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ABSTRACT There is ongoing research for the automatic diagnosis of Alzheimer’s disease (AD) based
on traditional machine learning techniques, and deep learning-based approaches are becoming a popular
choice for AD diagnosis. The state-of-the-art techniques that consider multimodal diagnosis have been
shown to have accuracy better than a manual diagnosis. However, collecting data from different modalities
is time-consuming and expensive, and some modalities may have radioactive side effects. Our study is
confined to structural magnetic resonance imaging (sMRI). The objectives of our attempt are as follows: 1) to
increase the accuracy level that is comparable to the state-of-the-art methods; 2) to overcome the overfitting
problem, and; 3) to analyze proven landmarks of the brain that provide discernible features for AD diagnosis.
Here, we focused specifically on both the left and right hippocampus areas. To achieve the objectives,
at first, we incorporate ensembles of simple convolutional neural networks (CNNs) as feature extractors and
softmax cross-entropy as the classifier. Then, considering the scarcity of data, we deployed a patch-based
approach. We have performed our experiment on the Gwangju Alzheimer’s and Related Dementia (GARD)
cohort dataset prepared by the National Research Center for Dementia (GARD), Gwangju, South Korea.
We manually localized the left and right hippocampus and fed three view patches (TVPs) to the CNN after
the preprocessing steps. We achieve 90.05% accuracy. We have compared our model with the state-of-the-art
methods on the same dataset they have used and found our result comparable.

INDEX TERMS Alzheimer disease classification, ALZHEIMER disease detection, Alzheimer disease
diagnosis, convolutional neural network, deep learning, machine learning, medical imaging.

I. INTRODUCTION
Alzheimer’s disease (AD) is the most predominant neurode-
generative brain disease affecting elderly people worldwide
and is considered to be one of the prime reasons for demen-
tia [1]. AD is an irreversible, progressive neurobiological
brain disorder and multifaceted disease of unknown etiology
that slowly destroys brain cells, causes memory and thinking
skill losses, and ultimately accelerates the loss of ability to
carry out even the simplest tasks [2]. The cognitive decline
caused by this disorder progresses toward dementia. The
disease progresses over time from its initial stage of normal
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controlled (NC) to mild cognitive impairment (MCI) and then
eventually reaches the AD affected stage [3].

According to the report provided by the Alzheimer’s Asso-
ciation [1], 60 million people are predicted to be affected by
AD within the next 50 years. The estimation provided by the
World Alzheimer Report [4] is more alarming. One person is
becoming affected by dementia every three seconds, 60% of
whom are affected because of AD. The total estimated patient
growth is 152 million by 2050, costing 2 trillion per annum
by 2030 [4].

Studies are ongoing for the early diagnosis of this disease
in order to put a brake on the abnormal degeneration of
the brain, to reduce the cost of patient care and to ensure
better management. Previous studies [5]–[8] have shown
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that machine learning algorithms were able to classify AD
more accurately than experienced clinicians [3]. Recently,
deep learning has shown outstanding performance in classi-
fication and regression [9]. Therefore, deep learning-based
approaches are becoming the obvious choice for the detection
of Alzheimer diseases.

The state-of-the-art approaches either consider the whole
brain in a single modality [10], [11] or multimodal [6]
datasets to train machine learning models, which have been
shown to demonstrate greater accuracy than manual diagno-
sis. Magnetic resonance imaging (MRI), positron emission
tomography (PET), biospecimens, genotyping and sequenc-
ing data and clinical datasets are different modalities for AD
research. Investigating more than one data modality is time
consuming and expensive. Moreover, modalities such as PET
may have radioactive side effects on patients. Here, we con-
sider structural magnetic resonance imaging (sMRI) as the
modality of our experiments for the following advantages:
1) high degree of imaging flexibility; 2) high tissue contrast;
3) no need for ionizing radiation; 4) useful information about
the anatomy of the brain;

The accuracy of an AD diagnosis mostly depends on the
biomarkers of the disease. A biomarker serves as a deter-
minant of health and disease; it is measured and evaluated
as an indicator of normal biological processes, pathogenic
processes or pharmacological responses to a therapeutic inter-
vention [12]. Studies have revealed that there is an association
between structural changes of the AD brain and cognitive
loss. Hippocampal shrinkage is observed in the preliminary
stages of AD, and it has a proven correlation with memory
impairment. As reported in [13], the yearly brain atrophy rate
for AD patients is 2.4% ± 1.1%, whereas the figure is 0.5%
± 0.4% for age-matched control subjects with normal brains.
The hippocampal atrophy rate is higher than that of the

whole brain. According to [14], the average hippocampal
atrophy rate for AD patients was approximately 4 to 6%, and
the rate was 1 to 2% for age-matched control subjects with
normal brains. Thus, we focus on the hippocampus region as
the input feature for the convolutional neural network (CNN).
We localize the hippocampus manually for each MRI; then,
we generate 32× 32 patches from the localized region.

