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ABSTRACT The nonlinearity of light emitting diodes (LED) has restricted the bit error rate (BER) perfor-
mance of visible light communications (VLC). In this paper, we propose model-driven deep learning (DL)
approach using an autoencoder (AE) network to mitigate the LED nonlinearity for orthogonal frequency
division multiplexing (OFDM)-based VLC systems. Different from the conventional fully data-driven AE,
the communication domain knowledge is well incorporated in the proposed scheme for the design of network
architecture and training cost function. First, a deep neural network (DNN) combined with discrete Fourier
transform spreading (DFT-S) is adopted at the transmitter to map the binary data into complex I-Q symbols
for each OFDM subcarrier. Then, at the receiver, we divide the symbol demapping module into two subnets
in terms of nonlinearity compensation and signal detection, where each subnet is comprised of a DNN.
Finally, both the autocorrelation of the learned mapping symbols and the mean square error of demapping
symbols are taken into account simultaneously by the cost function for network training. With this approach,
the LED nonlinearity and the interference introduced by the multipath channel can be effectively mitigated.
The simulation results show that the proposed scheme exhibits better BER performance than some existing
methods and further accelerates the training speed, which demonstrates the prospective and validity of DL
in the VLC system.

INDEX TERMS Deep learning, visible light communication, LED nonlinearity, orthogonal frequency
division multiplexing.

I. INTRODUCTION
Visible light communication (VLC) has been regarded as
one promising green technology for high speed indoor
wireless accessing [1] since it can provide worldwide license-
free bandwidth and high signal-to-noise ratio (SNR) [2].
With the architecture of low-cost intensity modulation and
direct detection (IM/DD) in VLC, the data carrying inten-
sity waveform is usually modulated onto the light emitting
diodes (LED) at the transmitter and detected directly by pho-
todetector (PD) at the receiver. Recently, optical orthogonal
frequency division multiplexing (O-OFDM) has been widely
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employed in VLC system due to its high spectral efficiency
and resistance to inter symbol interference (ISI) resulting
from the optical diffuse channel [3]. However, the OFDM
is characterized by high peak-to-average power ratio (PAPR)
thus its performance is more susceptible to the LED nonlin-
earity, i.e., the characteristics between output optical power
and input current [4]. As the LED is driven by the OFDM
signal with high PAPR, a large number of nonlinear distor-
tions will be consequently produced [5]. Therefore, the LED
nonlinearity should be mitigated so as to improve the trans-
mission quality.

PAPR reduction is one of valid solutions for LED nonlin-
earity mitigation. Several PAPR reduction schemes have been
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proposed in [6]–[13]. Amplitude clipping and filtering [7] is
the simplest approach and is favorable to the PAPR reduction
in OFDM-based VLC systems since it distorts the peaks of
transmitting signal to a desired value deliberately. However,
clipping noise is produced and the bit error rate (BER) perfor-
mance will be further deteriorated. Selective mapping (SLM)
and partial transmit sequence (PTS) are signal scrambling
techniques [8]–[10] which can statistically improve the PAPR
distributions without any signal distortions. The key idea of
signal scrambling is that several independent candidate vec-
tors are first generated and the one with the minimum PAPR
is selected for transmission. Nevertheless, exhaustive search
has to be performed to find out the optimum phase factors,
and the side information must be known by the receiver
to reconstruct the transmitted data. Tone reservation and
injection are also traditional methods to deal with the PAPR
problem [11]; however it is troublesome to choose the opti-
mal subset with large number of subcarriers. Unitary matrix
transformations, such as discrete Fourier transform spreading
(DFT-S) [12] and Hadamard precoding [13], can lower the
PAPR of OFDM signals without causing any distortions.
Nevertheless, the unitary matrix transformation is sensitive
to LED nonlinearity, thus a robust equalizer should be usu-
ally performed before the inverse transformation module to
reduce the ISI.

Pre-distorter [14], [15] and post-distorter [16]–[19] can
be deployed for nonlinearity compensation (NC) at trans-
mitter and receiver, respectively. In [14], a digital pre-
distortion (DPD) based on the Taylor expansion model is
employed in VLC system. With a priori information of
LED transfer function, a time domain DPD is devised
in [15] to compensate the distorted OFDM symbols. How-
ever, the memory nonlinearity effect of LED is not taken
into account. In fact, the carrier-density response of LED
is dependent on the frequency components of the driving
current. As the bandwidth of modulated signal increased,
more profound memory effect is exhibited in LED [16].
The well-known memory polynomial (MP) and generalized
MP are traditional but still popular models for DPD [17].
Nevertheless, only the diagonal kernels are employed in MP
which are insufficient to characterize the memory behavior
of LED. Recent investigations experimentally demonstrate
that the memory nonlinearity of LED can be well described
by using the full Volterra series (VS) and its simplified
variants [20]. Various VS pre-distortion and post-distortion
have been proposed in VLC system. However, due to the
inherent structure of VS, large number of coefficients have
to be used and the structure complexity is higher than the
conventional linear compensator. In addition, the reproducing
kernel Hilbert space [19] based on minimum symbol error
rate criterion can be also used for devising the adaptive post-
distorter. But it requires huge storage and has high polynomial
computational complexity, just like the problem encountered
by the VS schemes.

