each
type of ASC models, we provide detailed descriptions
on representative algorithms, and make a necessary
comparison and summaries the corresponding algo-
rithms.

3) We collect almost all of the standard ASC datasets,
including SemEval 2014, SemEval 2015, SemEval
2016, Twitter and others.We also explore these datasets
in detail and translate them into a uniform XML/JSON
format for researchers to study.1

4) Note that the existing models verify the effective-
ness on different datasets with different metrics and

1All the source codes and collected datasets for ASC are available at
https://github.com/12190143/Deep-Learning-for-Aspect-Level-Sentiment-
Classification-Baselines and https://www.yorku.ca/jhuang/Deep-Learning-
for-Aspect-Level-Sentiment-Classification-Baselines.
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the experiment settings of these models are different.
We reproduce the classical state-of-the-art deep learn-
ing methods for ASC and evaluate the performance of
them with the commonly-used metrics (e.g. Accuracy,
Precision, Recall, Macro-F1 and so on.) over public
benchmark ASC datasets.

5) We discuss the important challenges and open issues in
deep learning based ASC, which provides a promising
avenue and inspires the vision for further research.

The remaining of this article is organized as follows.
Section II introduces the overview of deep neural based
ASC and presents our classification framework. Section III
gives a detailed introduction to the state-of-the-art methods.
Then, the benchmark datasets and widely-used evaluation
measures for ASC are described in Section IV and Section V
respectively. After that, Section VI reports the experimental
results with various metrics over public benchmark datasets
and Section VII discusses the challenges and prominent open
research issues for ASC. Finally, we summarize our work in
Section VIII.

II. OVERVIEW OF DEEP LEARNING BASED ASC
Before we dive into the details of this survey, we start with a
discussion about the reasons and motivations of introducing
deep neural networks to ASC. We also introduce the basic
terminology and concepts regarding deep learning basedASC
techniques.

Aspect based sentiment analysis is a fundamental task in
sentiment analysis research field [3], [11], which includes
several key sub-tasks: aspect extraction [12]–[14], opinion
identification [15], [16] and ASC [17]–[19]. Some previous
studies have tried to solve these sub-tasks jointly [20], [21],
dedicating most of the research work in dealing with an indi-
vidual sub-task. In this study, we focus on deep learningmeth-
ods for solving ASC problem. Different from document-level
and sentence-level sentiment classification, ASC considers
both the sentiment and the target information, as a sentiment
always has a target. As mentioned above, a target is usually
an entity or an aspect of an entity. For simplicity, both entity
and aspect are usually called aspect. Given a sentence and an
aspect, ASC aims to infer the sentiment polarity/orientation
of the sentence towards the given aspect.

Traditional methods for ASC are mostly traditional
machine learning models based on lexicons and syntactic
features [17], [18], [22]. The performance of such models
is highly dependent on the quality of the hand-crafted fea-
tures which is labor intensive. Therefore, recent research has
turned its attention to developing end-to-end deep neural
network models. To provide insight into the large number
of proposed deep learning based methods for ASC, a cate-
gorization is made based the types of employed deep learn-
ing techniques, dividing all approaches into the following
five categories: recursive neural network (RecNN) for ASC,
recurrent neural network (RNN) for ASC, attention-based
RNN for ASC, convolutional neural network (CNN) for

FIGURE 2. The categorization of deep learning methods for ASC.
We divide existing methods into five categories: RecNN for ASC, RNN for
ASC, attention-based RNN for ASC, CNN for ASC and memory network for
ASC. The RNN for ASC can be further divided into RNN, Bi-RNN, and
HRNN based on their architectures. Attention-based RNN models include
basic attention-based RNN, interactive attention-based RNN.

ASC and memory network for ASC. Figure 2 summarizes
the classification scheme. Additionally, Table 1 lists all the
reviewed approaches, which were organized following the
above classification scheme. We give a brief introduction of
each category in the following sections and the details of these
approaches will be provided in Section III.

A. RECNN FOR ASC
Recursive Neural Network (RecNN) [56] is a type of neural
network that is applied to learn a directed acyclic graph
structure (e.g., a tree structure) from data. It can be regarded
as a generalization of the recurrent neural network. Given
the structural representation of a sentence (e.g., a parse
tree), RecNN recursively generates parent representations
in a bottom-up way, by combining tokens to obtain repre-
sentations for phrases, eventually the whole sentence. The
representation of a sentence then is used to make a final
prediction (e.g., sentiment classification) for the given input
sentence. Tree-based RecNN was introduced into ASC by
Dong et al. [23] and Nguyen and Shirai [24].

B. RNN FOR ASC
The recurrent neural network (RNN) has been shown to
be powerful in many (language) sequence learning prob-
lems. Moreover, most of state-of-the-art methods for ASC
are based on RNN [25]–[28]. In this category, models can
be divided into three subcategories: RNN, bidirectional-
RNN (Bi-RNN), and hierarchical RNN (HRNN). To cap-
ture semantic relations between the aspect and its context
words in a more flexible way, Tang et al. [26] proposed a
target-dependent LSTM (TD-LSTM) and a target-connection
LSTM (TC-LSTM) to extend LSTM by taking the aspect
into consideration, which applied RNN into ASC. In addition,
commonsense knowledge of sentiment-related concepts was
incorporated into the end-to-end training of an LSTM model
for ASC [27]. Zhang et al. [25] used gated neural network
structures to model the syntax and semantics in sentence and
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TABLE 1. Statistics of the existing public methods for ASC. Model represents the type of deep learning methods adopted by the corresponding published
paper. Aspect and Position with

√
denote the model considering the aspect information and position information respectively. Attention without 5

means the model using the attention, CA, GA and DPA indicate ‘‘Contact Attention’’, ‘‘General Attention’’ and ‘‘Dot-Product Attention’’ respectively, which
will be described in Section III-D.1 in detail.

the interaction between the aspect and its surrounding context
words by Bi-RNN. HRNN was adopted by Ruder et al. [28],
who proposed to use a hierarchical bidirectional LSTM
model for ASC, which was able to learn both intra- and inter-
sentence relations.

C. ATTENTION-BASED RNN FOR ASC
Attention mechanism [57] has been successfully applied to
many natural language processing (NLP) tasks [58], such
as neural machine translation [57], [59], question answering
[60], [61], and machine comprehension [62], [63]. A variety
of attention-based RNN models have recently been intro-
duced to ASC, which can attend to the important parts of
the sentence towards the given aspect effectively. Attention-
based RNN for ASC can be divided into basic attention-
based RNN models and interactive attention-based RNN
models. In particular, there were a large number of stud-
ies focus on improving the basic attention RNN models
[27], [31]–[33], [35]–[37], [41], [55]. Wang et al. [29]

proposed an attention-based LSTM method with aspect
embedding, which was proven to be an effective way to
enforce the model to capture the related parts of a sen-
tence. In addition, interactive attention based models were
widely used for ASC [38]–[40], [42], [43]. For instance,
Ma et al. [38] proposed an interactive attention mechanism,
which interactively learned attentions from the specific aspect
and the context.

D. CNN FOR ASC
Convolutional neural network (CNN) [64] is good at captur-
ing local patterns and plays an important role in NLP [65].
CNN is able to extract the local and global represen-
tations from a sentence. Some work adopted CNN for
ASC [45]–[47]. To be specific, Huang and Carley [45] incor-
porated aspect information into CNN leveraging parameter-
ized filters and parameterized gates. Li et al. [47] adopted
a proximity strategy to scale the input of the convolutional
layer with positional relevance between a word and an aspect.
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Fan et al. [46] proposed a convolutional memory network
which incorporated an attention mechanism to capture both
words and multi-words expressions in sentences for ASC.
Furthermore, Xue and Li [44] proposed a model based on
convolutional neural networks and gating mechanisms.

E. MEMORY NETWORK FOR ASC
Memory network [61] obtained great success in ASC [19],
[48]–[55], [66]. Tang et al. [19] first introduced an end-to-
end memory network for ASC, which employed an attention
mechanismwith an external memory to capture the important
information of the sentence with respect to the given aspect.
Chen et al. [49] proposed a recurrent attention mechanism
based on memory network for each aspect to capture sen-
timent information separated by a long distance. In [55],
the sentence-level content attentionmechanismwas proposed
to overcome the short-sight problem of the memory models.

III. DEEP LEARNING BASED ASC
In this section, problem definition and notations are given
first. Then, we highlight the state-of-the-art research pro-
totypes for deep learning based ASC to identify the most
notable and promising advancement in recent years.

A. PROBLEM DEFINITION AND NOTATIONS
Given a sentence-aspect pair (S,A), where the aspect A =
{wstart , tstart+1, . . . ,wend−1,wend } is the subsequence of the
sentence S = {w1,w2, . . . ,wn} that consists of n words, start
and end are starting and ending indices of the aspect A that
consists of m = end − start + 1 words. The goal of ASC
is to predict sentiment polarity c ∈ C = {N ,O,P} for the
sentence S towards the aspect A, where N, O, and P denote the
‘‘negative’’, ‘‘neutral’’ and ‘‘positive’’ sentiment polarities
respectively.