Our prime objective of this research is to design a sim-
pler CNN. We have avoided feeding the entire MRI volume
into the network to reduce unnecessary computations. The
approach improved the computational efficiency as well as
the prediction accuracy. It has also resolved problems due
to data scarcity that are associated with deploying CNNs.
To achieve our objective, we have generated 32× 32 patches
from each of the sagittal, axial and coronal views and merged
them as a single sample. These three view patches (TVPs) are
fed into the CNN.

In this paper, we have summarized related works in
section II. Data collection and preparation are outlined in
section III. Our framework is described in section IV. The
experimental setup is illustrated in section V. The results are
discussed in section VI, and section VII concludes the work.

II. RELATED WORKS
There are studies based on the conventional machine learning
techniques which focused on developing models to detect
anatomical and functional disorders due to AD in human
brain [15]–[21]. These methods have primarily relied on
manually designed features, which heavily depend on pro-
fessional expertise, require repeated trials, and tend to be
time-consuming and subjective processes. However, as the
cause of AD is not completely understood, designing robust
analysis methods for effective hand-crafted features using
medical experts’ knowledge is a challenging task. In con-
trast, deep learning is capable of automatically learning input
features from a large set of training data. Many previous
studies were conducted to further explore CNN architectures
dedicated to generating robust AD features.

Gupta et al. [8] used cross-domain features to represent
MRI data. They deployed a stacked autoencoder (SAE) to
learn a set of bases from natural images and then applied a
CNN to obtain a more effective feature representation for AD
classification. Despite being very simple, they showed high
classification performance in comparison with contemporary
approaches. Liu et al. [2] also proposed an SAE-based multi-
modal neuroimaging feature learning algorithm from a region
of interest (ROI) for AD diagnosis. This framework uses a
zero-masking strategy for data fusion to extract complemen-
tary information from multiple data modalities.

Brosch and Tam [22] learned a low-dimensional mani-
fold of brain volumes with a deep belief networks (DBN)
algorithm to detect the modes of variations that correlate
to demographic and disease parameters for AD. Their pri-
mary contributions are following: 1) they introduced a much
more computationally efficient training method for DBNs
that allows training on 3D medical images with a resolution
up to 128× 128× 128, and 2) they demonstrated that DBNs
can learn a low-dimensional manifold of brain volumes that
can detect modes of variations.

Payan andMontana [23] used a sparse autoencoder to learn
feature embedding and then feed these embeddings to a con-
volution neural network for AD classification. The authors
built a learning algorithm that is able to discriminate between
healthy brains and diseased brains usingMRI images as input.
They investigated a class of deep artificial neural networks
and a specific combination of sparse autoencoders and CNNs.
The main novelty of their approach is to use 3D convolutions
on the whole MRI image. Li et al. [7] proposed a robust
multitask deep learning framework using a dropout [24] and
stability selection technique to improve the ROI feature rep-
resentation for AD/MCI diagnosis.

Shi et al. [6] developed a robust deep learning framework
for multimodal AD diagnosis fromMRI and PET scans. They
applied principal component analysis (PCA) to obtain fea-
tures and then utilized a stability selection technique together
with the least absolute shrinkage and selection operator
(LASSO)method [5] to select themost effective features. The
selected features were then processed by the deep learning
structure. Model weights in the deep structure were first
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FIGURE 1. Pipeline for AD/NC classification from structural magnetic resonance imaging (sMRI). (a) Outline of the overall pipeline of the
proposed method: Preprocessing includes intensity normalization, hippocampus localization and TVP generation. The size of the TVP from the
left hippocampus (TVPLH) and right hippocampus (TVPRH) is 32 × 32 × 3; the size of merged TVP from both the hippocampi (TVPLHRH) is
64 × 32 × 3; left hippocampus classifier (LH-Model) and right hippocampus classifier (RH-Model) are pretrained CNN models that take TVPs as
input and yields a softmax score for each TVP; both hippocampi classifier(LHRH-Model) is another pretrained CNN model that takes TVPLHRH of
size 64 × 32 × 3 and yields a softmax score; The scores are summed up and normalized by a softmax classifier in stacking layer to obtain the
final label; (b) demonstrates the workflow of an individual model: (i) three view planes of an MRI drawn from the center of the MRI; (ii) global
view of hippocampus in three different views; (iii) closer views of hippocampus locations in three different views; (iv) TVPs of size 32 × 32 × 3;
(v) decision scores yielded by patch-based classifiers are fed to the stacking layer for ensemble classification; and (vi) MRI label yielded by
individual models based on collections of TVPs.

initialized by unsupervised training and then fine-tuned by
AD patient labels. During the fine-tuning phase, the dropout
layer was deployed to improve the model’s generalization
capability. Finally, the learned feature representation was
used for AD/MCI classification by a support vector machine
(SVM).