Deep learning (DL) [21], which is a kind of machine
learning approach based on the neural network (NN),

has recently regained tremendous since it has achieved
the breaking through performance in computer vision,
natural language processing and automatic speech recog-
nition. What’s more, DL has also been introduced into
the wireless physical layer communications. A comprehen-
sive introduction and overview of DL for physical layer
communications can be found in [22]–[24]. For instance,
the convolution NN [24] is proposed for radio modulation
recognition and it achieves competitive accuracy over the
conventional methods which are relied on expert features.
Channel encoding and decoding using different DL architec-
tures were investigated in [25]–[27], such as high-density
parity check codes with fully connected (FC) deep neu-
ral network (DNN) decoder [25], linear block codes with
recurrent NN decoder [26] and polar codes with partitioned
NN [27]. In [28], a five-layer FC-DNN with an end-to-end
learning manner is deployed in OFDM receiver for channel
estimation and symbol detection. The results demonstrate that
the FC-DNN has the ability to learn the characteristics of
wireless channels and then corrects both the channel distor-
tion and interference automatically. In [29], a model-driven
DL receiver, which constructs the network topology based on
expert knowledge, is proposed in OFDM system to recover
the transmitting data. Simulation results indicate that the
model-driven DL receiver [29] offers more accurate channel
estimation and higher data recovery accuracy when compar-
ing with the existing methods and FC-DNN. Besides, it also
exhibits relatively faster convergence speed, which is mainly
benefited from the expert knowledge involved in DL scheme.
In [30], the whole communication link can be also repre-
sented by the concept of autoencoder (AE), and simulation
results imply that the joint optimization of transmitter and
receiver over a physical channel could be achieved by an end-
to-end learning. Motivated by the mind in [30], a novel PAPR
reduction scheme using an AE is proposed in OFDM sys-
tem [31] to jointlyminimize the PAPR andBER performance.
However, the application scenarios in [30] and [31] focus
on radio frequency (RF) systems, which may not achieve
better performancewhen extended to OFDM-basedVLC sys-
tems. In addition, an AE-based transceiver for multi-colored
VLC system is developed in [32] to deal with the color
crosstalk.

Inspired by the approaches in [28]–[32], in this paper,
we formulated the LED nonlinearity mitigation problems as
a DL task, and proposed an AE-based nonlinearity mitiga-
tion scheme, abbreviated as NC-net, for the OFDM-based
VLC systems. The key idea is that the constellation mapping
and signal detection module in OFDM are represented by
a model-driven AE network. With an efficient learning and
end-to-end performance optimization, the proposed NC-net
can capture the system imperfections and then mitigate
the nonlinearity from the received symbols automatically.
In addition, the high PAPR of OFDM signals is also reduced
since the training procedure jointly optimizes the overall
NC-net. The main contributions of this paper are summarized
as follows:
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• To augment the signal processing ability, the expert
knowledge of conventional communication systems,
in terms of rigorous mathematical models, is well
incorporated in designing the AE architecture and
the loss function, which is the main difference com-
pared with the scheme in [31], [32]. Accordingly, it is
favorable for reducing the network complexity and
accelerating the training phase.

• We considered the memory effect of LED in an
IM/DD channel, and applied the deep AE network to
OFDM-based VLC system. However, in most litera-
tures [29]–[32], the linear channel is considered and
the nonlinear impairments, especially the memory effect
of actual devices, are neglected for applications of DL
technology.

• We investigated the impact of both regularization
parameter and training SNR on network training from
the aspect of PAPR reduction and BER performance
improvement.

• After the network was trained with an elaborate
loss function, the proposed scheme can address the
LED memory nonlinearity and recover the transmitted
symbols directly.

Furthermore, simulation results show that the proposed
NC-net demonstrated better overall performances than some
competing methods.

The remaining of the paper is organized as follows.
In Section II, we give the preliminaries in terms of the
PAPR performance of OFDM, the nonlinearity of IM/DD
channel and the AE application for communication system.
In Section III, the detailed structure of the proposed NC-net
is presented and then the well-designed loss function is used
to train the network. Section IV presents the results and
discussions. Section V concludes the paper finally.
Notations: Matrices are denoted by upper boldface letters

(e.g., F ). x (n) denotes the (n+ 1)th element of the col-
umn vector x. Also, aSl accounts for the parameter of a in
l-th layer of S network. In addition, < {·}, E {·}, (·)T , (·)∗,
| · | and Z (·) are employed to represent the real, the math-
ematical expectation, the transpose, the complex conjugate,
the absolute and symmetric conjugate operators, respectively.
Let ‖ · ‖p denotes the `p-norm andN

(
µ, σ 2

)
is the Gaussian

distribution with mean µ and variance σ 2. We use â to
represent the estimation of a.

II. PRELIMINARIES
A. VLC SYSTEM
The basic block diagram of OFDM-based VLC system is
shown in Fig. 1. A direct current (DC) is applied to the bipolar
basedband O-OFDM signal x (n) to shift the negative part to
positive region, and the biased electrical signal modulates the
power intensity of the optical signal of LED. After an optical
link transmission, the optical intensity is captured by a PD
with direct detection. Then, the converted electrical signal is
delivered to the OFDM demodulator for data recovery. It is
worth noting that a multi-path optical link and ambient noise

FIGURE 1. Block diagrams of O-OFDM-based VLC transceiver.

are also involved for an IM/DD channel. In VLC systems,
the nonlinearity is mainly introduced by the LED, as driven
by signals with high PAPR and high bandwidth. Besides,
the PD is also a nonlinear device as the luminous intensity
is large at the receiver. However, with the help of optical
attenuator, the photocurrent of PD is directly proportional to
the instantaneous optical power and its nonlinearity is not
considered.

