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ABSTRACT As the volume of data available for analysis grows, feature selection is becoming a vital part
of ensuring accurate classification results. In classification problems, selecting a small number of features
reduces computational complexity, but selecting the right features is important to maintain a high level of
accuracy. In this paper, we present a feature selection method based on hybrid improved quantum-behavior
particle swarm optimization, called HI-BQPSO. The HI-BQPSO combines a filtering method with an
improved quantum-behavior particle swarm optimization algorithm to greatly reduce the dimensionality
of the data so as to overcome some of the shortcomings of BQPSO. Tests were conducted on nine gene
expression datasets and 36 UCI datasets to evaluate and compare the classification accuracy of the HI-
BQPSO’s selected feature subsets against four other algorithms. The results, using a variety of different
classifiers, show that the HI-BQPSO significantly reduces the number of features required for classification
while maintaining higher levels of accuracy in many cases.

INDEX TERMS Feature selection, binary quantum particle swarm optimization, classification, harmonic
average, random heuristic search.

I. INTRODUCTION
To data scientists, big data means big dimensionality and
an enormous number of related, unrelated, and redundant
attributes and relationships [2]. Obviously, such a huge num-
ber of characteristics can affect the performance of data
analysis. For example, training models can take longer,
algorithms are likely to be less efficient, and the resulting
model may be more complex. This phenomenon is known
as ‘‘dimension disaster’’ or ‘‘the curse of dimensionality’’.
Dimensionality reduction is a common method of dealing
with dimensionality challenges, and feature selection or fea-
ture extraction is an obvious approach to reducing dimen-
sionality. The goal of feature selection is to find the best
subset of features from all possible choices [3] to improve
the quality and efficiency of any subsequent data analysis and
help us better understand the characteristics of big data and
its underlying structures.

There are many aspects to consider in feature selection
but, in this paper, we focus on maximizing classification
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performance and minimizing the size of the selected feature
subsets. Our optimization process needs to weigh these two
goals.

The feature selection process generally consists of four
parts: feature subset search, evaluation, search stop criteria,
and validity verification. Feature selection methods can be
roughly divided into three categories based on the evaluation
criteria used: filter, wrapper, and embedded. When catego-
rized according to the search strategy, these methods can be
divided into global optimizations, heuristic searches, and ran-
dom searches [4]. Although global optimal searches usually
produce the best feature subset, they are not widely used
due to their high computational complexity along with some
other factors [5]. Heuristic searches are less computationally
intensive, but it is easy to become trapped in the local optimal
solution [6]. Random searches use a combination of random
features to find the optimal solution of the objective function.

Some methods combine heuristics with a random search,
also known as random heuristic searches. The simu-
lated annealing algorithm (SA) [7], the genetic algorithm
(GA) [8], the ant colony optimization algorithm (AOC) [9],
the artificial bee colony algorithm (ABC) [10], and particle
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swarm optimization (PSO) [11] are among a few examples of
a random heuristic search strategy. Each of these algorithms
require some parameters to be set, and the appropriateness
of the parameter selection plays a key role in the final result.
One reason why the PSO algorithm is so widely used is that
it can converge quickly and not many parameters need to be
adjusted. However, as with all heuristic searches, PSO can
easily become trapped in the local optima.

Hence, in this paper, we propose the hybrid improved
binary quantum particle swarm optimization algorithm, or
HI-BQPSO for short. HI-BQPSO is a multi-objective fea-
ture selection method that reduces the number of features to
be considered while maximizing classification performance.
Our algorithm overcomes the dimension disaster problem by
combining the advantages of filtering and a random heuristic
search.

To validate the effectiveness of HI-BQPSO, we conducted
a series of experiments on gene expression data from the
UCIMachine Learning Repository, along with some compar-
ative evaluations using a variety of different classifiers. The
results demonstrate HI-BQPSO’s efficiency and advantages
and show that our approach generated more accurate clas-
sifications on most datasets using significantly less selected
features than traditional methods.

In summary, the main contributions of this paper are:
• A hybrid filtering method that: greatly reduces the
search space of the heuristic random search algorithm.

• In order to avoid local convergence, the proposed
method improves the calculation of local attractors
in BQPSO and introduces the idea of crossover and
mutation.

• The design of a fitness function using the weighted
average principle, which balances the number of features
selected and classification accuracy.

• The results of an extensive set of simulation experiments
on nine gene expression datasets and 36 UCI datasets,
which prove that the HI-BQPSO algorithm produces
favorable outcomes and more accurate classifications
with most of the datasets using markedly less selected
features than baseline methods.