III. DATA COLLECTION AND PREPROCESSING
In this section, we describe the dataset that we have used in
our study. The preprocessing steps performed on the data also
discussed here.

A. DATASET
Magnetic resonance imaging (MRI) is the de facto modality
in brain studies due to its superior image contrast in soft
tissue without involving ionizing radiation. MR images are
widely used to examine other anatomical regions as well [25].
There are many MRI datasets for AD studies, such as ADNI,
BgBrain, OASIS, and AIBL.

Data used in the preparation of this article were obtained
from the ADNI 1 database (adni.loni.usc.edu). ADNI was
launched in 2003 as a public-private partnership. The primary
goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological
assessments can be combined to measure the progression of
mild cognitive impairment (MCI) and early AD. For up-to-
date information, see www.adni-info.org.

1The Alzheimer’s Disease Neuroimaging Initiative data used in
preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/).
As such, the investigators within the ADNI contributed to the design
and implementation of ADNI and/or provided data but did not
participate in the analysis or writing of this report. A complete listing
of ADNI investigators can be found at http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

We have used 352 MRI scans of the ADNI dataset that
are separated into three different classes: AD, NC and MCI.
Among these classes, we used only AD and NC data. There
are 77 MRI scans labeled as AD, 129 are labeled as NC, and
the remaining 146 are labeled as MCI. The size of the MRI
volume is 170 × 256 × 256 in most of the cases. However,
the large 3D size does not hinder the training as we consider
only hippocampus regions.

After training, validation and testing with ADNI data,
we have retrained and tested our models with Gwangju
Alzheimer’s and Related Dementia (GARD) cohort dataset
provided by the National Research Center for Dementia
(NRCD), Gwangju, Republic of South Korea. The GARD
dataset has 326 baseline MRI scans. All scans are from
Korean patients with an age range of 49 years to 87 years.
There are four labels in the dataset, namely, AD, NC, mAD
and aAD. AD,NC andmAD are similar to the ADNI database
classes of AD, NC and MCI, respectively. aAD is another
stage known as asymptomatic AD, where there are no symp-
toms of AD or MCI in terms of recognition capability but the
patients are biomarker positive [26], [27].

In the GARD database, there are 81 samples in the AD
class, whereas the number is 171 for the NC class. The
number of samples for themADand aAD classes is 39 and 35,
respectively. We followed the same data separation rule and
preprocessing techniques for the ADNI and GARD datasets.

B. MRI PREPROCESSING
The ADNI dataset was already corrected for intensity inho-
mogeneity. The axial, coronal and sagittal views of a sample
MRI are shown in Figure 1(b). We have normalized the
intensity values by subtracting the mean intensity and then
dividing by the standard deviation to have zero mean and unit
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FIGURE 2. An example of selected six points (viewed on the sagittal plane) that are used as the
center of 8 × 8 × 8 cubes for generating reference points. The reference points are selected from
the cube by a semirandom process. TVPs are generated on the reference points.

variance of the input. The normalization is defined in (1).

Ĩ (ix , iy, iz) =
I (ix , iy, iz)− µ(I )

σ (I )
(1)

Here, I (ix , iy, iz) is the intensity of (ix , iy, iz) location
before normalization, µ(I ) is the mean intensity and σ (I ) is
the standard deviation of the intensity; Ĩ is the normalized
intensity of the MRI.