For the sentence S = {w1,w2, . . . ,wn} and the aspect
words A = {wstart , tstart+1, . . . ,wend−1,wend }, we map each
word into its embedding vector X = {x1, x2, . . . , xn} and
V = {vstart , vstart+1, . . . , vend−1, vend }. It maps the word
representation from a high-dimensional sparse vector space
(e.g. one-hot encoding vector space) to a lower-dimensional
dense vector space. One commonly used word embedding
approach is Word2Vec,2 which contains Continuous Bags-
of-Words model (CBOW) [67], and Skip-Gram model (SG)
[68]. Another frequently used learning method is Global
Vector (GloVe)3 [69], which is trained on the non- zero entries
of a global word-word co-occurrence matrix. We summarize
the commonly used notations in Table 2.

B. RECNN FOR ASC
In this section, we first introduce the basic RecNNmodel and
then we describe the studies of tree-based RecNN for ASC in
detail.

2https://code.google.com/archive/p/word2vec/
3https://github.com/stanfordnlp/GloVe

TABLE 2. Commonly used notations.

1) RECNN
We first give a brief description of recursive neural network
(RecNN) [56]. RecNN [56] is a class of architecture that can
learn a directed acyclic graph structured input (e.g., a tree
structure). As a generalization of the recurrent neural network
[70], RecNN has a specific kind of tree structure. RecNN
has been successfully employed to model compositionality
in NLP via parse-tree-based structural representations, such
as sentence-level sentiment analysis [71], [72] and para-
phrase detection [73]. Based on RecNN and the parsing tree,
Socher et al. [56] proposed a phrase-level sentiment analysis
approach, where each node in the parsing tree was assigned a
sentiment label. Given the structural directed acyclic graph
of a sentence (e.g., a parse tree), RecNN visits the nodes
in topological order and recursively generates parent repre-
sentations in a bottom-up strategy, which combines tokens
to generate representations for phrases, eventually the whole
input sentence. Then the sentence representation is used to
make a final classification (e.g., sentiment classification).
Figure 3 presents an example process of vector composition
in RecNN. The vector representation of node ‘‘very good’’ is
generated from the vector representations of the node ‘‘very’’
and the node ‘‘good’’. Similarly, the node ‘‘not very good’’
is generated from the phrase node ‘‘very good’’ and the word
node ‘‘not’’.

2) TREE-BASED RECNN FOR ASC
RecNNwas firstly applied into ASC by Dong et al. [23], they
proposed an adaptive recursive neural network (AdaRNN) for

FIGURE 3. The framework of the RecNN model.
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target-dependent twitter sentiment classification. AdaRNN
learned to predict the sentiment polarities of words towards
the aspect based on the context and syntactic structure. The
representation of the root node was fed into the softmax
classifier to predict the distribution of sentiment polarities.
A binary dependency tree was built from a dependency tree
of the sentence for a given sentence containing a target aspect.
Intuitively, it represented syntactic relations associated with
the aspect. Each word (leaf) or phrase (internal node) in the
binary dependency tree was represented as a d-dimensional
vector. The representation of a parent node v was computed
by combining the left child vector representation vl and the
right child vector representation vr from bottom to up via a
global function g in RecNN:

v = f (g(vl, vr )) = f (W
[
vl
vr

]
+ b), (1)

where vl , vr were the vector representations of its left and
right child, g and fwere the composition function and the non-
linearity function (e.g., tanh, sigmoid, softsign.) respectively.
W ∈ Rdimw×2dimw was the parameter matrix and b denoted
the bias vector.

Instead of using only a global function g, AdaRNN selected
n compositional functions G = {g1, . . . , gn} based on the
linguistic tags and combined vectors as follows:

v = f

(
n∑
i=1

P(gi|vl, vr , e)gi(vl, vr )

)
(2)

whereP(gi|vl, vr , e) represented the probability of function gi
given the external feature vector e and vector representations
of child vl , vr . The probabilities were calculated as follows:P(g1|vl, vr , e). . .

P(gn|vl, vr , e)

 = softmax

βR
 vl
vr
e

 , (3)

where β ∈ R was a hyper-parameter, and R indicated the
parameter matrix.

The vector representation of the root node of the binary
dependency tree (as a representation of the target aspect) was
fed to a softmax function to infer the sentiment polarity of the
given aspect.

In addition, Nguyen and Shirai [24] proposed a
PhraseRNN model to judge the sentiment of the sentence
towards the given aspect, which demonstrated that the RecNN
can obtain sentence representations from the recursive struc-
ture effectively. This model obtained the representation of an
aspect from a ‘‘target dependent binary phrase dependency
tree’’, which was constructed by a combination of the depen-
dency and constituent trees. Different from AdaRNN, instead
of using a list of global functions G, PhraseRNN used two
types of composition functions G = {g1, . . . , gn} in inner-
phrase and H = {h1, . . . , hm} in outer-phrase, where n and
m were the number of functions in G and H, respectively.
To be specific, the dependency tree was first transformed
into a phrase dependency tree. Then the phrase dependency

FIGURE 4. The framework of the RNN model.

tree was transformed into a target dependent binary phrase
dependency tree.

However, these existing RecNN models for ASC may
suffer from syntax parsing errors which were common in
practice [22], [25].

C. RNN FOR ASC
In this section, we describe the details of the RNN model,
including standard RNN, LSTM, and GRU. We also review
that most primitive methods about RNN for ASC, which
can be divided into RNN based ASC, Bi-RNN based ASC
and HRNN based ASC. Note that we only present the most
classical RNNmethods for ASC here for RNN is widely used
in ASC. To better understand the RNN methods used in the
existing work, we list the model type (such as LSTM, GRU,
Bi-GRU, and Bi-LSTM) of each work in Table 1.

1) RNN
We first provide a brief description of a basic recurrent neural
network (RNN) [70] model. RNN models sequential inputs
(e.g., sequences of words in a sentence) and the basic frame-
work of an RNN is shown in Figure 4. RNN is a classical
type of neural network that has recurrent connections, which
allows a form of memory. This also makes it suitable for
sequential prediction problems with arbitrary spatiotemporal
dimensions. Thus, many NLP tasks adopt the structure of
RNN by regarding the interpretation of a sentence as analyz-
ing a sequence of tokens. Given a sentence S, we can obtain
a sequential hidden states H = [h1, h2, ....hn] ∈ Rn×dimh by
feeding the input X = [x1, x2, . . . , xn] ∈ Rn×dimw through
RNN, where dimw and dimh denote the dimensions of word
embedding and the hidden states respectively. In particular,
RNN can be divided into the following three categories.

1) Standard RNN Standard RNN [70] is a basic frame-
work of RNN. The transition function of standard RNN
is a linear layer followed by a non-linear layer (e.g.,
tanh). The input of the network at time step t is xt and
ht represents the hidden state at the same time step.
Calculation of ht is as follows:

ht = f (Uxt +Wht−1), (4)
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Thus, ht is calculated via the current input xt and the
hidden state of previous time step ht−1. The function
f represents a non-linear transformation function (such
as tanh, ReLU). U, V, W are standard RNN’s weights
that are shared across time. xt is the vector represen-
tation of words typically in NLP. As stated before,
it can be considered as the network’s memory element
that accumulates information from other time steps.
However, this standard RNN is really hard to learn and
tune the parameters in practice since it suffers from the
infamous vanishing gradient problem.

2) LSTM Long Short Term Memory (LSTM) network
[74] is a special type of RNN, which is able to learn
long-term dependencies. Similarly, the hidden layer ht
at time step t is computed form a non-linear transfor-
mation function of the current input xt and the previous
hidden state ht−1. Then the output yt is calculated using
the hidden state ht . ht can be regarded as a represen-
tation summarizing the past, which is used to make
a final decision on the current input. Apart from the
hidden state vector, LSTM has a memory cell structure,
which consists of three gates: an input gate, a forget
gate and an output gate. The input gate is used to dictate
the extent to which the memory cell will be influenced
by the new input; the forget gate controls the extent
to which previous information in the memory cell will
be forgotten; and the output gate controls the extent
to which the memory cell will influence the current
hidden state. All three of these gates depend on the pre-
vious hidden state and the current input. Specifically,
LSTM cell is calculated as follows:

it = σ (Wi · [ht−1; xt ]+ bi), (5)

ft = σ (Wf · [ht−1; xt ]+ bf ), (6)

ot = σ (Wo · [ht−1; xt ]+ bo), (7)

gt = tanh(Wr · [ht−1; xt ]+ br ), (8)

ct = it � gt + ft � ct−1, (9)

ht = ot � tanh(ct ), (10)

where � stands for element-wise multiplication and σ
is sigmoid function. Wi,bi are parameters of the input
gate, Wf , bf are the parameters of the forget gate and
Wo, bo are the parameters of the output gate. SeeGraves
[75] and Greff et al. [76] for more details of LSTM.

3) GRU Gated Recurrent Unit (GRU) [59] is a more
recent framework, which is similar to the LSTMmodel
but simpler with fewer parameters. Empirically, GRU
has observed to perform comparably to LSTM, despite
its comparative simplicity [77]. Different from LSTM,
instead of the memory cell, GRU uses an update gate to
control how much the hidden gate will be updated, and
a reset gate to control how the information is updated
to the hidden state and control how much the previous
hidden state will influence the current hidden state. The

GRU state can be computed as follows:

zt = σ (Wzxt + Uzht−1 + bz), (11)

rt = σ (Wrxt + Urht−1 + br ), (12)

ĥt = tanh(Whxt + rt−1 � (Uhht−2)+ bh), (13)

ht = (1− zt )� ht−1 + zt � ĥt , (14)

where Wz,Uz, bz, Wr , Ur , br are the parameters of
update and reset gates.