B. PAPR OF OFDM
Different with the RF-OFDM, the O-OFDMmodulation gen-
erates only real-value signals after inverse fast Fourier trans-
form (IFFT). In order to achieve real-valued time domain
signals, the input frequency-domain symbol should fulfill
Hermitian symmetry [7] and the IFFT size must be at
least twice the subcarrier number. It is assumed that X =
[X (0) ,X (1) , · · · ,X (N − 1)]T is the symbol vector, then,
the O-OFDM signal can be generated by

x (n) =
1
√
2N

2N−1∑
k=0

<

{
C (k) exp

(
j2πnk
2N

)}
, (1)

C =
[
XT , (Z (X))T

]T
, (2)

where N is the total subcarrier number, and n = 0, · · · ,
2N − 1. The original X follows the Hermitian symmetry
in (2). In order to eliminate the ISI, a certain length of cyclic
prefix (CP) is inserted before the original x. Since X to be
statistically independent and identically distributed, the x fol-
lows Gaussian distributionN

(
0, σ 2

x
)
for sufficiently large N

according to the central limit theorem.
Consequently, the PAPR of x can be defined as

ϒd =

max
0≤n≤2N−1

{
|x (n) |2

}
E
{
|x (n) |2

} =

max
0≤n≤2N−1

{
|x (n) |2

}
σ 2
x

. (3)

Let Pr (·) denotes the probability and ϒ0 is the threshold,
we can obtain

Pr

(
|x (n)|2

σ 2
x
≤ ϒ0

)
≈ erf

(√
ϒ0

2

)
, (4)

where erf (ψ) = 2/
√
π
∫ ψ
0 exp

(
−t2

)
dt . The complemen-

tary cumulative distribution function (CCDF), which denotes
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FIGURE 2. Static transfer function of a LED.

the probability of the PAPR that exceeds a given threshold
during one OFDM symbol, is usually used to measure the
distribution of the peak signals. Thus, the CCDF can be
calculated by

CCDF = Pr (ϒd > ϒ0) = 1− erf2N
(√

ϒ0

2

)
. (5)

C. NONLINEAR IM/DD CHANNEL
An IM/DD channel of VLC systems should take into account
the realistic effect of LED, optical wireless link and PD.
In general, the LED nonlinearity primarily stems from the
electrical-to-optical (E/O) conversation. Fig. 2 demonstrates
the normalized static transfer function of a commercially
available LED (Cree PLCC4) with different driving current,
where the inputs and outputs are normalized by their max-
imum values, respectively. It can be clearly seen from the
figure that the LED shapes the input driving current with
strong nonlinear behavior. Meanwhile, the significant mem-
ory effect of LED is also arisen as the bandwidth of the
injected current increased [20]. Although these frequency
dependent nonlinearity could be represented by Volterra
series in frequency domain or time domain, the Volterra
structure is very complex and the number of coefficients
increases exponentially with the raise of nonlinearity degree
and memory length, leading to its impractical application for
system simulations.

For simplicity, the Wiener model, which is a cascade of
linear time-invariant (LTI) block and memoryless nonlinear-
ity (NL) block, is used in many literatures [18] to characterize
the LED behavior. For a Wiener model, the first LTI block
employed a low-pass finite impulse response (FIR) filter
to describe the memory effect in LED, and the second NL
block represented the static transfer function of E/O conver-
sation. In this paper, the impulse response of the LTI block is
modeled by

hLTI (n) = exp (−2πnf3dB) , (6)

where f3dB is the normalized 3-dB cutoff frequency. The
transfer function of NL block is modeled based on the mea-
surements in Fig. 2, expressed as

hNI (x) = −0.8940x2 + 1.9472x − 0.0628. (7)

In addition to the nonlinearity of LED, the multipath
propagation environment should be also considered in the
IM/DD channel. Here, we employed a ray-tracing-based
approach [33] to get close to the realistic multipath propa-
gation in VLC channel. After the calculations of the detected
power and path lengths from source to detector for each ray,
the channel impulse response can be expressed by

hVLC (n) =
Nr∑
i=1

Piδ (n− τi), (8)

where Nr is the number of received rays at the PD, δ (n) is the
Dirac function, Pi and τi denote the optical power and prop-
agation time of the i-th ray, respectively. Here, we consider
the PD as a Dirac channel thus the corresponding impulse
response can be presented by

hPD (n) = RPDδ (n) , (9)

where RPD is the responsitivity. The dominant ambient noise
ε in an IM/DD channel includes shot noise and thermal
noise of the PD, which can be modeled as additive white
Gaussian noise (AWGN) with the variance of σ 2

ε . Therefore,
the effective outputs of IM/DD channel can be expressed by
follows

y = hNI {x⊗ hLTI } ⊗ hVLC ⊗ hPD + ε, (10)

where ⊗ denotes the convolution operation. In general,
the nonlinear distortions in IM/DD channel can be solved
independently by deploying the PAPR reduction block at
transmitter or the NC block at receiver, but the global optimal
performance of the entire transmission link still cannot be
guaranteed by suboptimization for each module. Therefore,
it hold promise for the overall performance improvement in
VLC system if the suboptimization of the aforementioned two
blocks were replaced by optimizing the end-to-end perfor-
mance.