The rest of this paper is organized as follows. Section II
summarizes the related work. The HI-BQPSO algorithm is
introduced in Section III. Section IV sets out the experimental
procedure. The results are analyzed in Section V, followed by
the conclusion in Section VI.

II. RELATED WORK
There are many studies related to evaluating crite-
ria in feature selection. Traditional evaluation criteria
include Pearson [12], [13], mutual information [14], [15],
and Spearman [16]. The Pearson correlation coefficient is
a statistic used to reflect the degree of linear correlation
between two variables. Mutual information methods measure
how well a feature relates to a category and then choose
the best features through a simple sort according to the

measurement results. The spearman correlation coefficient
is a nonparametric indicator that measures the dependence
of two variables. It uses a monotonic equation to evaluate
the correlation of two statistical variables. More recently,
a new metric has emerged, called the maximum information
coefficient (MIC) [17]. The basic idea is that by drawing
the variables into a scatter plot, using a grid to segment
the space, and then calculating the probability of the scatter
points falling across each grid cell, you can identify a broad
correlation between two variables. Subsequently, MIC has
been introduced into feature selection [18] to measure the
correlation strength between each feature and label.

Other methods take a higher-level approach and try to
determine the best subset of multiple features within the
subset space. Heuristic subset search strategies fall into this
category. Anbarasi et al. [19] used a genetic search fol-
lowed by a classifier to predict the diagnosis of a patient.
Gheyas and Smith [20] proposed a hybrid search algo-
rithm called SAGA, which combines simulated annealing,
a genetic algorithm, a generalized regression neural net-
work, and a greedy search algorithm. In addition, in recent
years, more and more swarm intelligence algorithms are
being combined with feature selection, such as the ant
colony optimization algorithm [21], [22] and the artificial bee
colony algorithm [23]. Notably, Shokouhifar and Sabet [24]
developed a hybrid feature selection method that combines
artificial bee colony optimization techniques with neural
networks.

Particle swarm optimization (PSO) is an optimization algo-
rithm based on swarm intelligence theory, first proposed by
Eberhart and Kennedy in 1995 [25], [26]. Compared with
other evolutionary algorithms (EAs), PSO has several advan-
tages including fewer parameters and ease of use. In addition,
the PSO algorithm has memory, and the best position of the
history of the particle population can be remembered and
passed on to other particles. PSO algorithms are largely used
to solve continuous optimization problems. However, they are
not suitable for discrete optimization problems, which led to
the discrete binary PSO algorithm (BPSO).

Quantum-behaved PSO (QPSO) [27] is another extension
to the classic PSO that integrates some concepts in quantum
physics to update the position of the particles. This algo-
rithm simultaneously considers both the current local and
the global optimal position information of each particle dur-
ing position updates. When QPSO is combined with binary
encoding [28], the resulting BQPSO forms a further PSO
extension for solving discrete problems. Lin et al. [29] further
improved BQPSO by introducing variable parameters and a
multi-point crossover operator for calculating local attractor
coordinates. Xi et al. [30] combined BQPSOwith the support
vector machine (SVM) classifier to study features for gene
selection so as to classify cancers. Behjat et al. [31] proposed
a BQPSO based on a multi-layer perceptron classifier, which
not only reduces data dimensionality but also results in higher
accuracy in spam detection systems.
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TABLE 1. Notations.

III. HI-BQPSO
A. PRELIMINARY
The following notations are used throughout the paper.

Compared to other EAs, the PSO algorithm has the greatest
advantages in terms of its simplicity to implement, fewer
parameters to adjust, and no gradient information. Hence,
it is widely used in function optimization, neural network
training [32], and so on. A great many experiments show that
PSO is able to solve a range of optimization problems that
genetic algorithms can solve. Compared to the standard PSO,
QPSO has more global search capabilities and fewer control
parameters, while BQPSO is an improvement over QPSO for
solving discrete optimization problems.

1) PSO
As mentioned above, Eberhart and Kennedy et al. (1995)
were the first to propose PSO. They did this by simulating the
foraging behavior of birds and, in so doing, found a solution
to continuous function optimization problems. Each bird in
the group is abstracted into a particle with no mass or volume,
where each is considered to be a feasible solution to the
optimization problem. The fitness value of each particle is
calculated by a fitness function that determines the quality
of the particle. The direction and distance of each particle is
controlled by its speed and trajectory. Particles adjust their
trajectory with reference to the best particles, and the optimal
solution is found through successive iterative searches.