After intensity normalization, we manually observed hip-
pocampus locations (hx , hy, hz) on the normalized MRI by
using Mango, a multi-image analysis graphical user interface
(GUI) [28]. Six example locations are presented in fig. 2.
Each location and its neighboring points up to α, β and γ
pixels in sagittal, coronal and axial direction, respectively,
were used as a reference frame for patch generation. Careful
selection of these shape constants; i.e., α, β, and γ ; ensured
that each reference frame lies within the hippocampus region.
In our experiment, we have selected α = β = γ = 4.
Different values of these constants provides flexible shape
of the reference frame to adjust with the shape of ROI.
We have randomly chosen nx , ny, and nz number of co-
ordinates in sagittal, coronal, and axial directions, respec-
tively. As described in (2), (3), (4) and (5), these co-ordinates
are used to generate reference points for TVPs.

rClTx = rand(hx − α, hx + α, nx) (2)

Ty = rand(hy − β, hy + β, ny) (3)

Tz = rand(hz − γ, hz + γ, nz) (4)

Here, Tx ,Ty,Tz represent uniformly distributed integer
samples from the specified interval. The number of samples
drawn from the interval are denoted by nx , ny, and nz respec-
tively. rand(hx−α, hx+α, nx) returns nx number of uniformly

distributed random integers from the interval (hx−α, hx+α).
The same explanation follows for (3) and (4).

The reference points were generated by taking all (i, j, k)
tuples of Tx × Ty × Tz (i.e., the cartesian product). The dis-
junction of all reference points obtained from each reference
frame were used to generate TVPs. The equation (5) summa-
rized the operation. The algorithm 1 concisely describes the
reference point generation process.

R = R ∪ {∀(i, j, k)|i ∈ Tx , j ∈ Ty, k ∈ Tz} (5)

To avoid data imbalance between two classes, we took rela-
tively fewer samples from the MRIs of the NC class. Sample
reduction for NC class was done by reducing the values of
shape constants of reference frame in (2), (3), and (4). As our
patch size is 32×32 smaller number of samples did not affects
in exploring the whole hippocampus volume.

There are three different patches in each sample for indi-
vidual hippocampus classification. Patches were taken from
each of the three orthogonal axial, coronal, and sagittal view
planes for each reference point. For combined classification
of the left and right hippocampus, the sample consists of six
patches.

IV. METHODOLOGY
The proposed pipeline is depicted in Figure 1(a). Our
framework consists of three individual models for generating
decision scores on individual patches, followed by a score
aggregator and final classifier.

After collecting data, we performed the preprocessing
tasks, as stated in the previous section. Then, we performed
manual localization of the left and right hippocampus, which
we consider as the ROI for our experiment. Then, from the
ROI, we generated TVPs of size 32× 32× 3 or 64× 32× 3.
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Algorithm 1 Algorithm for Reference Point Generation
Input: H = {H1, H2, H3, H4, H5, H6}: Manually

observed approximately equidistant locations
inside the hippocampus

Output: R: a set of reference locations,(x,y,z)
1 R = {}
2 for each point Hr (hx , hy, hz) ∈ H do
3 Tx = rand(hx − α, hx + α, nx)

// rand(hx − α, hx + α, nx ) returns nx number of

uniformly distributed random integers from

the interval (hx − α, hx + α)

4 Ty = rand(hy − β, hy + β, ny)
5 Tz = rand(hz − γ, hz + γ, nz)
6 R = R ∪ {∀(i, j, k)|i ∈ Tx , j ∈ Ty, k ∈ Tz}

7 return R

We trained three individual models with these generated
patches. At first, we designed the classifier for left hippocam-
pus. Then, we tried the architecture for right hippocampus
classification. But, after several trial, we found the right hip-
pocampus classifier with even simpler network. As the input
size is different for both hippocampi classifier(i.e., LHRH
model), we had to tweak the architecture of the related model.
The performance of each model was measured individually.
These three models were then added together, and a softmax
classifier was used for the final distinction.

A. PATCH-BASED CLASSIFIER
It is well known that CNNs are highly susceptible to the
sample size. The more the samples we have from each class,
the more accurate the CNN performs. Classification accuracy
is subject to the discriminating features among the available
classes [29]. The availability of discriminating features of a
class depends on the number of samples from the class. The
main problem ofADdiagnosis is the scarcity of data.We have
a limited number of samples from each class. This scarcity of
data may lead to an overfitted model. Therefore, we deployed
a patch-based classifier because we can generate a sufficient
number of patches for training.

In our proposed patch-based classification architecture,
shown in Fig 1(a), the input to the CNN is TVP. Each TVP is
centered at the locations generated from the reference points.
The CNNs are trained to predict individual TVPs as AD or
NC. Based on the collections of individual TVP decisions,
an MRI is classified into two objective classes. We keep
kernel sizes less than or equal to 5 × 5 to extract detail
information over the hippocampus.We use the rectified linear
unit (ReLU) [30] as the activation function. The pooling
operation [31] selects the activation from rectangular areas
of specified size; it downsamples the patches by a factor of
defined stride size. Max pooling and/or average pooling were
used in the networks. We use batch normalization [32] before
each convolution layer to enforce a normal distribution at the
output of the layer.