2) RNN BASED ASC
RNN plays a significant role in ASC. Tang et al. [26] first
introduced LSTM into ASC for it can capture semantic rela-
tions between the aspect and its context words in a more
flexible way. They proposed target-dependent LSTM (TD-
LSTM) and target-connection LSTM (TC-LSTM) to extend
LSTM by taking the aspect target into account. As shown
in Figure 5, TD-LSTM learned representations from the left
and right context with respect to the given aspect by making
use of two LSTM networks, namely LSTML and LSTMR
respectively. After that, they concatenated the last hidden
vectors of LSTML and LSTMR, and fed them to a softmax
layer to predict the sentiment polarity of the sentence towards
the aspect. To capture the interactions between the aspect
and its contexts, TC-LSTM was proposed. It extended TD-
LSTM by incorporating an aspect connection component,
which explicitly utilized the connections between the aspect
and each context word when constructed the representation
of a sentence. The given aspect was regarded as a feature and
was concatenated with the context features for ASC.

FIGURE 5. The framework of the TD-LSTM model (From [26]).

Ma et al. [27] incorporated commonsense knowledge of
sentiment-related concepts into the end-to-end training of an
LSTM model for ASC. The LSTM model was extended by
integrating commonsense knowledge into gate mechanisms.
They assumed that the sentiment concepts were meaningful
to control the information of word-level information. For
instance, amulti-word aspect ‘‘rotten fish’’ might suggest that
the word ‘‘rotten’’ was a sentiment-related qualifier of the
word ‘‘fish’’ so that less information need to be filtered out at
the next time step. Thus, to filter the information, knowledge
concepts were incorporated into the forget, input, and output
gate of standard LSTM. The input gate used the sentiment
concepts to prevent the memory cell from being affected
by input tokens conflicting with knowledge. Similarly, such
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knowledge was utilized by the output gate to filter out the
irrelevant information stored in the memory.

3) BI-RNN BASED ASC
Bidirectional RNN (Bi-RNN) is based on idea that output at
time step t should depend on previous and future contents in a
sentence. As shown in Figure 6, the Bi-RNN consists of two
RNNs: a forward

−−→
RNN which reads the sentence S from w1

to wn and a backward
←−−
RNN from wn to w1.

−→
h i =

−−→
RNN (xi, θRNN ), i ∈ [1, n] (15)

←−
h i =

←−−
RNN (xi, θRNN ), i ∈ [n, 1] (16)

where θRNN represents the parameters of the RNNmodel. The
final context-aware representation for the word is obtained
by concatenating the two hidden state vectors, namely hi =
[
−→
h i,
←−
h i]. As two typical categories of Bi-RNN, bidirectional

GRU (Bi-GRU) and bidirectional LSTM (Bi-LSTM) [75] are
widely used and achieved great success in ASC.

FIGURE 6. The framework of the Bi-RNN model.

A gated recurrent neural network (GRNN) was proposed
by Zhang et al. [25] to model the syntax and semantics in
the sentence and the interaction between the aspect and its
surrounding contexts. The framework of GRNN is shown
in Figure 7. This model adopted Bi-RNN (e.g., Bi-GRU) to
overcome the weakness of pooling functions. To achieve that,
two gated neural networks were presented. First, it leveraged
a Bi-GRU to connect the words in a sentence so that pooling
functions were applied over the hidden states instead of word
embeddings for better representing the aspect and its con-
texts. Second, a three-way gated neural network structure was
used to model the interaction between the aspect mentioned
in the sentence and its surrounding contexts. Gated neural
networks have been shown to reduce the bias of standard
Bi-GRU towards the ends of a sentence by better propagation
of gradients.

4) HRNN BASED ASC
Hierarchical RNN (HRNN) models have been used pre-
dominantly for representation learning of paragraphs

FIGURE 7. The framework of the GRNN model (From [25]).

FIGURE 8. The framework of the H-LSTM model.

and documents. Ruder et al. [28] also proposed to use a
hierarchical bidirectional LSTM (H-LSTM) model for ASC,
which was able to leverage both intra- and inter-sentence
relations. As shown in Figure 8, word embeddings were
fed into a sentence-level Bi-LSTM. Final hidden states of
the forward LSTM and backward LSTM were concatenated
together with the aspect embedding and fed into a review-
level Bi-LSTM. At every time step, the outputs of the forward
LSTM and backward LSTM was concatenated and fed into
a softmax layer, which generated a probability distribution
over sentiment polarities.

D. ATTENTION-BASED RNN FOR ASC
In this section, we first introduce the standard attention-based
RNN briefly. Then, we split the work of attention-based
RNN for ASC into basic attention-based RNN for ASC and
interactive attention-based RNN for ASC, and describe them
in detail.
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FIGURE 9. The framework of the attention-based RNN model.

1) ATTENTION-BASED RNN
Attention mechanism was first proposed in the neural
machine translation task by Bahdanau et al. [59]. Since not
all the information in the sequence is important, attention
mechanism is proposed to enforce the RNNmodel to focus on
the important parts of the sequence. The notion of attention
has lately attracted a large amount of interest from neural net-
works researchers for its ability to capture the important parts
of a text (in contrast, e.g., depending on the final hidden state
vector). Attention mechanism has been successfully applied
to many NLP tasks [58], such as neural machine transla-
tion [57], [59], question answering [60], [61], and machine
comprehension [62], [63]. Figure 9 shows the framework
of attention-based RNN. Specifically, the context vector is
computed as a weighted sum of these annotations hi:

s =
∑
i

αihi (17)

The weight αi of each annotation hi is computed by:

αi =
exp(score(hi, ar )∑
j exp(score(hj, ar )

(18)

Here, score() is referred as an aspect-aware function for
which we consider three different alternatives [57]:

1) Dot-Product Attention (DPA)

score(hi, ar ) = hiT ar (19)

2) Concat Attention (CA)

score(hi, ar ) = vatanh(Wa[hi; ar ]) (20)

3) General Attention (GA)

score(hi, ar ) = hiTWaar (21)

2) BASIC ATTENTION-BASED RNN FOR ASC
As mentioned earlier, most of the neural network models
for ASC do not take into consideration the relationships
between the specific aspect and its context words. Thus such
models easily suffer from the semanticmismatching problem.
To solve this problem, a series of attention-based neural
network models have recently been proposed for they can
automatically identify the relevant information with respect
to a specific aspect in a sentence, which can be directly
used for improving the quality of the features extracted by
the neural network models [57]. Some of the representative
basic attention-based RNNmodels proposed for ASC task are
discussed below.

Wang et al. [29] proposed a single-hop attention based
LSTM (named ATAE-LSTM) model with aspect embedding,
which took the concatenations of the aspect representation
and the word embeddings as input and the hidden states
of LSTM were used for attention computation. Figure 10
shows the framework of ATAE-LSTM. For this model, ‘‘Con-
cat Attention’’ was used to capture the important parts of
the sentence towards the given aspect. It was proven to
be an effective way to enforce the neural model to attend
to the related part of a sentence in response to a specific
aspect. Likewise, Yang et al. [30] proposed two kinds of
attention-based bidirectional LSTM (AB-LSTM) models to
improve classification performance. Zeng et al. [35] proposed
a PosATT-LSTM model, which took the importance of con-
text words into consideration and incorporated the position-
aware vectors that represented the explicit position context
between an aspect and its context words.

FIGURE 10. The framework of the ATAE-LSTM model (From [29]).

In addition, He et al. [36] transferred the knowledge from
document-level sentiment classification dataset to ASC via
pre-training and multi-task learning (PRET+MULT) based
on attentive LSTM model. The existing ASC benchmark
datasets were relatively small, which largely limited the
performance of neural network models. Despite the lack
of labeled ASC data, large-scale document-level sentiment
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classification labeled data were easily available online (e.g.,
Amazon and Yelp reviews). These reviews come with rating
labels naturally and contained substantial linguistic patterns.
The performance of ASCwas improved by employing knowl-
edge gained from document-level sentiment classification
datasets. Li et al. [9] proposed a novel framework named
Multi-Granularity Alignment Network (MGAN) to simulta-
neously align aspect granularity and aspect-specific feature
representations across domains.

He et al. [31] proposed an approach to obtain better aspect
representation by capturing the semantic information of the
given aspect. Then, they incorporated syntactic information
into the attention mechanism to obtain a better representation
of the sentence. The framework of the proposed ‘‘LSTM +
SynATT + TarRep’’ model is shown in Figure 11. The rep-
resentation of each aspect was obtained by a mixture of m
embeddings of aspect terms so that each embedded aspect
can represent a combination of closely related aspect terms.
An autoencoder structure was adopted to learn the aspect
embeddings and the representation of the aspect which was
a weighted summation of the aspect embeddings. Second,
syntactic information was integrated into attention, namely
a syntax-based attention model. In previous work, all words
in a sentence were of equal importance for the attention
models. Therefore, the attentive weight entirely depended on
the semantic relationship between the specific aspect and its
context words. However, it may not be sufficient to capture
related opinion words for different aspects. Thus, a depen-
dency parser was applied on the review sentence to obtain the
syntactic path and then the syntax-based attentionmechanism
was designed to selectively capture themost related sentiment
words that were close to the aspect on the syntactic path.