In a D-dimensional search space with M particles,
the position of the particle at the t-th iteration is
X ti = (xi1, xi2, . . . , xiD), and the velocity is V t

i =

(vi1, vi2, . . . , viD), where i = 1,2, . . . ,M . In PSO, each par-
ticle records its own best position in the search space so far,

i.e., pbesti = (Pi1,Pi2, . . . ,PiD). The algorithm also records
the best position of each particle so far in global terms,
i.e., gbest =

(
Pg1,Pg2, . . . ,PgD

)
. At each iteration, the PSO

algorithm updates the position and velocity of the particles
according to Eqs. (1) and (2):

vt+1id = w ∗ vtid + c1 ∗ rand ∗ (Pid − x
t
id )

+ c2 ∗ rand ∗ (Pgd − x tid ), (1)

x t+1id = x tid + v
t+1
id , (2)

where d = 1, 2, . . . ,D, D corresponds to the dimension of
the search space, w denotes the predefined constant inertia
weight, and c1 and c2 represent the acceleration constants.
rand is a random number that is uniformly generated in the
interval [0, 1].

2) QPSO
QPSO incorporates the concept of quantum mechanics into
particle evolution, giving rise to a PSO algorithm based on
quantum mechanics. In quantum space, the search for par-
ticles spans the entire feasible solution space, so the global
search performance of the QPSO algorithm is far superior to
the classical PSO. In QPSO, the particles have no velocity or
trajectory. Rather, the definition of the position of the particle
is iteratively updated:

qi = ϕ ∗ pbesti + (1− ϕ) ∗ gbest, (3)

mbest =
1
M

M∑
i=1

pbesti = (
1
M

M∑
i=1

Pi1,

1
M

M∑
i=1

Pi2, . . . ,
1
M

M∑
i=1

PiD), (4)

X t+1i = qi ± β ∗
∣∣mbest − X ti ∣∣ ∗ ln(1u

)
, (5)

where ϕ and u are random numbers uniformly distributed
over [0, 1], and mbest represents the average best position
of all particles in the population. qi = (qi1, qi2, . . . , qiD) is
the local attractor of each particle, which is determined by
the particle’s pbest and gbest . β is the contraction expansion
coefficient. Compared to PSO, fewer parameters need to be
adjusted in the QPSO algorithm.

3) BQPSO
In BQPSO, the position of the particle is defined in binary
terms. Therefore, the distance and position transformation
in BQPSO need to be redefined. Here, a Hamming dis-
tance dH (·) is introduced to express the distance between
two particles. dH (·) represents the number of different bits
between two binary strings. The distance between two parti-
cles X1 and X2 can be represented as

dH (X1,X2) = sum(X1 ⊕ X2), (6)

where ⊕ represents an exclusive OR, and sum(·) denotes the
number of 1s in the binary string after the statistics XOR.
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Because of the different particle encoding methods,
the way that mbest is calculated is also different from the
QPSO algorithm. The value of each dimension in mbest is
determined by calculating the number of 0s or 1s present
in the corresponding bits of all pbest . If the count of 0s is
greater than the count of 1s, the corresponding bit for mbest
is 0. If the opposite were true, the corresponding bit of mbest
would be 1. Further, if the 0 and 1 counts are equal, the cor-
responding bit for mbest should have an equal probability of
being either 0 or 1.

In the BQPSO algorithm, qi = (qi1, qi2, . . . , qiD) is
obtainedwith a crossover operation similar to that of a genetic
algorithm. That is, two children are generated from single or
multiple points of pbesti and gbest , and one child is randomly
selected as the new qi point.

The new position Xi of the particle is derived from the local
attractor qi with a probability of δi:

δi =


b
ld

1
b
ld
> 1,

(7)

b = β ∗ dH (Xid ,mbestd ) ∗ ln(
1
u
), (8)

where ld is the length of the d-th dimension of the particle, β
represents the coefficient of the BQPSO algorithm, and u lies
within [0, 1], b is rounded and applied to Eq. (7), and Xid is
updated as follows:

Xid = Transf (qid , δi), (9)

where the Transf (·) function is described as follows: generate
a random number rand , which is uniformly distributed over
[0,1]. Then, if rand > δi, each bit of qi is inverted, otherwise
the corresponding bit of Xi is equal to qi.