1) CNN FOR THE LEFT HIPPOCAMPUS
The model for the left hippocampus classification is pre-
sented in Table 1. The output of the third convolution layer
is the feature embedding of the left hippocampus region.
These features are further fed to the fully connected layers to
classify AD versus NC. Adding a dropout of 0.75 in the first
fully connected layer slightly improved the accuracy.We used
softmax as the last layer activation and cross-entropy as the
loss function. The Adam optimizer [33] and Xavier initial-
ization [34] were used. The exponential decay rate for first
and second moment estimates are 0.9 and 0.999 respectively.
The architecture and structural details of the proposed CNN
are noted in Table 1. Total number of trainable parameter in
the network is 105,826.

2) CNN FOR THE RIGHT HIPPOCAMPUS
The CNN architecture for the right hippocampus classifica-
tion is illustrated in Table 1. We tried different structures and
hyperparameters. We determined the proposed network after
several trials. There are three convolution layers and two fully
connected layers in the model. Each convolution layer and
fully connected layer are preceded by batch normalization
and followed by the average pooling layer. The first convolu-
tion layer does not have the batch normalization, but inputs
are normalized previously. Before the last fully connected
layer, we used a dropout of 0.25, which converges the training
process faster and increases the accuracy. The output of the
last convolution layer is the feature embedding of the right
hippocampus region. The optimization and weight initializa-
tion are the same as the model used for the left hippocampus
classification. The architecture and structural details of the
proposed CNN for the right hippocampus classification are
noted in Table 1. Total number of parameters in the network
is 100,197 among which 99,925 parameters are trainable.

3) CNN FOR THE LEFT AND RIGHT HIPPOCAMPUS
CLASSIFICATION
The architecture of the proposed CNN for the classification
of both hippocampi is shown in Table 1. There are seven
convolution layers. Each follows batch normalization and/or
drop out. It takes input of size 64 × 32 × 3. We merged the
TVPs of size 32×32×3 from the left and right hippocampus
to generate these input patches. We illustrate the merging
operation in Figure 3. The output of the seventh convolution
layer is the feature embedding of the hippocampus region.
These features are further fed to the fully connected layers to
classify AD versus NC. The total number of parameters for
this network is 409,666. The Adam optimization and Xavier
initialization techniques were used in this model.

B. ENSEMBLE CLASSIFICATION
The reasoning behind using an ensemble is to bypass the
weakness of individual models. Each model has its own
hypothesis about the given input. By stacking different mod-
els with different assumptions about a class label, we can find
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TABLE 1. CNN architecture for the classification of left hippocampus(LH Model), right hippocampus(RH Model) and both hippocampi(LHRH Model).

FIGURE 3. To prepare training and testing samples (of size 64 × 32 × 3) for the patch-based
left and right hippocampus classifier (LHRH model), each TVP (of size 32 × 32 × 3) from the
left hippocampus is merged with the corresponding TVP (of size 32 × 32 × 3) of the right
hippocampus.

a better classification that may not be possible with individual
models.

To determine the most appropriate class label for a given
patch, the results from all three models are combined. Each
patch-based model produces decision scores of a patch that
indicate how well the patch fits a class. The individual deci-
sions of the relevant patches are combined in the stacking
layer. Then, a softmax is applied to find normalized scores.
The most likely value is selected as the final class for a
patch. Two reference points are considered for a single score
from the ensemble layer: one from the left hippocampus and
one from the right hippocampus. The patches are classified
by related patch-based classifiers. The final scores of patches
are forwarded to stacking layer.

From each testMRI, at least 32 pairs of TVPs are generated
for classification. The majority decision from the stacking

layer determines the class label of each MRI. This classifi-
cation is grounded on weighted majority voting. Adding all
the scores from each classifier ensures robust accuracy. The
classification process is described in algorithm 2

V. EXPERIMENTAL SETUP
A. DATASET SEPARATION
From the ADNI dataset, we consider only those subjects
whose disease status remains the same over different MRI
scans. We have selected a total of 60 subjects from our
dataset. For each subject, there are different MRI scans.
We separate the training, testing and validation set in such a
way that the conjunction of any two sets, keeping the subject
ID of MRI scans as the key, yields the null set. This ensures
the prevention of data leakage.We also ensure that MRI scans
from each class are uniformly distributed among the three
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Algorithm 2 Algorithm for Ensemble Decisions
Input: Data: MRI Image Volume; RL ,RR: two sets of

reference locations,(x,y,z) for left and right
hippocampus, respectively.