D. AE FOR COMMUNICATION SYSTEM
A typical structure of an AE is illustrated in Fig. 3, which
contains an input layer, a hidden layer and an output layer.
In addition, multiple dense layers or other network architec-
ture, such as recurrent NN, can be also deployed as long
as the encoder and decoder could handle the whole data
sequencewith deeper learning compatibility. As shown in this
figure, AE is a special type of DNN that is used to learn a
compressed representation form of input data t, and trained
with an unsupervised DL algorithm to produce the same
values t̂ as t at the output layer. Therefore, the target output
of the AE is the input itself. As we known, the main goal of
the communication is to reconstruct the transmitted messages
at the receiver sides, which can be recast as an end-to-end
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FIGURE 3. A simple AE consisting of an input layer, a hidden layer and an
output layer.

reconstruction optimization task. Since the AE is trained to
copy its input to its output, therefore, the AE could represent
the entire communication link and optimize the transmitter
and receiver jointly over the actual physical channel.

From a DL point of view, the transmitter and receiver
of OFDM system can be interpreted as a particular of
AE. Examples of AE-based OFDM system were discussed
in [30]–[32], where the modules of I-Q symbols mapping
and demapping in OFDM system are replaced by a single AE.
In those schemes, both the encoder and decoder are consisted
of a straightforwardDNN. Through aDLmethod, the constel-
lation mapping and demapping on each subcarrier are learned
with the objective training function. However, the hardware
impairments and expert knowledge of practical communica-
tion system are not well considered, which indicates that the

aforementioned AE structure cannot be directly used in VLC
system, especially involving the LEDwith memory nonlinear
scenario. If we explored appropriate AE schemes to learn
the effective data codings from the nonlinear contaminated
signals, the LED nonlinearity would be well mitigated and
the transmitted messages could be recovered correctly.

III. PROPOSED SCHEME
In this section, a model-driven AE, abbreviated as NC-net,
is applied to the OFDM-based VLC system to optimize
the end-to-end performance. The structure of the proposed
NC-net, which embeds the encoder and decoder to a conven-
tional OFDM system and incorporates the communication
expert knowledge, is firstly analyzed. Then, the aperiodic
autocorrelation of the learned I-Q samples is explored and
introduced into the loss function for network training. After
that, we train the proposed NC-net with piecewise constant
learning rate for accelerating the training phase. In what
follows, we assumed synchronization is perfectly obtained at
the receiver.

A. SYSTEM ARCHITECTURE
A brief illustration of the proposed NC-net for VLC sys-
tem is depicted in Fig. 4. Compared with the conventional
OFDM, the encoder which contains one subnet S1 and one
DFT-spread module is employed at the transmitter to map
the input bits into the I-Q constellations, and the decoder
utilizes two subnets (i.e., S2 and S3) at the receiver for
transmission impairments compensation and symbol detec-
tion, respectively. In addition, both the subnets S1 and S3
are composed of the cascaded sub-layer which contains dense

FIGURE 4. Diagram of the proposed model-driven NC-net for OFDM-based VLC system.
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layer, normalization and activation function. Furthermore,
the dropout layer can be also deployed after the dense layer
for addressing over-fitting problem and improving general-
ization ability of theDNNmodel, especiallywhen the number
of sub-layers and hyper-parameters are very large. Therefore,
the proposed NC-net are employed to replace parts of classic
models of conventional OFDM system and to achieve the
optimization of the end-to-end performance. It should be
mentioned that the S1, S2 and S3 are trained simultaneously
with IM/DD channel and different amounts of neurons can
also be employed in different sub-layers for reducing the
network complexity.

At the transmitter, the serial bit stream are firstly converted
to parallel symbol and then transformed into one-hot vector
1s ∈ UM (i.e., the s-th element of the M dimensional vector
1s is equal to one and other elements are zeros), where UM

is the one-hot mapping set and M is the modulation level.
E.g., for M = 4, the symbol ‘00’ could be represented as
‘0001’, and symbol ‘01’ is ‘0010’, etc. Then, multiple 1s are
recombined as data information vector t ∈ RP (P = MN )
and fed into the encoder. Let DS1

l denotes the number of
neurons, and tl be the input for the l-th dense layer of S1,
then the outputs can be expressed as

hS1l =WS1
l tl + bS1l , (11)

where WS1
l ∈ RDS1

l ×P and bS1l ∈ RDS1
l are the weight

matrix and bias vector for the l-th dense layer, respectively.
Then, hS1l passes through the normalization unit to normalize
the input of activation function and to keep the same dis-
tribution for the input of each sub-layer during the NC-net
training. In this paper, the Batch normalization is adopted and
the corresponding outputs can be calculated as(

hS1l
)
Bat
= αS1l

hS1l − E
{
hS1l

}√
σ 2
hS1
l
+ ζ

+ βS1l , (12)

where (·)Bat denotes the output of Batch normalization,
αS1l and βS1l are the scaling and shift factors, respectively.
In addition, ζ is always set to a number close to zero for
preventing denominator from being zero. It is worth noting
that the appropriate αS1l and βS1l can be also learned in
the training phase. Then, the

(
hS1l

)
Bat is fed into the activa-

tion function ρl (·) to produce the outputs of l-th sub-layer.
We employ the ReLU activation to produce the same values
as the

(
hS1l

)
Bat if only

(
hS1l

)
Bat is a positive real value. But

beyond that, the linear activation is used for the last sub-layer
due to the main goal of the final outputs of S1 net is to
produce the I-Q samples from the learned constellation plane.