B. METHODOLOGY
Our proposed HI-BQPSO algorithm consists of two parts.
First, we screen the features using a filtering method to obtain
an initial feature subset. We call this step coarse-grained
feature selection. Since the existing correlation calcula-
tion method, the MIC has been proven to be superior to
many other correlation calculationmethods, includingmutual
information (MI), pearson, spearman, maximal correlation
and so on [17]. Therefore, this paper used MIC to calculate
the correlation between features and class labels. The next
step is fine-grained feature selection, after which the initial
feature subset is input into the improved BQPSO algorithm
for optimization resulting in the final optimized feature sub-
set. A classifier is then used to judge the pros and cons of
the feature subset. The framework of the method is shown
in Figure 1.

1) COARSE-GRAINED FEATURE SELECTION
The maximum information coefficient (MIC) is used to cal-
culate the correlation between the features and class labels.

FIGURE 1. Framework of the HI-BQPSO method.

All features are sorted according toMIC’s value. A threshold
is then set, which removes weakly-correlated features and
retains strongly-correlated features. The result is the initial
subset of features.
MIC is described as follows. First, a column of features is

recorded as a vector, and a column of classes is labeled as a
vector. The scalar in a vector of features corresponds to the
scalar in a vector of classes to form a sample s. All samples
are converted into a scatter plot. Then, according to a given Y
row Z column grid, the probability that a scatter point will fall
into a particular cell is P (s ∈ (y ∪ z)), where the probability
that a point will fall into a row is p (s ∈ y), and p (s ∈ z) for
a column. Once these probabilities are calculated, the mutual
information values under the scheme are calculated by

I (s)Y ,Z =
∑
y∈Y

∑
z∈Z

[P (s ∈ (y ∪ z)) ∗ log
p (s ∈ (y ∪ z))

p (s ∈ y) p (s ∈ z)
].

(10)

The mutual information value is then normalized in the inter-
val [0, 1]. To measure the scatter plot with different ranges,
the above steps are repeated with multiple different grids. The
maximum mutual information values obtained from different
grids are then compared, and the largest value is selected as
theMIC . The resolution of the grid is Y ∗ Z < B, where B is
0.6 of the power of the sample size, following [17].

m(s)Y ,Z =
max

{
I (s)Y ,Z

}
log (min {Y ,Z } )

, (11)

MIC (s) = max
Y∗Z<B

{
m(s)Y ,Z

}
. (12)

In order to clearly describe the idea of theMIC , the basic steps
of the process are presented in the following Algorithm 1.

2) FINE-GRAINED FEATURE SELECTION
To enable BQPSO to handle discretization problems with
feature selection, features are defined with a binary number
encoding. Dimension D of a particle’s position is determined
by the total number of features in the initialized feature
subset, with a value of 0 or 1 for each dimension. 0 means
the feature has not been selected, and 1 means it has. For
example, Xi = [1011001] means that the feature subset
contains seven features. There are four 1s, which means that
four features have been selected, and the remaining three have
not.

The local attractor qi in the BQPSO algorithm is generated
from the random intersection of the particle’s pbest and gbest .
However, this means the particles easily fall into the local best
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Algorithm 1 Pseudo-Code for theMIC Algorithm
Input: a column of features, a column of classes
Output:MIC

1 A scatter plot is drawn from these two column vectors ;
2 Given Y, Z, different grids of Y row and Z column are
performed on the scatter plot ;

3 The corresponding mutual information value is
calculated by (10) ;

4 Find the largest mutual information value m and
normalize it by (11) ;

5 Select more different Y, Z, and repeat steps 2-4 ;
6 Find the largest m value according to (12), which is the
MIC ;

7 returnMIC ;

when an optimization problem has multiple optimal extreme
points. Therefore, in HI-BQPSO, we calculate qi using a
comprehensive learning strategy [33], which maintains the
diversity of the population and improves the convergence per-
formance of the algorithm. An overview of the qi calculation
process follows.

First, a learning probability ηi is introduced to determine
whether each dimension in qi is the pbest of the particle itself
or of another particle. A random number rand ∈ [0, 1] is
generated during the learning process. If rand > ηi, the value
of the corresponding bit in qi is its own pbest . Otherwise,
this value needs to be learned from among the pbests of the
other particles. If qi needs to be learned from other particles,
two particles are randomly selected from the population.
The fitness values of the two corresponding pbests are then
calculated, and the better pbest is chosen. qi is then updated
to the chosen pbest . If all values of qi are equal to the value
of the particle’s own pbest , then one dimension is randomly
selected from the pbests of other particles and learned.
One potential drawback of the BQPSO algorithm is that