Output: DS(DS[ad],DS[nc]): Decision scores of an
MRI

Data: Let N = |RL | = |RR| be the number of patches
sampled from a hippocampus of an MRI.
LHMODEL(), RHMODEL(), LHRHMODEL()
returns the decision scores for individual TVPs as
(s[ad], s[nc])

1 tvplh = TVP_Generator(RL)
// TVP_Generator(RL ) returns 32× 32× 3 TVP

centering at the locations ∈ RL
2 tvprh = TVP_Generator(RR)
3 tvplhrh = merged_TVP_Generator(RL ,RR)

// merged_TVP_Generator(RL ,RR) returns TVPs of

size 64× 32× 3 generated from pairs of TVPs of

size 32× 32× 3 centering at the pair of

locations (l,r). Here l ∈ RL, r ∈ RR and the

function for mapping the corresponding

locations is, F : RL → RR is one to one and onto.

4 sl = LHMODEL(tvplh)
5 sr = RHMODEL(tvprh)
6 slr = LHRHMODEL(tvplhrh)
7 score[ad] =

∑
m∈{l,r,lr}

∑|N |
i=1 s

(i)
m [ad]

8 score[nc] =
∑

m∈{l,r,lr}
∑|N |

i=1 s
(i)
m [nc]

9 DS[ad] = escore[ad]
escore[ad]+escore[nc]

10 DS[nc] = escore[nc]
escore[ad]+escore[nc]

11 return DS

sets to address the class imbalance problem. We keep 60%
of MRI scans as the training set, 20% for the test set and 20%
for the validation set. We augmented the data of each class by
applying shearing, rescaling and zooming of the patches.

All the MRIs in the GARD dataset are baseline MRI scans,
so we did not need to separate theMRIs according to patients.
We divided the dataset into training, validation and a test set
according to the procedure that we followed for the ADNI
dataset separation. We also applied the same data augmenta-
tion techniques to the GARD dataset.

B. PLATFORM
We use the TensorFlow GPU 1.8, keeping Keras as the back-
end, on top of the Python 3.6 environment. An Intel(R) Xeon
(R) CPU E5-1607 v4 @ 3.10 GHz with a 32 GB RAM
machine was used. The GPU was NVIDIA Quadro M4000.

C. TRAINING
For patch-based classification, we trained different architec-
tures with different hyperparameters. The presented models
were trained for 20 epochs with a batch size of 32. We fol-
lowed the 60-20-20 approach for using sample patches for
training, validation and testing. We started the training with a

learning rate of 0.001. If the validation loss stopped improv-
ing for 3 consecutive epochs, we reduced the learning rate
by a factor of 10. It was observed that the learning rates were
between 0.001 to 0.0001. The default parameter settings were
used for the optimizers, regularizers and constraints.

VI. RESULTS
For evaluating the models, we have taken accuracy =

TP+TN
TP+TN+FP+FN , precision =

TP
TP+FP , recall =

TP
TP+FN and

f 1 score = 2 × precision×recall
precision+recall into consideration. Here, TP,

TN, FP and FN are acronyms for the number of model-
predicted true positive, true negative, false positive and false
negative samples, respectively. For evaluating each model,
we used an individual MRI as a sample. We generated at least
32 TVPs for each test MRI to obtain its label. First, we feed
TVPs to the patch-based classifier to obtain the decision
scores for each individual TVP. We then added the scores of
all patches and normalized the scores. If the obtained score
is greater than 0.5, we labeled the MRI as AD; otherwise,
we labeled it as NC.

We have presented the results for both the ADNI and
GARD datasets. The proposed model performed better on the
GARD dataset in comparison to the ADNI dataset.

GARD dataset was collected only from Korean patients.
Therefore, the brain structure and other anatomical factors
are rationally homogeneous in each MRI. Any deviation and
atrophy is comparatively easier to detect. In addition to this,
the dataset only provides baseline MRIs, and the number of
patients in the GARD dataset (326) is much higher than that
in the ADNI dataset (we used only 60).

On the other hand, ADNI participants were recruited at
57 sites in the USA and Canada, with ages from 55 to 90.
As the selection was from diverse races, ethnicities and age
groups, the dataset includes heterogeneous brains. In addi-
tion to these characteristics, there are several scans for the
same patient, where the progression from MCI to AD is also
demonstrated. Therefore, these AD scans might impede the
model’s capability to obtain an accuracy equivalent to that of
the GARD dataset. In the following subsections, we briefly
outline the performance of each of the models.