Assuming L1 layers was used for S1, the output of S1 can
be expressed by

T = ρL1

{(
hS1L1

)
Bat

}
. (13)

We divide the T ∈ R2N into two parts according to their
odd and even index, and then concatenate them into complex
I-Q symbol X. In conventional OFDM scheme, the X is

produced by the specific modulation methods, e.g., pulse
amplitude modulation (PAM) or quadrature amplitude mod-
ulation (QAM). However, in our proposed scheme, those I-Q
symbols on each subcarrier are generated by S1 net through
DL approach accompanied by minimizing the training cost,
which will be discussed in the following sub-sections. Since
the mapping patterns are learned from raw data automatically
and the parameters of S1 net are tuned to optimize end-to-end
performance, the learned symbols may no longer have regular
constellation patterns as the one of QAM or PAM. After that,
X are spread by anN×N DFTmatrixF, and a newmodulated
symbol is generated by

Xnew (k) =
N−1∑
n=0

X (n)F (n, k), k = 0, · · · ,N − 1, (14)

where F (n, k) accounts for the (n, k) element of matrix F.
Finally, the time domain O-OFDM signal xnew (n) is obtained
by using (1) and (2). After biased with DC, the xnew (n) is fed
into the IM/DD channel.

At the receiver, the optical signal is transformed into an
electrical signal y by using a PD. For simplicity, RPD is set
to 1. After CP removal, FFT computation and symmetric data
removal, the real and imaginary parts of received symbol Y
are split and reformatted as a tensor Ȳ. Instead of using a
straightforward DNN to recover the transmitted information,
we firstly applied the S2 net for rough estimating the trans-
mission impairments Ĥ, expressed as

Ĥ =
(
WS2Ȳ+ bS2

)
Bat
, (15)

where WS2 and bS2 are the weight matrix and bias vector
for S2. It is noted that the input Ȳ is a 2N -dimensional real-
valued tensor. Additionally, S2 may employ L2 dense layers,
and the Batch normalization and linear activation function
should follow by the last sub-layer. In the compensation
module, the traditional communication solution is employed
and the compensated symbol can be roughly obtained by

X̄ = Ĥ−1Ȳ. (16)

Then, the X̄ is operated by the inverse DFT matrix in order
to obtain the de-spread symbol X̄de. After that, X̄de will be
fed into S3 net for refining the solution results of (16) while
detecting the original symbols. TheS3 involvesL3 layers and
its input is the concatenation of the real and imaginary parts
of X̄de. In addition, S3 has the similar network architecture
asS1, but the main difference is that the activation function of
last sub-layer is Sigmoid due to the main objective of S3 is to
recover the original binary data. Let ϕl ,WS3

l and bS3l denote
the activation function, the weights and bias for the l-th dense
layer of S3, respectively. Then, the final output of S3 can be
expressed by

t̂ = ϕL3

{(
WS3

L3tL3 + bS3L3

)
Bat

}
, (17)

where t̂ ∈ RP is the approximate hot vector. Then,
we can extract per M bits t̂M from t̂ for symbol decision,
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illustrated as

t̂0 = arg min
Ui

i=1,2,··· ,M

∣∣t̂M − Ui
∣∣ . (18)

Finally, the symbol t̂0 is transformed into the original binary
bit stream. Therefore, S3 not only refines the rough output
results of S2, but also obtains more accurate estimation of
the transmitted data.

As aforementioned, the nonlinear noise and channel inter-
ference could distort the OFDM signal over the IM/DD
transmission. To eliminate the noise and recover the original
information, the proposed NC-net aims to learn features from
raw data automatically and to find out an effective symbol
mapping and demapping strategy.

B. NETWORK TRAINING
During the training stage, the proposed NC-net is trained
to optimize the end-to-end performance via tuning the
parameters 2 =

{
WS1,bS1,WS2,bS2,WS3,bS3

}
so that

the reconstruction t̂ is closer to the raw t. The relation
between t and t̂ can be measured with the mean square
error (MSE), which can be demonstrated by

MSE
(
t, t̂
)
=

∥∥∥t− t̂
∥∥∥2
2
. (19)

The MSE is usually used for loss function in the network
training. However, as previously mentioned, the high PAPR
will introduce more LED nonlinearity thus degrade the MSE.
This inspires us that if we could introduce the PAPR-related
items into the loss function, the network will be also trained
to reduce the PAPR, which is beneficial to the achievement
of the objective MSE. In other words, the speed of network
training would be accelerated to a certain extent with the help
of the PAPR-related items. Therefore, the BER and PAPR
performance should be taken into the account simultaneously
during the network training of NC-net.