the particles tend to converge prematurely, i.e., it falls into
the local optimum as the algorithm iterates. To solve this
problem, we have incorporated the idea of crossover and
mutation from genetic algorithms. In each iteration, once all
particles have been updated, a new generation of particles is
produced through crossover. The particles are selected and
mutated when the fitness value of the particles is greater than
the average of the population. The process of this variation is

xid =

{
1− xid rand < ξ

xid otherwise,
(13)

where ξ is the probability of mutation, and rand indicates
a random number, which is evenly distributed over [0, 1].
Crossover and mutation operations are effective at increasing
the diversity of particle swarms. In the later iterations of the
algorithm, they essentially prevent particles from falling into
local extreme points and, therefore, premature convergence.

It is important to design a reasonable fitness function in
HI-BQPSO because the algorithm evaluates the merits of a

particle by calculating its fitness, and an excellent fitness
function helps to improve the algorithm’s convergence per-
formance. Within this design, we must not only consider
the accuracy of the classification, but also the number of
selected features. The purpose of feature selection is to select
a subset of the most representative features from the original
dataset. This feature subset typically contains fewer features
but achieves higher classification accuracy. Based on this
principle, we designed the following fitness function:

fitness =

(
1+ θ2

)
∗ Acc ∗ norm (Fnum)

θ2 ∗ Acc+ norm (Fnum)
, (14)

Acc =

τ∑
j=τ

accj

τ
, (15)

accj =
δj

εj
, (16)

norm (Fnum) = 1−
Fnum
D

, (17)

where τ is the number of classes of the dataset, accj is the
classification accuracy of class j. The data is classified by
the selected features using the support vector machine (SVM)
classifier. δj means the number of samples that are correctly
classified in class j. εj is equivalent to the total number of
samples in class j. Acc represents the average classification
accuracy over all categories. This is mainly due to the impact
of data imbalance on classification accuracy. Fnum is the
number of features selected for each particle, and D is the
dimension of the solution space, that is, the total number of
features after initialization. norm(·) is equivalent to normal-
izing the number of features to be the same as the range of
accuracy.

The design principle behind this fitness function is to use
a weighted harmonic mean of the classification accuracy
rate and the number of features, and adjust the proportions
between the accuracy rate and the number of features by a
weight of θ . The weight θ becomes smaller as the importance
of accuracy increases. At this point, HI-BQPSO has achieved
its purpose, that is, higher classification accuracy with fewer
features.

With the optimized feature subset gbest obtained, all that
is left is to evaluate the feature subset with a classifier using
the test set. A flowchart of the algorithm is shown in Figure 2.

IV. EXPERIMENT
A. DATASET DESCRIPTION
We used the classifier to verify the performance of feature
selection in nine gene expression datasets and 36 benchmark
datasets from the UCI Machine Learning Repository [34],
as shown in Tables 2 and 3. Two gene expression datasets
Colon [35] and Leukaemia [36] were retrieved from the
R/Bioconductor packages colonCA and golubEsets, respec-
tively. Adenoma [37], ALL [38], CNS [39], DLBCL [40],
Lymphoma [41] and Prostate [42] were downloaded from
the Broad Institute Genome Data Analysis Center, which

80592 VOLUME 7, 2019



Q. Wu et al.: Feature Selection Method Based on HI-BQPSO

TABLE 2. Gene expression data.

FIGURE 2. Algorithm flowchart.

is available at http://www.broadinstitute.org/cgi-bin/cancer/
datasets.cgi. A further dataset, Myeloma (accession:
GDS531) [43], was downloaded from the NCBI Gene
Expression Omnibus (GEO) database.

B. EXPERIMENTS PREPARATION
This section focusses on the parameter θ in the fitness
function.

1) PARAMETER SETTINGS
To verify the performance of the algorithm, we conducted
MATLAB simulation experiments. The initial feature subset
size for the gene expression datasets was set to 100; the
maximum iterations Tmax to 100; and the population number
was set to

popsize = round(12+
√
2 ∗ D), (18)

whereD is the dimension of particles, i.e., the number of fea-
tures, and the round(·) function is the rounding operation [1].
The learning probability ηi was set to 0.5. The coefficient β

Algorithm 2 Pseudo-Code for the HI-BQPSO Algorithm
Input: dataset, population size popsize
Output: global best position gbest

1 calculate the correlation between each feature and class
label based onMIC ;