FIGURE 11. The framework of the LSTM+SynATT+TarRep model
(From [31]).

Tay et al. [33] proposed an Aspect Fusion LSTM
(AF-LSTM) model to integrate aspect information into the
neural network model by modeling relationships of word-
aspect. To capture the correct words towards a given aspect
adaptively, AF-LSTM learned to attend based on associative
relationships between the aspect and the sentence words. This

addressed the limitations of other state-of-the-art methods
thatmodeledword-aspect similarity via naive concatenations.
Instead, to model the similarity between the aspect and its
content words, this model developed circular convolution and
circular correlation and incorporated them into a differen-
tiable attention-based neural network model.

Hazarika et al. [37] predicted the sentiment polarities of
all aspects in the same sentence to capture the inter-aspect
dependencies and learned temporal dependency of their cor-
responding sentence representations utilizing RNN model.
To be specific, the proposed model first inputted a sentence
along with all of its aspects and then generated the sentence
representations relative to each aspect to gain better aspect-
aware representations [26]. An attention-based LSTM net-
workwas used for the attentionmechanism enabled themodel
to capture key parts of the content words with regard to the
given aspect. The same as [29], aspect representations were
concatenated with each word embedding so that the attention
mechanism can enable the model to capture aspect infor-
mation. Finally, to capture the inter-aspect dependencies,
the aspect-aware sentence representations were ordered as a
sequence and fed into another LSTM to model the temporal
dependency. Each time step of this LSTM corresponded to
a specific aspect. Then the output of hidden state for each
aspect was fed to a dense layer and a softmax layer to judge
the sentiment polarities of each given aspect.

Wang et al. [32] adopted a hierarchical attention network
model [78] for ASC. They proposed a hierarchical network
with both word-level and clause-level attentions (namely
Word&Clause-Level ATT) for aspect sentiment classification
to take into account the importance degrees of both words
and clauses inside a sentence. The overall architecture of
the proposed model is shown in Figure 12. Specifically, they
first utilized sentence-level discourse segmentation to divide
a sentence into several clauses. Then, they leveraged one
Bi-LSTM to model all clauses in the sentence and designed
a word-level attention mechanism to capture the important
words in each clause for not all the words inside a clause are
meaningful. Finally, they adopted another Bi-LSTM tomodel
the attentive representation of each clause and designed a
clause-level attention mechanism to capture the important
clauses in a sentence for not all the clauses in a sentence are
meaningful.

3) INTERACITVE ATTENTION-BASED RNN FOR ASC
For this category of attention-based RNN methods for ASC,
the interaction between the given aspect and its content
words is taken into account. Ma et al. [38] proposed an
Interactive Attention Network (IAN) that considered both
attention mechanisms on the aspect and the full context.
As shown in Figure 13, it used two attention-based LSTM to
interactively capture the key words of the aspect terms and
the important words of its context. Word embeddings of a
given aspect and its context were inputted into two LSTM
to obtain the hidden states of words respectively. To focus
on the important information in the context and the specific
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FIGURE 12. The frameworks of Word&Clause-Level ATT (From [78]). (a) Word-level Attention. (b) Clause-level Attention.

FIGURE 13. The framework of IAN model (From [38]).

aspect, the attention mechanism was adopted and the average
values of the hidden states of the aspect and the hidden states
of its context were adopted to guide the generation of attentive
weights. Thus, the aspect and the full context can influence
the generation of their representations interactively. Finally,
the final representation of the sentence was obtained by con-
catenating the representations of the aspect and its context and
inputted to a softmax layer for inferring the sentiment class.

To efficiently obtain the representation of the aspect espe-
cially when the aspect was multi-word and use the interaction
among the aspect, its left context and its right context to focus
on the key words in them, Zheng and Xia [43] proposed a left-
center-right separated neural network with rotatory attention
mechanism (LCR-Rot). Specifically, they developed a left-
center-right separated LSTMs that consisted of three LSTMs
(i.e., left-, center- and right- LSTM) to model the left con-
text, aspect and right context of a sentence. Furthermore,
a rotatory attention mechanism was introduced to take into
consideration the interaction between aspects and its left/right

FIGURE 14. The framework of the PBAN model (From [41]).

contexts to better represent the given aspects and its contexts.
They adopted a target2context attention to focus on the most
related sentiment words in left/right contexts. At the same
time, a context2target attention was designed to focus on the
important words in the aspect so that a two-side representa-
tion of the aspect was obtained, namely left-aware aspect and
right-aware aspect. Finally, the final representation of the sen-
tence towards the given aspect obtained by concatenating the
component representations was fed into a softmax function to
predict the sentiment polarity.

Gu et al. [41] proposed a position-aware bidirectional
attention network (PBAN) based on Bi-GRU. PBAN took the
position information of aspect terms into account and mutu-
ally modeled the relevance between the aspect terms and the
context by employing a bidirectional attention mechanism.
To be specific, as shown in Figure 14, the proposed model
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FIGURE 15. The framework of MGAN model (From [40]).

consisted of three steps. First, the position information of
the words in the sentence with respect to the given aspect
term was obtained and converted into position embedding.
Then, two Bi-GRU networks were adopted to extract the
features of the specific aspect and its context respectively.
Finally, the bidirectional attention mechanism was used to
model the relevance between the aspect terms and its content
words. Inspired by [79], [80], they appended position repre-
sentation into word embedding to obtain the aspect-specific
embedding.

Huang et al. [42] introduced an attention-over-attention
(AOA) neural network for ASC to model the aspect and the
sentence simultaneously to capture the interaction between
the given aspect and its context words explicitly. Furthermore,
the representations of the aspect and its context generated
from LSTMs interacted with each other through the AOA
module. It was observed that not all the words play a signifi-
cant role in a sentence towards a given aspect. The opinion
words in the sentence were highly relative to the specific
aspect. Taking the sentence ‘‘the appetizers are ok, but the ser-
vice is slow.’’ as an example, there were two aspects ‘‘appe-
tizers’’ and ‘‘service’’. According to the language experience,
the positive word ‘‘ok’’ described ‘‘appetizers’’ rather than
the ‘‘service’’. The AOA module was introduced to generate
mutual attentions from both aspect-to-context and context-to-
aspect and capture themost important part of both the specific
aspect and its corresponding context.

Fan et al. [40] proposed a fine-grained attention mech-
anism to model the interaction between the aspect and
its context on the word-level. As shown in Figure 15,
the MGAN framework consisted of two compositions,
namely fine-grained attention mechanism and coarse-grained
attention mechanism respectively. In particular, a fine-
grained attention mechanism (i.e. F-Aspect2Context and
F-Context2Aspect) was introduced to model interaction
between the given aspect and its corresponding context words
on the word-level, and reduce the information loss caused by

FIGURE 16. The framework of CNN model (From [65]).

coarse-grained attention mechanism. Furthermore, the bidi-
rectional coarse-grained attention (i.e. C-Aspect2Context and
C-Context2Aspect) were developed and combined with fine-
grained attentive vectors to construct the MGAN framework
for predicting the sentiment polarity of the sentence with
respect to the given aspect. In addition, to utilize the aspect-
level interaction information, an aspect alignment loss was
adopted in the loss function to strengthen the difference of the
attentive weights for the aspects in the same sentence which
had different sentiment polarities.

Liu and Zhang [39] utilized the attention mechanism to
calculate the importance level of each word with regard to
sentiment polarities of the given aspect. They extended the
attention mechanisms by enhancing the difference of the
attentive weights obtained from the left and right contexts of a
specific aspect.Multiple gates were introduced to further con-
trol the attention contribution. Specifically, a Bi-LSTM was
adopted to model word embeddings over a sentence and then
attention mechanism was employed over the hidden states
to compute the contribution of each word in the sentence
towards a specific aspect.

E. CNN FOR ASC
In this section, a brief introduction of CNN is provided. Then
we review the CNN based methods for ASC in detail.

1) CNN
Convolution neural network (CNN) [81] is powerful in pro-
cessing unstructured multimedia data with convolution and
pool operations. CNN can be used for feature representation
learning. It utilizes word embedding to map the sentence
into a lower-dimensional semantic representation as well
as maintain the sequences information of the words. The
extracted representation of the sentence then passes through a
convolutional layer with multiple filters, a max-pooling layer,
and a fully-connected layer consecutively. Figure 16 presents
the framework of CNN.

Specifically, let xi:i+j represents the concatenation of vec-
tors xi, xi+1, . . . , xj. Convolution operation is performed on
this input embedding layer. To generate a new feature, a filter
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k ∈ Rh·dimw is adopted to a window of h words. For instance,
a feature ci is calculated over the window of h words xi:i+h−1
as follows:

ci = f (xi:i+h−1 · kT + b) (22)

Here b ∈ R is the bias term and f is a non-linear activation
function (e.g., tanh, ReLU). The filter k is employed to all
possible window of h words utilizing the same weights to
produce the feature map.

c = [c1, c2, . . . , cn−h+1] (23)

In a CNN, several kernels (also called convolutional filters)
are used with different widths slide over the entire word
embedding matrix X. Each kernel extracts a specific pattern
of n-gram. After the convolution layer, a max-pooling strat-
egy is usually adopted over the feature map and the maxi-
mum value ĉ = max{c} is taken as feature corresponding
to this particular kernel. The max operation on each kernel
is adopted to subsample the input typically. The idea is to
capture the most important n-gram feature - one with the
highest value. This pooling strategy naturally solves variable
sentence lengths by mapping the input to a fixed-size output.