On the other hand, the (3) with an unit mean power
(σ 2
x = 1 ) can be modified as

ϒd =

max
06k62N−1

{
|x (n)|2

}
σ 2
x

=
1
2N

2N−1∑
p=0

2N−1∑
q=0

C (p)C∗ (q) exp
(
j2π (p− q) n

2N

)

=
N+2
2N
<


2N−1∑
q=1

exp
(
j2πqn
2N

) 2N−1−q∑
p=0

C (p+q)C∗(p)


=

N + 2
2N
<


2N−1∑
q=1

ρC (q) exp
(
j
2πqn
2N

) , (20)

where ρC (q) =
2N−1−q∑
p=0

C (p+ q)C∗ (p) is the aperi-

odic autocorrelation function (ACF) of C. For the complex

symbol X , we can obtain the followings inequalities

< {X } 6 |X | ,

∣∣∣∣∣
N−1∑
n=0

X

∣∣∣∣∣ 6
N−1∑
n=0

|X |. (21)

Therefore, the ϒd satisfies

ϒd 6
1
2
+

1
N

2N−1∑
q=1

|ρC (q)| =
1
2
+

1
N
ξC, (22)

where ξC =
2N−1∑
q=1
|ρC (q)| is the sum of ACF. According

to (22), we know that a close relationship indeed exists
between ϒd and ξC. For a fixed N , the maximum value of
ϒd is limited by the value of ξC, therefore, the more reduction
of ξC means a lower ϒd can be indirectly obtained. As all
the elements of vector C are the same, the ϒd can achieve
its maximum value. As a result, the ξC will be chosen as
the PAPR-related items and added into the loss function for
network training.

Considering (19) and (22), we can design the training cost
of NC-net as followings

J
(
t, t̂
)
= MSE

(
t, t̂
)
+ ηξC (t) . (23)

Here, η is a regularization parameter that controls the equilib-
rium relationship between BER and PAPR performance in the
network training. Themain goal is to learn the efficient 2̂ that
minimize the objective J

(
t, t̂
)
for each training samples,

expressed as

2̂ = argmin
2

J
(
t, t̂
)
. (24)

Moreover, some advanced backpropagation methods with
a favorable learning rate λ can be utilized. For comprehen-
sive consideration of computational efficiency and stability,
the adaptive moment estimation (Adam) optimizer with the
piecewise learning rate are adopted in this paper. It is noted
that the OFDM symbols should be randomly generated dur-
ing each training epoch so that we can collect the diverse
and abundant training set, which is favorable for parameters
learning. Meanwhile, the training SNR 3Tr is fixed to a
constant value in a single training phase.

C. COMPLEXITY ANALYSIS
The encoder and decoder are dominant in VLC transceiver
with regarding to the complexity of the proposed NC-net.
However, the computational complexity of the training phase
seems difficult to quantify. In most case, the DL network is
usually trained by an off-line way. As long as the 2 is deter-
mined, only some adders and multipliers are needed in the
forward propagation of NC-net. Therefore, the computational
complexity of the forward propagation is considered here.
Assume all the hidden dense layers haveD neurons, the com-
putation complexity ofS1 can be approximately expressed by
O
(
(M + 2)ND + (L1− 2)D2

)
. Similarly, the complexity

of S2 and S3 are expressed as O
(
4ND + (L2− 2)D2

)
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TABLE 1. Parameters of the proposed NC-net.

and O
(
(M + 2)ND + (L3− 2)D2

)
, respectively. More-

over, two extra N-point FFT and IFFT modules with
O
(
N log2 (N )

)
are also used to spread and de-spread the

OFDM symbols. As for the computational complexity, these
above factors should be taken into account jointly.

IV. RESULTS AND DISCUSSIONS
In this section, simulations of the proposed NC-net over
IM/DD channel are conducted and the system performances
in terms of the PAPR and BER are investigated. For sim-
plicity, the O-OFDM symbol with total 64 subcarriers are
considered, where the modulation levelsM = 4. In addition,
an 256-point IFFT/FFT is also used to produce the time
domain signal. Assuming the LED model in (6) with 3-dB
cutoff frequency of 20 MHz and the normalized DC is fixed
to 0.25. Furthermore, the indoor VLC channel recommended
by IEEE 802.15 is adopted [33] and the multi-path delay
spread is set to 12ns. In most cases, the rate of reflected
light is small and the line-of-sight path are dominant in the
impulse response. Therefore, the influence of LED nonlin-
earity is large and it depends on system performance greatly.
It should be noted that the convolution behavior of LED and
multipath propagation can be realized by the tf.nn.conv1d
function in TensorFlow based on the appropriate dimension-
ality conversion. In order to combat with the ISI from the
channel, the CP ratio is designed as 1/8. The parameters
involving S1, S2 and S3 are shown in Table 1.
In the training phase, 500 training samples are used for

each epoch and total 300,000 epochs are implemented for
a fixed 3Tr . The learning rate can be set as a piecewise
function with initial value of 0.01 and least value of 1× 10−6.
It decreased 5-fold every 20,000 epochs. In addition, the train-
ing procedure is implemented in TensorFlow and the test
set containing 8,000 samples are employed in the testing
procedure. If the total BER is lower than 1× 10−3, we think
that the network training is successful because this BER could
be corrected to value 6 10−9 with the help of forward error
correction coding, which is not implemented here.