2 feature ranking and filtering ;
3 generate an initial feature subset ;
4 Initialize D, Xi and pbesti ;
5 whileMaximum iterations is not reached do
6 for i = 1 to popsize do
7 if f (Xi) < f (pbesti) then
8 pbesti← Xi ;
9 f (pbesti)← f (Xi) ;
10 end
11 end
12 update gbest ;
13 update mbest ;
14 for i = 1 to popsize do
15 compute qi by comprehensive learning strategy ;
16 compute δi by (7) ;
17 update Xi by (9) ;
18 end
19 crossover and mutation operations for particles ;
20 end
21 return gbest ;

of the improved BQPSO algorithm was updated according to
the following formula:

β = (0.8− 0.6) ∗
Tmax − t
Tmax

+ 0.6, (19)

where t is the current number of iterations [29]. The results
from the gene expression datasets were obtained from
50 independent runs, with 80% as the training set and
20% as the test set [44]. The results from the UCI datasets
were obtained from 100 independent runs, 90% of which
were used as the training set and 10% as the test set [45].
In each independent run, the training and test sets were
re-classified by category. All algorithms were performed on
the same training datasets and evaluated on the same test data.
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FIGURE 3. A histogram comparing the number of features from HI-BQPSO with the other algorithms on the gene expression data.

TABLE 3. UCI data.

The optimal feature subset was generated once the algorithm
completed, then the accuracy of the classification was evalu-
ated on the test dataset. The average accuracy is reported for
comparison.

2) EXPERIMENTAL RESULTS ON PARAMETER θ
As previously mentioned, the weight θ in the fitness func-
tion is used to measure the accuracy and the quantity of
features and needs to be tuned to find a suitable value.

The results shown in Table 13 reflect different values
of this control parameter at θ = [0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1, 2, 4, 6, 8]. Bold denotes the highest
accuracy for the corresponding dataset. Through sufficient
experimental data testing, we set θ to 0.3 for the subsequent
experiments. A more detailed discussion on tunning this
parameter is included in Section V-C.

C. EVALUATION CRITERION
We used several performance metrics to evaluate the selected
algorithms. These were average accuracy (ACC), the number
of features selected (NUM-feature), F1-scores (F1), Fried-
man test and two-tailed t-test. The methods for calculating
precision (P), recall (R), and F1 from the confusion matrix
are shown below.
XXXXXXXXXXLabel

Predict
Positive Negative

Positive TP FN

Negative FP TN

P =
TP

TP+ FP
, R =

TP
TP+ FN

, (20)

F1 =
2 ∗ P ∗ R
P+ R

, (21)

where the following rules apply:
TP (True Positive): positive samples were judged as positive;
TN (True Negative): negative samples were judged as
negative;
FP (False Positive): negative samples were judged as posi-
tive;
FN (False Negative): positive samples were judged as
negative.

The gene expression datasets are binary classification data
and were evaluated using ACC, F1 and Friedman test. The
UCI datasets include multivariate classification data and
were evaluated using average classification accuracy and
two-tailed t-test, as will be explained in detail below.

V. RESULTS AND DISCUSSION
A. GENE EXPRESSION DATA LEARNING TASKS
We first test the performance of the proposed method on
nine gene expression data sets. In order to demonstrate the
performance of the proposed method, compared to ABC,
SA, GA, BQPSO and ACO, our experiments will first
report the performance of six methods with respect to clas-
sification accuracy (ACC) measured by the support vector
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FIGURE 4. A histogram comparing the number of features from HI-BQPSO with the other algorithms on the UCI data.

TABLE 4. HI-BQPSO/baseline comparison with the SVM classifier and the gene expression data.

machine (SVM) classifier, corresponding F1-score, and the
number of features. Finally, we compare related algorithms
via Friedman test with α = 0.05, 95% confidence. Based
on the statistical theory, the difference is statistically sig-
nificant only if the probability of significant difference is
at least the critical value, a more detailed discussion is
included in Section V-A2. Our experimental results indi-
cate that the proposed method has very significant gain
compared to other methods on the above three evaluation
criteria.

1) PERFORMANCE
The results for efficiency are shown in Table 4. The optimal
feature subsets for all these algorithms were compared in
terms of ACC and the F1. We used nine gene expression
datasets, all of which comprised dichotomous and unbalanced
data. Therefore, F1 is a suitable metric because it considers
both the accuracy and the recall rate of the classification
model.

With the SVM classifier, the HI-BQPSO algorithm out-
performed the other algorithms on seven of the nine gene
expression datasets in terms of both ACC and F1. Further,
the results demonstrate that HI-BQPSO was not affected by

data imbalances.With the remaining two datasets, HI-BQPSO
ranked third on Lym and second on Mye.