2) CNN BASED ASC
CNN was adopted for ASC for its ability to extract the local
and global representations from text [45]–[47]. Huang et al.
[45] incorporated aspect information into CNN by applying
parameterized filters and parameterized gates. In particular,
two simple CNN based models which incorporated aspect
information were proposed. They introduced two neural units
that took aspects into consideration, namely parameterized
filter and parameterized gate. These units were designed for
learning aspect-specific features. Then, two model variants
Parameterized Filters for CNN (PF-CNN) and Parameterized
Gated CNN (PG-CNN) were introduced.

Xue and Li [44] proposed a model based on CNN and gat-
ing mechanisms. The proposed model included two separate
convolutional layers over the input embedding layer, whose
outputs were combined by gating units. Convolutional layers
with multiple filters were applied to generate n-gram features
efficiently. Two non-linear gates were designed and con-
nected to the two convolutional layers respectively. Given the
aspect information, they selectively captured aspect-aware
sentiment information for ASC. Since the proposed model
could be easily paralleled, much less training time was costed
than the models that were based on LSTM and attention
mechanisms. When the aspect consisted of multiple words,
another convolutional layer was adopted for obtaining the
aspect representation.

Fan et al. [46] proposed a convolutional memory network
for ASC which was inspired by the convolutional operation
and based on the memory network. This model incorporated
an attention mechanism to learn both words and multiple
words information in the sentences. The proposed memory
network was able to capture long-distance dependency by

storing the context information into a fixed-size window at
the same time.

Li et al. [47] adopted a method to scale the input of
the convolutional layer with position information between the
specific aspect and its context words. After re-examining the
disadvantages of attention mechanism and the obstacles that
block good performance of CNN, a TNet model was devel-
oped for ASC. Instead of the attention mechanism, a CNN
layer was employed to generate important features from the
hidden states obtained by the Bi-LSTM layer. To be specific,
to incorporate aspect information into the representation of
the word better, an aspect-aware transformation component
was introduced. In addition, CNN was employed as the
feature extractor, and the context-preserving and positional
information were applied to overcome the disadvantages of
CNN model.

F. MEMORY NETWORK FOR ASC
In this section, we first introduce the detail of thememory net-
work, which has been widely used in NLP. Then, we present
an overview of the deep memory network for ASC.

1) MEMORY NETWORK
Memory Network has achieved great success in NLP. Specif-
ically, given a sentence s = {w1,w2, . . . ,wn} and the
aspect words {wstart ,wstart+1, . . . ,wend−1,wend } , each word
is mapped into its embedding vector. These word embedding
vectors are divided into two parts, namely aspect representa-
tion and context representation. Aspect representation is the
embedding of aspect word when the aspect is a single word
(such as ‘‘food’’ and ‘‘service’’). Aspect representation is the
average value of its word embedding vectors when the aspect
is a multi-word phrase (e.g., ‘‘battery life’’). Context word
vectors {m1,m2, . . . ,mstartâĹ′1,mend+1, . . . ,mn} are stacked
and converted into the external memory m. The internal state
u is set as the aspect representation. The match between u
and each memory mi is computed by taking the inner product
followed by a softmax layer:

pi = Softmax(uTmi). (24)

where p is a probability vector over the inputs.
The output vector from the memory o is then a summation

of the transformed inputsmi, weighted sum by the probability
vector from the input:

o =
∑
i

pimi. (25)

Then themodel is extended to handlemulti-hop operations.
The memory layers are stacked as follows: the input to layers
above the first uk+1 is calculated as the sum of the output ok
and the input uk of layer k:

uk+1 = uk + ok (26)

2) MEMORY NETWORK BASED ASC
Tang et al. [19] first developed a deep memory network
based on a multi-hop attention mechanism for ASC, which
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FIGURE 17. The framework of memory network model (From [19]).

FIGURE 18. The framework of RAM model (From [49]).

was effective and computationally inexpensive. As shown
in Figure 17, it adopted an multi-hop attention mechanism
over an external memory to focus on the importance level
of the context words w.r.t. the given aspect. The proposed
approach explicitly captured the important information of
context words for inferring the sentiment polarity of the
specific aspect. Such importance degree and text representa-
tion were calculated by multiple computational layers, which
were attention-base neural models with an external memory.

Tay et al. [48] introduced a dyadic memory network
(DyMemNN) to capture rich dyadic interactions between the
given aspect and its context words by incorporating parame-
terized neural tensor compositions and holographic compo-
sitions into the memory selection operation. Two kinds of
dyadicmemory networks, namely the Tensor DyMemNNand
Holo DyMemNN were developed to focus on rich dyadic
interaction between the aspect and the sentence.

Chen et al. [49] proposed a recurrent attention mechanism
based on a memory network (RAM) for each aspect to extract
sentiment information separated by a long distance. As shown
in Figure 18, to achieve that, the proposed model utilized
a recurrent/dynamic attention structure and learned a non-
linear combination of the attention in GRUs. However, atten-
tion weights were calculated only based on local sentence
information due to the character of the LSTM employed in
the proposed model.

In [55], they proposed a context attention mechanism
for ASC, which explicitly took into account the correla-
tion between the given aspect and each context word. This
model consisted of two attention-enhancing mechanisms,
namely sentence-level content attention mechanism and con-
tent attention mechanism. Sentence-level content attention
mechanism was able to capture the important information
of the sentence towards the given aspect from a global per-
spective and overcome the short-sight problem of the deep
memory network model.

To better model interaction between aspect and sentiment,
Li and Lam [66] incorporated the aspect detection task into
sentiment prediction task. They achieved sentiment identifi-
cation via an end-to-end method, in which two tasks were
learned simultaneously via a deep memory network. In such
a way, signals generated in aspect detection provided feed-
back for sentiment classification, and reversely, the predicted
polarity provided clues to the aspects identification.

In addition, Wang et al. [53] proposed target-sensitive
memory networks (TMNs) for ASC. TMNs can capture
the sentiment interaction between the aspect and its context
words. In addition, six techniques were introduced to con-
struct the TMNs. Majumder et al. [52] presented a method
which integrated the neighboring aspects related information
into predicting the sentiment polarity of the aspect via mem-
ory networks.

IV. DATASETS
In this section, we describe the standard datasets for
ASC in detail. The most popular datasets were released
by the international workshop on semantic evaluation for
the aspect-level sentiment analysis task [3]–[5], namely
SemEval 2014 [3], SemEval 2015 [4] and SemEval 2016 [5].
In addition, datasets such as Twitter [23], Sentihood [93]
and Mitchell [100] are also used for ASC. An overview of
statistics on the usage of each standard dataset is shown
in Table 3. We summarize the representative publications
of each dataset in this table. It is evident from the Table 3,
as far as the data source is concerned, a lot of work has
been done on SemEval 2014 [3], SemEval 2015 [4], SemEval
2016 [5] and Twitter [23]. At the same time, a small num-
ber of papers used Sentihodd [93], Mitchell [100], MPQA
[101], tripAdvisor [98] and other datasets. It is notable that
all datasets are ground truth data from different domains
(e.g., Restaurant, Laptop, Twitter). To make it easier for
researchers, we collect all benchmark datasets for every-
one to study. In order to unify the format, we translate all
datasets into the XML form as shown in Fig. 19. In addition,
we explore all the datasets and describe them in detail in the
following sections.

A. SEMEVAL 2014
SemEval 2014 task44 [3] is concerned with aspect based sen-
timent analysis and the goal of this task is to detect the aspects

4http://alt.qcri.org/semeval2014/task4/
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TABLE 3. The Datasets of ASC.

TABLE 4. The statistical information of SemEval-2014 Task4: Reataurant14, Laptop14. #Samples, #AvgLen, #TermSet, #AvgTermLen, #ATPS represent the
number of samples, the average length of samples, the number of term set, the average length of the term and the average number of terms for each
sample respectively. Neg./Neu./Pos. indicate the number of negative samples, neutral samples, and positive samples.

FIGURE 19. The unified format of the above datasets.

of the given target entities and determine the sentiment
polarity expressed upon each aspect. There are two domain-
specific datasets for laptops and restaurants, namely Restau-
rants14 and Laptop14, consisting of over 6,000 sentences
with aspect-level human-authored labels for training. To be
specific, each single or multi-word aspect term is assigned
one of the following polarities based on the sentiment that is
expressed in the sentence towards it: (1) positive; (2) negative;
(3) neutral (means neither positive nor negative sentiment).
(4) conflict (means both positive and negative sentiment).
We remove the data with conflict sentiment polarity and
Table 4 shows the statistical information of Restaurants14 and
Laptop14.We report the details of datasets Restaurants14 and
Laptop14 in the following sections.

1) RESTAURANTS14
Restaurants14 consists of over 3,000 English sentences
extracted from the restaurant reviews/comments of
Ganu et al. [102] as the training dataset. Extra reviews of
the restaurant are labeled in the same way as the test dataset.

TABLE 5. The top-10 aspect terms of Restaurants14.