A. HIPPOCAMPUS LOCATIONS
We manually navigated throughout the MRIs to observe the
location of both hippocampi. We used the multi-image anal-
ysis GUI (Mango) [28] for this purpose. We selected six
different (roughly equidistant) locations inside the hippocam-
pus. We crosschecked the manual hippocampus locations,
H (hx , hy, hz) by repeating the manual marking at different
runs.We closely observed the detail views of three orthogonal
planes to make sure that each patch contained the hippocam-
pus. We considered a cube of side length 8, keeping each of
the six different points as the center. From that cube, we semi-
randomly drew locations to generate TVPs. We have also
carefully avoided the repetition of locations. We show an
example of the selected six points for an MRI in Figure 2.
We show only the sagittal view here.
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FIGURE 4. Examples of training and testing performance. (a) AUC scores of the test set for the left hippocampus (LH)
model, (b) training and validation loss for the LH model, (c) training and validation accuracy for the LH model, (d) Area
under receiver operating characteristics curve scores of the test set for the right hippocampus (RH) model, (e) training
and validation loss for the RH model and (f) training and validation accuracy for the RH model.

B. RESULTS OF THE LEFT HIPPOCAMPUS CLASSIFIER
On the ADNI data, the presented model’s overall accuracy
for the left hippocampus classificationwas 80.40%.We tested
the classifier on several runs with varying number of samples.
During the prediction, we considered the class label for which
the decision score is greater than 0.50. The reported one is
found by feeding a balanced number of samples from both
classes.

The area under the receiver operating characteristics curve
for this model is 70.20%, as presented in figure 4. The model
diagnosed 87.88% of the actual AD-affected MRIs as AD,
and a total of 77.97% of the AD diagnosed MRIs are actually
AD affected.

While testing with the GARD dataset, we obtained
83.27% overall accuracy. The precision, recall and f1 score
for AD were measured as 76.88%, 90.50% and 84.34%,
respectively; the measurements were 88.98%, 76.10% and
82.04%, respectively, for the NC class. The results indicate
that 76.88% of the AD-classified MRIs are actually AD,
and 90.50% of the actual AD-labeled MRIs are correctly
classified.

C. RESULTS OF THE RIGHT HIPPOCAMPUS CLASSIFIER
The overall accuracy for classifying the right hippocampus as
AD versus NC is 79.5% on the test set of the ADNI data. The
number of samples drawn from the AD andNC class was kept
balanced in the test set. Several test samples were generated
for evaluating the model.

In total, 80% of the samples predicted as AD are true
AD, and 79% of the AD-labeled samples are correctly clas-
sified by this model. The results are 78.89% and 79.69%,
respectively, for the NC class. The assumption about the
significance of the right hippocampus for AD diagnosis is

strengthened by 82.0% area under the receiver operating char-
acteristics curve (see figure 4(d)). The model demonstrated
81.56% accuracy on theGARD test data. The precision, recall
and f1 score of the AD class were 76.88%, 87.56% and
81.87%, respectively; the scores were 87.09%, 76.12% and
81.24%, respectively, for the NC class.

D. RESULTS OF LEFT AND RIGHT HIPPOCAMPUS
CLASSIFIER
Weachieved 82.35% accuracy in classifying both hippocampi
as AD versus NC. The precision, recall and f1 score are
83.30%, 82.37%, and 82.83% for the AD class, respectively,
and 81.31%, 82.33%, and 81.82% for the NC class. The
accuracy that we determined from the combined hippocam-
pus classifier is greater than the individual hippocampus
classifiers.

The performance for the GARD data also increased in the
classification of both hippocampi. The overall accuracy was
86.28%. The details are shown in Table 2

E. RESULTS OF ENSEMBLES
The ensemble of the three models, as shown in Table 2,
achieves 85.55% accuracy for the ADNI dataset. The ensem-
ble provides precision, recall and the f1 score for the AD and
NC class of approximately 85.5%± 0.1%.
The overall accuracy for the GARD dataset is 90.05%. The

precision for the AD class is 91.11%, while it is 88.85%
for the NC class. In addition, 90.22% and 89.85 % are the
recall scores for the AD and NC class, respectively. The
f1 scores for the AD and NC class are 90.66% and 89.35%,
respectively.

The findings demonstrated that the ensembles of the mod-
els provide better performance than the individual models.
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TABLE 2. Results of the three TVP-based classifiers.

TABLE 3. Comparison of the proposed model with previous approaches.

As the decision scores of the individual models are added
together and then softmax-normalized, each model’s decision
contributes to the final decision. The final decision-making
procedure is a weighted voting strategy, as each decision
score of an individual model can be considered as a weighted
vote. This strategy alters the class label decided by individual
classifiers with near to marginal scores. Therefore, the accu-
racy significantly increased after implementing an ensemble
of the three models.