TABLE 5. HI-BQPSO/baseline comparison with the gene expression data
(number of features).

In addition to comparing classification performance,
we also compared the size of the optimal feature subset for
each algorithm. The results of these experiments are shown
in Table 5, which demonstrate that HI-BQPSO performed
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TABLE 6. The Friedman test results of three evaluation indicators on the
gene expression data.

significantly better on eight of the nine gene expression
datasets with half and even a third fewer features than the
other algorithms. ABC on the CNS dataset was the only com-
parator to outperform HI-BQPSO. The advantages of select-
ing fewer features are apparent in Figure 3. The smaller the
number of features obtained by feature selection, the smaller
the amount of computation for subsequent data processing
and the smaller the storage capacity.

2) DISCUSSION
In order to perform a comprehensive comparison of the
proposed method and the other algorithms, Friedman test
method [46], [47] is used to measure the statistical signifi-
cance of each evaluation index. Statistics offers more power-
ful procedures to test the significance of differences between
multiple methods. The Friedman test is a non-parametric test
for measuring statistical differences between different meth-
ods by ranking each algorithm. For each subset of functions,
multiple methods are ranked according to different evaluation
indicators. In case some methods have the same performance
value, the same rank is assigned to them. The Friedman
estimator is defined as:

FF =
(NB − 1)X2

f

NB (NM − 1)− X2
f

, (22)

where NB and NM are the number of datasets and the number
of methods, respectively, and X2

f defined is as follows:

X2
f =

12NB
NM (NM + 1)

NM∑
j=1

Rj −
NM (NM + 1)2

4

 , (23)

where Rj is the ranking of each method. FF follows a Fisher
distribution with NM − 1 and (NM − 1)(NB − 1) degrees of
freedom. In the experiments, the critical value of the Fisher
distribution is set to α = 0.05, 95% confidence.
In this paper, the Friedman test is applied to different

evaluation indicators of multiple methods, and the results are
shown in Table 6. Six of the methods, NM = 6, 9 datasets,
NB = 9, degrees of freedom of 5 and 40 (i.e. NM − 1 = 5,
(NM − 1)(NB − 1) = 40), get Fisher distribution F(5,40) =
2.45 critical value. The results show that for the three indica-
tors of accuracy, F1-score and feature subset size, the value of
FF is greater than the critical value of 2.45. This means that
all evaluation indicators reject the null hypothesis. Therefore,
it can be concluded that the results of the above three indica-
tors are statistically significant.

TABLE 7. HI-BQPSO/baseline comparison with the SVM classifier and the
UCI data (ACC %).

B. UCI BENCHMARK LEARNING TASKS
In this part of experiment, we report the performance of
the proposed method for UCI benchmark learning tasks.
The UCI dataset is a standard test dataset for common
machine learning and data mining. In addition, we compare
the proposed algorithm with ABC, SA, GA and BQPSO.
Finally, we compare the related algorithms by a two-tailed
t-test.

1) PERFORMANCE
The results of the experiments conducted on the 36 UCI
datasets are listed in Table 7. The classification results are
reported in terms of ACC with an SVM classifier. The last
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TABLE 8. HI-BQPSO/baseline comparison with the UCI data (number of
features).

column shows the ACC for HI-BQPSO. Bold indicates the
highest score. For 17 of the 36 UCI datasets, HI-BQPSO
demonstrated the best performance.

In addition, Table 11 illustrate the compared results of
two-tailed t-test, where each entry w/t/l means a one-on-one
comparison between each of the four algorithms [48], [49].
The value sets represent win (w), tie (t), and loss (l), respec-
tively, and the values themselves represent the number of
datasets. Win means the number of datasets where the col-
umn algorithm performed better than the row algorithm.
Tie indicates the two algorithms performed equally well.

TABLE 9. HI-BQPSO/baseline comparison with the MNB classifier and
the UCI data (ACC %).

Loss means the column algorithm did not perform as well
as the row algorithm.

The size of the optimal feature subset produced by
the algorithms is also an important factor to consider.
The results of this criteria are shown in Table 8.
HI-BQPSO produced subsets with significantly fewer fea-
tures with 32 of the 36 datasets and ranked second on
the remaining four. The advantage of a smaller num-
ber of features is more clearly shown in the histogram
in Figure 4.
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TABLE 10. HI-BQPSO/baseline comparison with the KNN classifier and
the UCI data (ACC %).