After removing the data with conflict sentiment polarity
or without aspect term, there are 1,978 training samples
and 600 test samples remained. The dataset includes annota-
tions for coarse aspect categories, aspect terms, aspect term-
specific polarities, and aspect category-specific polarities.
From Table 4, we observe that the average number of the
aspects in the same sentence is about 1.8 and the average
length of the aspect is about 2. These indicate that one
sentence usually contains more than one aspect and the aspect
usually contain more than one words. It is also notable that
the sample number of each class is unbalanced in this data.
In addition, the top-10 aspect terms of this dataset are shown
in Table 5.

2) LAPTOP14
This dataset consists of over 3,000 English sentences
obtained from customer laptops reviews. Part of this dataset is
divided as test data. After removing the data with conflict sen-
timent polarity or without aspect term, there are 1462 training
samples and 411 test samples remained. The dataset only
includes annotations for aspect terms of the sentences and
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TABLE 6. The top-10 aspect terms of Laptop14.

TABLE 7. The top-10 aspect terms of Restaurants15.

their polarities. Similarly, from Table 4, it is observed that one
review usually consists of more than one aspects, the aspect
usually consists of more than one words, and the sample
number of each class is unbalanced for Laptop14. All these
observations largely limit the performance of the deep learn-
ing model. Furthermore, Table 6 shows the top-10 aspect
terms of Laptop14.

B. SEMEVAL 2015
SemEval-2015 task125 [4] is a continuation of SemEval-
2014 task4. The goal of this task is to identify all the
aspects and their overall polarities. In particular, the input
datasets of SemEval 2015 task12 contain entire reviews rather
than isolated sentences. For training, two datasets of about
500 reviews of restaurants and laptops annotated with aspects
and their polarities are provided. For test dataset, additional
datasets are provided. Since the laptop dataset does not con-
tain the aspect term information, we process the restaurant
dataset as Restaurants15.

1) RESTAURANTS15
This dataset consists of 254 and 96 restaurant reviews anno-
tated with aspects and their sentiment polarities for training
and testing respectively. Each review may contain multiple
sentences, and each sentence includes annotations for cate-
gory, aspect term and aspect term polarity. After removing the
data of conflict sentiment polarity, there are 1,120 sentences
for training and 582 for testing. Here we show the statistical
information of the dataset Restaurants15 at sentence-level

5http://alt.qcri.org/semeval2015/task12/

in Table 8. We find that the sample number for sentiment
negative, neutral and positive is 749, 98 and 1,652 respec-
tively, which shows the unbalance of each class. Note that the
sentence in Restaurants15 usually contains multiple aspects
and the aspect usually contains multiple words. Moreover,
Table 7 and Table 9 show the top-10 aspects and aspect
categories of Restaurants15 respectively.

C. SEMEVAL 2016
SemEval-2016 task56 [5] is similarly to the
SemEval-2015 task12, the dataset consists of entire reviews.
In addition, the dataset contains five domains and covers eight
languages. Participants are free to choose the languages and
domains as they wish, here we consider English dataset of
restaurant domain, namely Restaurants16.

1) RESTAURANTS16
This dataset consists of 350 restaurant reviews annotated with
aspect terms, aspect categories and polarities for training
and 92 for testing. After removing the data with conflict
sentiment polarity, there are 1,708 annotated sentences for
training and 587 for testing. Detailed statistical information
can be seen in Table 10. The similar as Restauarnts14, Lap-
top14, and Restaurants15, the sample number of each class
is unbalanced in Restaurants16. Also, multiple aspects are
given in one sentence and multiple words compose the aspect
in most case. In addition, we present the top-10 aspects and
aspect categories of Restaurants16 in Table 11 and Table 12
respectively.

D. TWITTER
Dong et al. [23] introduced a manually annotated dataset
for target-dependent twitter sentiment analysis. This is
the largest target-dependent twitter sentiment classification
dataset which is annotated manually. The training data has
6,248 tweets, and the testing data consists of 692 tweets with
a sentiment class balance of 25% negative, 50% neutral and
25% positive. As shown in Figure 20, the original corpus has
only annotated one target per tweet. The detailed statistical
information is shown in Table 13. Different from the datasets
mentioned above, one tweet only contains one aspect and
the sample number of each sentiment is relatively balanced,
even though an aspect also usually consists of multiple words.
Furthermore, Table 14 reports the top-10 aspects of dataset
Twitter.

E. OTHERS
1) MITCHELL
Mitchell dataset7 [100] consists of about 30,000 Spanish
tweets and 10,000 English tweets labeled for named entities
(NE) in Begin, Inside, Outside (BIO) encoding as shown
in Figure 21: the start of an NE is labeled with B-NE and

6http://alt.qcri.org/semeval2016/task5/
7http://www.m-mitchell.com/code/index.html
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TABLE 8. The statistical information of SemEval-2015 Task12: Restaurants15. #Samples, #AvgLen, #TermSet, #AvgTermLen, #ATPS represent the number
of samples, the average length of samples, the number of term set, the average length of the term and the average number of terms for each sample
respectively. Neg./Neu./Pos. indicate the number of negative samples, neutral samples, and positive samples.

TABLE 9. The top-10 aspect categories of Restaurants15.

TABLE 10. The statistical information of SemEval-2016 Task5: Restaurants16. #Samples, #AvgLen, #TermSet, #AvgTermLen, #ATPS represent the number
of samples, the average length of samples, the number of term set, the average length of the term and the average number of terms for each sample
respectively. Neg./Neu./Pos. indicate the number of negative samples, neutral samples, and positive samples.

TABLE 11. The top-10 aspect terms of Restaurants16.

the rest of the NE is labeled with I-NE. 7,105 Spanish tweets
contained 9,870 name entities and 2,350 English tweets con-
tained 3,577 name entities after removing retweets. To obtain
sentiment labels (positive, negative, or no sentiment), crowd-
sourcing was used through Amazon’s Mechanical Turk. For
10-fold cross-validation, the English data is divided into
folds. The statistics of English dataset of Mitchell is shown
in Table 15 and the top-10 aspect terms are shown in Table 16.
More details of this dataset are described in [100].

FIGURE 20. The origin format of Twitter.

2) SENTIHOOD
SentiHood [93] is a benchmark dataset that is annotated
for the targeted aspect-based sentiment analysis task in the
domain of urban neighborhoods. It is based on the ques-
tions relating to neighborhoods of the city London, which is
obtained by filtering the text from Yahoo! Answers’ ques-
tion answering platform. SentiHood consists of 5,215 sen-
tences with 3862 sentences containing a single location and
1,353 sentences containing two locations. Figure 22 shows
an example of Sentihood with JSON format. Location entity
names are masked by location1 and location2 in the whole
dataset, so this task does not involve the named entities
identification. The more details of Sentihood is presented by
Saeidi et al. [93].

3) MPQA
MPQA8 [101] contains news articles and other text doc-
uments annotated for opinions and other states (such as
emotions, beliefs, sentiments and speculations.). In MPQA
3.0, the entity-target and event-target (eTarget) annotations
are added. Note that the previous span-based target annota-
tions in MPQA 2.0 are retained in this new corpus, which
are renamed as sTarget (span-based target). In particular,
the current dataset contains 70 documents, which consists
of 1,029 expressive subjective elements (ESEs), 1,287 atti-
tudes, and 1,213 target spans of attitudes from MPQA 2.0.
In addition, 1,366 eTargets are added to the ESEs and
1,608 eTargets are added to the target spans.

8http://mpqa.cs.pitt.edu/corpora/
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TABLE 12. The top-10 aspect categories of Restaurants16.

TABLE 13. The statistical information of dataset Twitter. #Samples, #AvgLen, #TermSet, #AvgTermLen, #ATPS represent the number of samples,
the average length of samples, the number of term set, the average length of the term and the average number of terms for each sample respectively.
Neg./Neu./Pos. indicate the number of negative samples, neutral samples, and positive samples.

TABLE 14. The top-10 aspect terms of Twitter.

V. EVALUATION MEASURES
How to evaluate the model is another important problem in
ASC. In the field of ASC, there are no recognized evaluation
measures. The authors always utilize different evaluation
measures in different papers, making it hard for compari-
son. In this section, we present the public metrics for ASC
in detail. Statistics on the usage of each metric are shown
in Table 17. Some measures that are most-used to compare
and evaluate the classification method mainly include: 1)
Accuracy; 2) Precision and recall; 3) F-measure; 4) Macro
average and micro average. The details of these metrics are
given as follows.

A. ACCURACY
Accuracy is the most basic evaluation measure of classifi-
cation. The evaluation measure accuracy represents the pro-
portion of the correct predictions of the model, it can be
calculated as:

Accuracy =
TP+ TN

TP+ FP+ TN + FN

=
TP+ TN

N
, (27)

FIGURE 21. An example of dataset Mitchell with BIO encoding.

FIGURE 22. An example of dataset Sentihood.

whereN is the total number of testing samples. TP and TN are
true predictions for positive, negative examples respectively,
FP and FN mean false predictions for negative, positive
examples respectively, which are described in Table 18.

VOLUME 7, 2019 78471



J. Zhou et al.: Deep Learning for ASC: Survey, Vision, and Challenges

TABLE 15. The statistical information of dataset Mitchell-en. #Samples, #AvgLen, #TermSet, #AvgTermLen, #ATPS represent the number of samples,
the average length of samples, the number of term set, the average length of the term and the average number of terms for each sample respectively.
Neg./Neu./Pos. indicate the number of negative samples, neutral samples, and positive samples.

TABLE 16. The top-10 aspect terms of Mitchell-en.