FIGURE 5. PAPR performance of the proposed scheme under different
regularization parameter.

A. IMPACT OF REGULARIZATION PARAMETER
The appropriate regularization parameter ηopt should be
firstly determined so that it can establish good base for
improving the holistic capability of the proposed scheme.
As we known, the LED owns the limited linear range thus
the high PAPR of driving signal will introduce more signal
distortions into the system. That is to say, the existence of
LED brings about the restrictive relation between the PAPR
and BER. Therefore, the LED model in (6) and (7) are not
considered here so that we can investigate the real effect of
the regularization parameter η on the PAPR and BER perfor-
mance, independently. To verify the impact of η, the proposed
NC-net is trained under different η. Additionally, the training
SNR is set to 3Tr = 20 dB. After the network training,
the CCDF and BER are then calculated.

Fig. 5 presents the CCDF curves of the proposed scheme
as η varies from 0.0001 to 0.05. It can be observed that the
proposed scheme exhibits a lower PAPR as compared with
the conventional scheme, which indicates that the peaks of
O-OFDM can be reduced efficiently through learning of the
constellation mapping patterns. Besides, the bigger η will
lead to better PAPR performance during the network training.

Fig. 6 shows the corresponding BER performance without
considering the LED transforming. In addition, the idea case
where the multipath channel fading has been perfectly com-
pensated is also presented. As seen in the figure, the BER are
gradually decayed as the regularization parameter η increas-
ing, just contrary to the trend of CCDF. When the η is set to
a small value, the NC-net is trained for improving the BER
whereas putting less effort into reducing the PAPR. Further-
more, the training epochs will be decreased for small η. For
instance, in order to achieve the given MSE = 1 × 10−3,
approximately 103,600 epochs are consumed for the training
with η = 0.001 whereas 86,300 epochs will be cost for
η = 0.0001. However, as for the cases of η = 0.05 and
η = 0.01, there is still a long range to approach the BER
of 1 × 10−3. Therefore, the appropriate ηopt can provide
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FIGURE 6. BER performance of the proposed scheme under different
regularization parameter.

FIGURE 7. BER performance of the proposed scheme under different
training SNR.

favorable trade-offs among the PAPR and BER performance
and can accelerate the network training. It is worth noting that
the appropriate ηopt should be carefully investigated accord-
ing to the modulation parameters. In this paper, ηopt = 0.001
is employed in the following simulations.

B. IMPACT OF TRAINING SNR
The quality of the training set will affect the training effi-
ciency and output accuracy of the network. For a communi-
cation task, the favorable SNR of the training samples should
be carefully considered so that the proposed NC-net could be
trained effectively under the proper noise level. As a result,
the proposed NC-net is trained with 3Tr varying from 5 to
40 dB, respectively. The corresponding BER performance is
depicted in Fig. 7. Mentioned that the LEDmodel is involved
in the network training.

As clearly shown in the figure, the proposed NC-net can
hardly work normally in the case of 3Tr = 5 dB because the
neural network cannot learn the useful features of modulated
symbols in a big noisy environment. As the 3Tr increased,
the BER performance is getting better and the according

FIGURE 8. The CCDF performance comparison among different schemes.

curves are gradually approaching the idea’s, which indicates
that the LED nonlinearity had been compensated by the
proposed NC-net to some extent. Even though the BERs of
the NC-net are not exactly same with the idea case, the SNR
gap is relatively smaller at a BER of 1 × 10−3, especially
for the network trained at 3Tr = 20 dB, e.g., the SNR gap
is 2.1 dB as compared to the idea case. However, the BERs
are degraded when the higher 3Tr are employed. As seen
the curve for 3Tr = 40 dB, the BER performance is even
inferior to that of 3Tr = 30 dB. In that case, the NC-net
is confined to a very small region during the training phase,
which leads to inadequate learning of the environmental noise
and obscuring the signal characteristics around the objective
constellation points. In fact, we should choose the favorable
training SNR according to the modulation level so that the
environmental noise would not confuse the symbol judgment
region. Therefore, 3Tr = 20 dB is employed in our network
training based on the above analysis.

C. PAPR PERFORMANCE
For comparison, the original O-OFDM and two well-known
PAPR reduction schemes, i.e., PTS and DFT-S, are also
investigated in this part. For PTS algorithm, the input symbol
vector is interleaved into 4 disjoint sub-blocks and 2 phase
factors are employed. Fig. 8 demonstrates the CCDF perfor-
mances of these 4 schemes based on 9,000 random OFDM
symbols. From the figure, we find that the proposed scheme
has much lower PAPR and it respectively achieves 2.14,
3.04 and 5.31 dB performance gains than that of the other
3 schemes at CCDF = 10−3. Even the CCDF of DFT-S
exceeds that of PTS and original O-OFDM, but it is inferior
to that of the proposed scheme because the NC-net had been
integrated the DFT-S technique jointly into the deep learning
network.