2) DISCUSSION
We also compared the optimal feature subsets for all
algorithms using different classifiers on the UCI datasets.
However, unlike gene expression datasets, the UCI datasets
contain both binary and multi-class data, so we chose a mul-
ticlass naive Bayes model (MNB) classifier and a K-nearest
neighbor (KNN) classifier.

Table 9 shows the results as evaluated by the MNB clas-
sifier from MATLAB. HI-BQPSO shows the highest ACC
with 17 of the 36 UCI datasets and in some cases signifi-
cantly better. For example, on the ozone dataset, HI-BQPSO’s

TABLE 11. Two-tailed t-test for classification accuracy (ACC) of different
classifiers.

ACC was 24% higher than the next best algorithm with
10 times fewer features. On the Acu-I and Echo datasets,
HI-BQPSO’s ACC was comparable to the other algorithms.
Similarly, the results in Table 10 using the KNN classifier,
showHI-BQPSO had the highest ACC for 19 of the datasets –
far more than the comparators. Notably, MATLAB’s MNB
classifier returned eight invalid datasets among the 36. Error
reports show that these datasets have zero variance, namely,
the classifier could not classify the samples given the features
in the subset.

Table 11 shows the results of the one-on-one compar-
isons of the five algorithms. According to the t-test results
in Tables 11, some detailed explanations can be discussed
as follows: In SVM, HI-BQPSO is superior to the other
four comparison methods, (23 wins and 11 losses) compared
with ABC, (19 wins and 15 losses) compared with SA,
(19 wins and 14 losses) compared with GA, (17 wins and
15 losses) compared with BQPSO. In the other two clas-
sifiers, HI-BQPSO always keep more winning than losing
compared with the other four algorithms. Especially in the
MNB classifier, the winning ratio of HI-BQPSO is signifi-
cantly higher than that of the other four comparison methods.
Specifically, (23 wins and 2 losses) compared with ABC,
(18 wins and 8 losses) compared with SA, (18 wins and
7 losses) comparedwith GA, (19wins and 6 losses) compared
with BQPSO.

In summary, HI-BQPSO had the highest ACC on six
datasets with three classifiers, 11 datasets with two classifiers
and 16 datasets with one classifier.

C. DISCUSSION OF PARAMETER θ

Our novel fitness function can be defined as the harmonic
average value of the classification accuracy and the number
of features. However, in some cases, higher classification
accuracy may be more important to the task at hand. These
situations are simply addressed by adjusting the value of θ to
less than 1. Conversely, if reducing the number of features is
more important, the value of θ should be adjusted to greater
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TABLE 12. Comparison of different parameter values for θ in HI-BQPSO with the SVM classifier (ACC %).

TABLE 13. Comparison of parameter θ set to 0.3, 0.1, and 1 in HI-BQPSO
with the SVM classifier (ACC %).

than 1. Our purpose with the above set of experiments was to
reduce the number of features somewhat while ensuring that
a high level of accuracy was maintained. Therefore, the value
we chose for θ was mostly based on classification accuracy.

However, to assess the impact of θ , we conducted a set
of experiments with 14 different values of θ , as shown
in Table 12. Bold indicates the maximum SVM classification
accuracy for each dataset. Among these, the three values 0.1,
0.3, and 1 count the most datasets, which represents the best
accuracy across all the datasets. To choose between the three
values, we analyzed the results for just these three values,
as shown in Table 13. θ with a value of 0.3 produced the
highest accuracy on five of the datasets, while 0.1 and 1 only
returned the highest accuracy on three datasets. Thus, we set
θ to 0.3 for the experiments with this suite of datasets.

VI. CONCLUSIONS
In this paper, we proposed a feature selection method called
hybrid improved binary quantum particle swarm optimiza-
tion (HI-BQPSO). The first step of the method is to filter
out some of the features to reduce the dimensionality of
high-order datasets. And then improve the BQPSO algo-

rithm to optimizes the remaining feature subsets to further
reduce the number of features. The complete learning strategy
and the principles of cross-variation we used to improve
the BQPSO algorithm are set out in detail, along with our
design for a novel fitness function, which includes three
parameters: the classification accuracy of the feature subset,
the distribution of data samples, and the number of features.
To evaluate the effectiveness and robustness of HI-BQPSO
compared to other swarm intelligence algorithms, we con-
ducted experiments with nine gene expression datasets and
36 UCI datasets using several different classifiers. The results
show that HI-BQPSO has good overall performance, strong
searchability, and was able to maintain high efficiency with a
range of different classifiers.
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