Though accuracy can be a good measure of the effec-
tiveness of a classifier in most cases, once the positive and
negative examples are uneven the high accuracy does not nec-
essarily mean good classification performance. Therefore,
precision, recall, and F-measure are to be introduced.

B. PRECISION AND RECALL
Classification effectiveness is usually evaluated in terms of
precision and recall. The precision is the proportion of correct
predictions among all predictions with the positive label,
it indicates how many of the instances that are positively
predicted are true positive instances. The regular precision is
calculated as:

Precision =
TP

TP+ FP
. (28)

The recall is the proportion of correct predictions among all
positive instances, it denotes how many of positive instances
are predicted positively. The regular recall is calculated as:

Recall =
TP

TP+ FN
. (29)

C. F-MEASURE
The metrics precision and recall are a reciprocal relationship.
The purpose of classification is to obtain precision and recall.
F-measure is the harmonic mean of precision and recall,
the traditional F-measure is computed as:

F =
2

1
Recall

+
1

Precision

= 2
Recall × Precision
Recall + Precision

=
2× TP

2× TP+ FP+ FN
, (30)

which is also known as F1 measure since here the weight
of precision and recall is equal. It is also a specific case of

general Fβ .

Fβ =
(
1+ β2

)
·

precision× recall
β2 · precision+ recall

, (31)

where β is a non-negative real value.

D. MACRO AVERAGE AND MICRO AVERAGE
Evaluation measures apart from accuracy mentioned previ-
ously are enough to evaluate the effectiveness of two-class
classification tasks, while ASC is a multi-label classification
problem for there are more than three possible values for sen-
timent polarity. Precision, recall and F1 are aimed at a class
with only local significance. Hence, we need to calculate
precision and recall for each class, then apply corresponding
macro-average and micro-average as final result respectively.

1) MACRO-AVERAGE
The macro-average measures take evaluations of each class
into consideration. The macro precision and macro recall are
computed as:

MacroPrecision =
1
|C|

|C|∑
i=1

TPi
TPi + FNi

=
1
|C|

|C|∑
i=1

Pi, (32)

MacroRecall =
1
|C|

|C|∑
i=1

TPi
TPi + FPi

=
1
|C|

|C|∑
i=1

Ri, (33)

where |C| means the amount of classes, Pi, Ri is correspond-
ing precision, recall of class i respectively. The corresponding
F1 measure, used in [32], [46], is computed as:

Macro− F1 =
2×MacroPrecision×MacroRecall
MacroPrecision+MacroRecall

. (34)

2) MICRO-AVERAGE
Themicro-average evaluationmeasures focus on each sample
of the dataset. The micro precision and micro recall are
computed as:

MicroPrecision =

∑|C|
i=1 TPi∑|C|

i=1 TPi + FNi
, (35)

MicroRecall =

∑|C|
i=1 TPi∑|C|

i=1 TPi + FPi
, (36)
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TABLE 17. The evaluation measures of ASC.

TABLE 18. The contingency table.

The correspondingF1measure of micro-averaging is com-
puted as:

Micro− F1 =
2×MicroPrecision×MicroRecall
MicroPrecision+MicroRecall

. (37)

VI. EXPERIMENT IMPLEMENTATION
In this section, we first describe the datasets and the evalu-
ation measures in Section VI-A. Then, the implementation
details are shown in VI-B. After that, we present the imple-
mented methods in Section VI-C. Finally, the experimental
results and analyses are introduced in Section VI-D.

A. DATASETS AND EVALUATION MEASURES
As shown in Table 19, we statistic the experimental results
of almost all the existing methods. We find that most of the
experimental results of various public metrics (e.g., Accu-
racy, Macro-F1) on the most-used benchmark datasets (e.g.,
Restaurants14, Laptop14, Restaurants15, Restaurants16, and
Twitter) are missing. In addition, unfortunately, some exist-
ing work did not use development dataset. Thus, for better
comprehension of the reported performances, we imple-
ment several classical public state-of-the-art baselines and
release the codes on the website. To be specific, we run
the experiments for most-used benchmark datasets (e.g.,
Restaurants14, Laptop14, Restaurants15, Restaurants16, and
Twitter) with various metrics (e.g., Accuracy, Precision,
Recall, F1, Marco-average and Micro-average). Note that we
use the training set and test set released by the providers
[3]–[5], [23] for a fair comparison. We randomly sample
10% from the original training data as the development data
which is used to tune algorithm parameters. Accuracy and
Macro-Average Precision/Recall/F1, Micro-Average Preci-
sion/Recall/F1, Precision, Recall, F1 are adopted to evaluate
the model performance, which are the primary metrics used
in ASC [36], [47].

B. IMPLEMENTATION DETAILS
In our experiments, we show the details of the configura-
tions and used hyper-parameters in Table 20. In particular,
word embedding vectors are initialized with 300-dimension
GloVe [69] vectors and fine-tuned during the training, which
are the same as [19]. The dimension of hidden state vec-
tors and position embedding are 300 and 100 respectively.
Words out of vocabulary GloVe [69] and weight matrices
are initialized with the uniform distribution U (−0.1, 0.1),
and the biases are initialized to zero. Adam [104] is adopted
as the optimizer. For the multiple-hops models, we set the
hop number to 3 following the previous study [61]. To avoid
overfitting, dropout is used in our training model and we
search the best dropout rate from 0.4 to 0.7 with an increment
of 0.1. We obtain the best hyper-parameter learning rate
and mini-batch size from {0.001, 0.0005} and {4, 8, 16,
32} respectively via grid search. We implement our neural
networks with Pytorch.9 We keep the optimal parameters
based on the best performance on the development set and
the optimal model is used for evaluation in the test set.

C. IMPLEMENTED METHODS
The classical state-of-the-art methods implemented by us are
as follows:

• ContextAvg: the average of the word embeddings is fed
to a softmax layer for sentiment prediction, which was
adopted as a baseline in [19].

• AEContextAvg: the concatenation of the average of the
word embeddings and the average of the aspect vectors
is fed to a softmax layer for sentiment prediction, which
was adopted as a baseline in [19].

• LSTM: the last hidden vector obtained by LSTM
[74] is used for sentence representation and sentiment
prediction.

• GRU: the last hidden vector obtained by GRU [59]
is used for sentence representation and sentiment
prediction.

• BiLSTM: the concatenation of last hidden vectors
obtained by BiLSTM is used for sentence representation
and sentiment prediction.

9https://pytorch.org/
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TABLE 19. The results obtained from the published papers.

• BiGRU: the concatenation of last hidden vectors
obtained by BiGRU is used for sentence representation
and sentiment prediction.

• TD-LSTM: a target-dependent LSTM model which
modeled the preceding and following contexts surround-
ing the target for sentiment classification [26].
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• TC-LSTM: this model extends TD-LSTM by incorpo-
rating a target connection component, which explicitly
utilizes the connections between target word and each
context word when composing the representation of a
sentence. [26].

• AT-LSTM: it uses an LSTM to model the sentence
and a basic attention mechanism is applied for sentence
representation and sentiment prediction. [29].

• AT-GRU: it uses a GRU to model the sentence and a
basic attention mechanism is applied for sentence repre-
sentation and sentiment prediction.

• AT-BiLSTM: it uses a BiLSTM to model the sentence
and a basic attention mechanism is applied for sentence
representation and sentiment prediction.

• AT-BiGRU: it uses a BiGRU to model the sentence
and a basic attention mechanism is applied for sentence
representation and sentiment prediction.

• ATAE-LSTM: the aspect representation is integrated
into attention-based LSTM for sentence representation
and sentiment prediction [29].

• ATAE-GRU: the aspect representation is integrated into
attention-based GRU for sentence representation and
sentiment prediction.

• ATAE-BiLSTM: the aspect representation is integrated
into attention-based BiLSTM for sentence representa-
tion and sentiment prediction.

• ATAE-BiGRU: the aspect representation is integrated
into attention-based BiGRU for sentence representation
and sentiment prediction.

• IAN: the attention mechanisms in the context and aspect
were learned interactively for context and aspect repre-
sentation [38].

• LCRS: it contains three LSTMs, i.e., left-, center- and
right- LSTM, respectively modeling the three parts of a
review (left context, aspect and right context) [43].

• CNN: The sentence representation obtained by
CNN [81] is used for ASC.

• GCAE: it has two separate convolutional layers on the
top of the embedding layer, whose outputs are combined
by gating units [44].

• MemNet: the content and position of the aspect is incor-
porated into a deep memory network [19].

• RAM: a multi-layer architecture where each layer con-
tains an attention-based aggregation of word features
and a GRU cell to learn the sentence representation [49].

• CABASC: two novel attention mechanisms,
namely sentence-level content attention mechanism
and context attention mechanism are introduced
in a memory network to tackle the semantic-mismatch
problem [55].

D. EXPERIMENTAL RESULTS AND ANALYSES
Table 21, Table 22, Table 23, Table 24 and Table 25
report the experimental results of classical state-of-the-art
methods across Restaurants14, Laptop14, Restaurants15,

TABLE 20. The details of the configurations and used hyper-parameters.

Restaurants16 and Twitter respectively. We implement the
typical RNN, attention-based RNN, CNN and memory net-
work based state-of-the-art methods for ASC and evaluate
these models in terms of accuracy, macro-average (Marco-
Precision, Marco-Recall, Marco-F1), micro-average (Mirco-
Precision, Mirco-Recall, Mirco-F1) and precision, recall,
F1 for each class (negative, neutral and positive).