F. COMPARISON AND DISCUSSION
In previous methods, the whole brain and PET scan results
were used to classify AD. The tendency is to use as much
information as possible to train the model. In this paper,
we show that we can obtain a comparable result using only
the hippocampus. The comparative results for ADNI data are
shown in Table 3.

In the multimodal stacked deep polynomial approach
(MMSDPN) [6], as reported in the paper, the sparse con-
nection in intermediate layers prevented overfitting. The
authors used MRI, PET and cerebrospinal fluid (CSF) data to
achieve 97.13% accuracy with 4.44% variation. The authors

in [7] used the dropout technique to prevent overfitting in
their multitask learning approach. Their approach demon-
strated 91.4% accuracy on MRI, PET and CSF data. Both
of the approaches were studied on the ADNI data (51 AD
patients and 52 NC patients from each of the mentioned
modalities).

The authors in [2] added a weight decay to regularize the
objective function as a way to prevent overfitting. They exper-
imented on 77 NC and 85 AD scans in both MRI and PET
data from ADNI. Their model showed 82.59% accuracy with
5.33 variation in theMRI modality, which is 91.40%±5.56%
in the multimodal data. Payan and Montana [23] studied the
MRI modality with 755 scans for each of the classes. This
approach also added a weight decay term similar to [2] to reg-
ularize the objective function in order to prevent overfitting.
The method demonstrated 95.39% accuracy in classifying
AD versus NC. A feature selection method was deployed
alongwith an l-norm penalty onweights to prevent overfitting
in [11]. The method achieved 82% accuracy with spatial
augmentation on MRI and PET images. The reported accu-
racy without spatial augmentation on the data was 77%. This
method was studied on 149 PET and 183 MRI images from
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ADNI. To avoid the overfitting problem, Salvatore et al. [10]
performed feature extraction and feature selection tasks sep-
arately for training-validation data and testing data. They
reported 76% test accuracy on ADNI sMRI. The number of
samples for AD was 137 and 162 for NC.

The method in [8] obtained 93.80% accuracy on ADNI
MRI data. They did not explicitly discuss overfitting. This
method learned a set of bases from natural images by deploy-
ing SAE and then used these bases to learnMRI features. The
number of scans was 200 for AD and 232 for NC. VoxCNN
in [35] reported 79.0% ± 0.08% accuracy. By using the
residual neural network (ResNet), the approach [35] obtained
80.0% ± 0.07% accuracy. Here, the labeled sMRI scans
included 50 AD and 61 NC from ADNI. Here, the overfitting
problem was addressed by pre-training.

In this paper, the proposed patch-based ensembles of sim-
ple models demonstrate significant performance. We used
only small patches (32 × 32) from the hippocampus of the
brain MRIs and achieved comparable accuracy. Our patch
generation reduces the scarcity of training data for gen-
eralization. Using the ensemble technique also contributed
to building a robust model while avoiding the overfitting
problem. It helps us to avoid obtaining an over-capacity
network regarding the training time. The deployment of batch
normalization [32] regularizes our models by enforcing that
the inputs maintain a normal distribution in each layer. This
regularization leads to better generalization. We also added
dropout [36] in each model, which further address the over-
fitting problem.

To avoid problems of data imbalance, equal number of
TVPs were generated from each of the majority(NC: 129 in
ADNI and 171 in GARD) and minority (AD: 77 in ADNI
and 81 in GARD) classes during training. We also avoided
imbalance in the data during testing the individual mod-
els on TVP samples. For evaluating the model based on
MRI, we kept the original ratio (20%) of the minority class
dataset and took an equal number of MRIs from the major-
ity class, i.e., we downsampled the majority class at test
time.

VII. CONCLUSION
This work provides an efficient framework for AD diagno-
sis from brain MRI. We have considered the hippocampus,
which is considered to be one of the most affected clinically
studied biomarkers for AD detection. For the two differ-
ent hippocampi in the brain, we had to deploy two patch-
based classification models. However, deployment of another
model for classifying both hippocampi increases the perfor-
mance. We then designed ensemble models for an improved
classification outcome. We designed the CNN classifiers
based on TVPs on the semirandomly generated locations of
the hippocampus region. This approach facilitated generation
of the necessary data for training. After sufficient training,
we combined the models to obtain the expected accuracy
(85.55% for ADNI and 90.05% for GARD), which is com-
parable to the models designed in the MRI modality [1].
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