The probability density functions (PDFs) of the sum of
ACF with respect to these 4 schemes are demonstrated
in Fig. 9. Let ξC_NC denotes the sum of ACF for the pro-
posed NC-net. As seen in the figure, all of the PDF curves
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FIGURE 9. The PDF of the ACF among different schemes.

have similar shape with approximately Gaussian distribution.
Those curves of the PTS, DFT-S and proposed scheme move
a great distance away from the originals. As we known,
the lower value of E {ξC} implies a lower value of ξC for
Gaussian distribution samples. Therefore, compared with
the other 3 curves, the E

{
ξC_NC

}
is the lowest one which

indicates that the proposed NC-net has indeed reduced the
PAPR to the most extent. In addition, the more of ξC_NC
is reduced, the better PAPR performance is obtained by the
NC-net. Thus, it can be concluded that the proposed NC-net
outperforms the conventional schemes in terms of PAPR
reduction.

D. BER PERFORMANCE
In this study, the BER performances of the proposed scheme
in the case of transmissions with CP and without CP are
investigated, respectively. For comparisons, the competing
methods, in terms of the Volterra-based DPD (abbreviated
to V-DPD) and the basic data-driven AE (abbreviated to
basic-AE), are also conducted for LED nonlinearity compen-
sation. With regard to V-DPD scheme, the memory length
is set to 4 and the nonlinearity order is fixed to 6. As for
basic-AE, both the encoder and decoder are comprised by
the FC-DNN without any expert knowledge and the network
dimension can be adopted as suggested in literature [31].
Meanwhile, the original case (i.e., contaminated by channel
distortion but detecting without any compensation measures)
and the idea case are also implemented for convenient anal-
ysis and comparison. As a note, the parameters of OFDM in
each scheme remain the same.

With the testing SNR varying from 0 to 30 dB, the BER
performance of these schemes is demonstrated in Fig. 10,
where the solid lines represent the schemes with CP and
the dashed lines denote the cases without CP. As shown in
the figure, both the proposed and competing schemes had
indeed improved the BER performance and had compensated
the nonlinear distortion to a certain extent, as compared
to the results of the original case. For these schemes
involving CP, the V-DPD achieves the best scores because

FIGURE 10. The BER performance comparison among different schemes.

it employs the accurate modeling and rigorous analytical
approach of the communication theory. Whereas the unfa-
vorable factor for V-DPD is that the identification accuracy
of model coefficients is susceptible to environmental inter-
ference and large computational complexity has to be cost.
As for the proposed NC-net, it also exhibits the excellent
BER obviously and achieves the significant performance
improvement than that of basic-AE, e.g., for SNR = 20 dB,
the BER had been reduced at least an order of magni-
tude by the NC-net as compared to the basic-AE. In addi-
tion, the curve is very close to that of V-DPD. These
facts show that the non-linear noise caused by LED and
the ISI from multipath had been effectively compensated
by NC-net. As for the training convergence, the NC-net
merely takes about 150,000 epochs to reach the MSE of
1 × 10−3, nevertheless nearly 225,000 epochs is cost for
basic-AE. The main reason for the difference lies in the
fact that the basic-AE is designed without relying on any
mathematical model and the hyper-parameters are just tuned
by conducting the network training, resulting in a huge
time overheads. This superior convergent ability benefits
from expert-domain knowledge incorporated in the NC-net
which can reduce the complexity and accelerate the training
speed.

As we known, the CP is added before the OFDM symbols
to mitigate the ISI caused by the transmission channel. If the
CP length is shorter than channel delay spread, the BER
performance would be degraded consequently. Clearly seen
from the figure, all of the BERs have a certain degree of
decline for the cases of CP removal. Furthermore, the BER
of V-DPD (w/o CP) has decayed a lot from the V-DPD since
they are working intrinsically based on model solving and do
not have the ability to learn the channel feature from the exter-
nal environment. Additionally, the V-DPD (w/o CP) method
becomes saturated when the SNR is larger than 25 dB, and the
basic-AE (w/o CP) is still struggling to approach the objective
BER of 1×10−3. However, the NC-net (w/o CP) has worked
very well in resolving ISI and has reached to the BER of
1× 10−3 at SNR= 30 dB, which indicates that the proposed
scheme can learn the channel features availably and rectify
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the negative effect of CP removal with the help of model-
driven DL methodology.

In summary, we can conclude that the proposed NC-net
is beneficial to the nonlinearity mitigation and outperforms
some conventional methods from the above simulations and
discussions.

V. CONCLUSION
In this paper, a model-driven NC-net combining DL with
expert-domain knowledge has been proposed to mitigate the
LED nonlinearity for OFDM-based VLC system. The sim-
ulation results show that the nonlinear distortions including
the memory and memoryless nonlinearity are effectively mit-
igated and the ISI introduced by the multipath of IM/DD
channel is also rectified by the proposed NC-net. With the
incorporated expert-domain knowledge, the NC-net exhibits
better BER performance than basic-AE method and converge
faster in the training phase. Furthermore, the NC-net can
still work effectively in the case of CP removal, which ben-
efits from the powerful learning capability of DL and then
overcomes the deficiencies in practical communications. This
paper is an infancy study of the DL applications on physical
layer communications. A further degree of rigorous analysis
and comprehensive experiments are left for the future work,
such as theoretical analysis of the model-driven NC-net need
to be performed to fine-tune the DL model for achieving
better BER performance, and for overcoming both the ran-
domness and instability of network training.
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