From the tables, the following observations are found:
1) The models taking aspect representation into account
always perform better than the ones without considering
aspect representation. In particular, we find that AECon-
textAvg usually performs better than ContextAvg and TC-
LSTM outperforms basic LSTMmodel in most cases. 2) The
performance of BiRNN is better than the corresponding RNN
model. For example, BiLSTMandBiGRUoutperformLSTM
and GRU respectively. 3) Attention mechanism can improve
the performance of the models effectively. For example, AT-
LSTM and AT-GRU perform better than LSTM and GRU
respectively in most cases. 4) The simple attention-based
BiRNN usually obtains good performance. It is observed that
the performance of the AT-BiLSTM is comparable to the best
results across Restaurants14, Laptop14, Restaurants15, and
Restaurants16. 5) As a state-of-the-art model, IAN always
perform well, which indicates the interactive attention mech-
anism can capture the important information of the aspect
and the sentence effectively. 6) For datasets Restaurants14,
Laptop14, Restaurants15, and Restaurants16, the classes are
unbalanced, especially for the neutral samples, which have
a side effect on the performance of ASC. For example, for
datasets Restaurants15 and Restaurants16, the F1 of the neu-
tral samples is near to 0.0 for most of the models. This prob-
lem largely limits the performance of the existing models.
7) RNN models always outperform CNN models for ASC.
For instance, the performance of GRU is better than CNN
over all five datasets in terms of accuracy.

VII. FUTURE DIRECTIONS AND CHALLENGES
As we can see from our discussion before, the existing work
has established a solid foundation for deep learning based
ASC research. In this section, we will present several promis-
ing future research directions and discuss some of the most
challenging open problems.
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TABLE 21. Experimental results of Restaurants14.

A. PRE-TRAINING FOR ASC
The research on pre-training models has become a research
hotspot recently. Some existing issues need to be studied,

TABLE 22. Experimental results of Laptop14.

such as pre-training on what granularity (e.g., word, sub-
word, character), training in what structure language model
(such as LSTM, Transformer [105], etc.) and how to apply
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TABLE 23. Experimental results of Restaurants15.

pre-trained models to specific tasks (e.g., ASC). Learning
the word embedding via a language model used for specific
tasks has been commonly used, such as Word2Vec [68] and

TABLE 24. Experimental results of Restaurants16.

GloVe [69]. It has almost become the standard for NLP.More-
over, to obtain the context-sensitive representation of words,
some work [106]–[108] has been proposed and obtained
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TABLE 25. Experimental results of Twitter.

great success. Peters et al. [109] trained an LSTM-based
language model on a large number of texts. Recently, Delvin
et al. [110] developed a BERT model, which was based

on the multi-layered transformer mechanism. It predicted
the loss function of the masked words in the sentence and
the next sentence in the pre-trained model. These models
first obtained a context-sensitive representation of the input
text, and then applied this representation to specific tasks.
The results showed that this method has been significantly
improved in grammatical analysis, reading comprehension,
text classification, and other tasks [110]. Existing work [85],
[86], [94] integrated BERT into ASC and obtained signifi-
cant improvements, which showed the effectiveness of pre-
training. Thus, how to quickly find a suitable pre-training
model and automatically select the best application method
for ASC is an interesting and promising research topic.

B. DEEP MULTI-TASK LEARNING FOR ASC
Deep multi-task learning plays a significant role in NLP tasks
that lack sufficient training data. Deep multi-task learning
builds sharing networks and specific network structures at
the output layer for different tasks. It enhances the model
to learn the knowledge and information shared between var-
ious tasks. Among the reviewed studies, several studies [36],
[111] applied multi-task learning to ASC in a deep neural
framework and achieved some improvements over single task
learning. The advantages of adopting deep neural network
based multi-task learning can be summarized as follows: 1)
learning multiple tasks can avoid overfitting by generating
the shared hidden representations; 2) auxiliary task provides
interpretable output for explaining the classification; 3)multi-
task can alleviate the sparsity problem for an implicit data
augmentation provided. It is interesting to extract the aspect
and predict the sentiment jointly. Except for applying auxil-
iary tasks, the deepmulti-task learning for cross-domain ASC
where each specific task aims at predicting classification for
each domain also can be introduced.

C. EXPLAINABLE ASC WITH DEEP LEARNING
A common disadvantage of deep learning is that it is highly
non-interpretable. As such, making explainable ASC with
deep learning seems to be an important task. It is natural
to assume that big and complex neural network models are
just fitting the data with any true understanding. This is
precisely why this direction is both exciting and also cru-
cial. The advantages of applying explainable deep learning
for ASC are two-fold. First, explainable predictions allow
the user to understand the reasons behind the classifications
of the network (i.e. why is the sentiment polarity of the
review/comment positive or negative?). Second, the practi-
tioner can understand the model more via its explain-ability.
It is worth of extracting the opinion words in the sentence
with respect to the given aspect to provide an explanation for
the prediction of deep learning models.

In addition, attention-based neural models play an impor-
tant role in interpretability for ASC since the attentiveweights
provide insights into the model and give explainable results
to the practitioners and users. Given that models are already
able to highlight what contributes to the decision, we believe
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that designing better attentional mechanisms is a promising
direction.

D. COMMONSENSE KNOWLEDGE FOR ASC
How to integrate commonsense knowledge into deep learning
models has become a significant research topic in the field of
NLP, such as question answer [112], [113], machine reading
comprehension [114], [115]. Common sense is the objective
facts that the majority of human understand and accept, such
as ‘‘the Earth is round’’, ‘‘water is liquid ’’, ‘‘the sun rises
from the east’’ and so on. Common sense plays an important
role in machines to make a deeper understanding of natural
language. However, obtaining common sense is a huge chal-
lenge, and it will affect the process of artificial intelligence
once there is a breakthrough. Ma et al. [27] incorporated
commonsense knowledge of sentiment-related concepts into
standard LSTM model for ASC. However, there is no in-
depth study on how to apply commonsense knowledge in the
ASC, there is some work to be paid attention to. For example,
graph neural network (GNN) [116], [117] has obtained great
success in graph embedding recently. Thus, it would be worth
to model the common sense and knowledge through GNN to
take the relationships between the entities and relations into
account.

E. LOW-RESOURCE METHODS FOR ASC
The problem of poor labeled data resources (e.g., ASC
datasets) in NLP is referred to as the low-resource NLP
problem. Apart from enhancing data ability by integrat-
ing domain knowledge (such as dictionaries and rules),
the following strategies are also useful: 1) adding more
manual annotation data via active learning methods, unsuper-
vised and semi-supervised methods to utilize unlabeled data;
2) adopting multi-task learning methods for learning infor-
mation from other tasks, other domains and other languages;
3) introducing transfer learning approaches to take advantage
of other models. Deep transfer learning obtains the high-
level abstract representation that disentangles the difference
between different domains. Existing work [9], [36] showed
the effectiveness of deep learning in capturing the similari-
ties and differences across different domains and generating
better classification on cross-domain platforms. Therefore,
the low-resource approach for ASC is a significant area to be
explored. For instance, it would be interesting to find out what
each layer of neural model learned from the different domains
and which layers to transfer. In addition, for different transfer
tasks, how to determine which tasks and the order of tasks to
transfer is a promising direction.

F. DEEPER NEURAL NETWORKS FOR ASC
From previous studies [47], [55], we found that most existing
deep learning models for ASC consisted of three to four
layers. Going deeper has shown to outperform shallow neu-
ral network models in many tasks [118], [119]. However,
deeper neural networks for ASC is largely unclear. If going
deeper provides good performance, how to train the deep

architecture? If not, what is the reason behind it? Thus, deeper
neural network for ASC is an under-explored area where
more work is expected.

VIII. SUMMARY
Both deep learning and ASC are ongoing hot research topics
in the past decade. A large number of new techniques and
emerging models are proposed for deep learning-based ASC
each year. In this article, we provide an extensive review of
the most notable work up to date on deep learning-based
ASC. In particular, we propose a classification scheme for
organizing and clustering existing publications and highlight
a bunch of influential research prototypes. Then, we discuss
and provide an in-depth analysis about the advantages and
disadvantages of applying deep learning techniques for ASC
tasks. We also collect almost all the benchmark datasets for
researchers to study and implement several classical state-of-
the-art methods for ASC. In addition, we evaluate the effec-
tiveness of these methods on five public standard datasets
with widely used evaluation measures. Finally, we detail
some of the most challenging open problems and promising
future research directions.

Deep learning has achieved good success in the field of
ASC, which will enable multiple application domains (e.g.,
products, economics, biomedicine, healthcare and policies
[6], [10], [120]–[124]) to benefit from the knowledge learned
from ASC. Deep learning will be key for stepping forward
in the development of ASC. However, most of neural models
still learn explicit emotions (e.g., opinionwords) in sentences.
For the implicit emotional expressions such as irony, deep
reasoning, common sense, etc., the recent neural networks
cannot learn them well, which are not difficult for humans.
Furthermore, these models are heavily dependent on the size
of data. Thus, there is still a long way to go in this field with
deep learning. We hope this survey can provide readers with
a comprehensive understanding of the key aspects of deep
learning-basedASC to clarify themost notable advancements
and shed some light on future studies.
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