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ABSTRACT Recently, a Cambrian explosion of a novel, non-volatile memory (NVM) devices known as
memristive devices have inspired effort in building hardware neural networks that learn like the brain. Early
experimental prototypes built simple perceptrons from nanosynapses, and recently, fully-connected multi-
layer perceptron (MLP) learning systems have been realized. However, while backpropagating learning
systems pair well with high-precision computer memories and achieve state-of-the-art performances, this
typically comes with a massive energy budget. For future Internet of Things/peripheral use cases, system
energy footprint will be a major constraint, and emerging NVM devices may fill the gap by sacrificing high
bit precision for lower energy. In this paper, we contrast the well-known MLP approach with the extreme
learning machine (ELM) or NoProp approach, which uses a large layer of random weights to improve the
separability of high-dimensional tasks, and is usually considered inferior in a software context. However,
we find that when taking the device non-linearity into account, NoProp manages to equal hardware MLP
system in terms of accuracy. While also using a sign-based adaptation of the delta rule for energy-savings,
we find that NoProp can learn effectively with four to six ’bits’ of device analog capacity, while MLP
requires eight-bit capacity with the same rule. This may allow the requirements for memristive devices to
be relaxed in the context of online learning. By comparing the energy footprint of these systems for several
candidate nanosynapses and realistic peripherals, we confirm that memristive NoProp systems save energy
compared with MLP systems. Lastly, we show that ELM/NoProp systems can achieve better generalization
abilities than nanosynaptic MLP systems when paired with pre-processing layers (which do not require
backpropagated error). Collectively, these advantages make such systems worthy of consideration in future
accelerators or embedded hardware.

INDEX TERMS Hardware neural networks, memristive devices, online learning, edge computing.

I. INTRODUCTION
In recent years, artificial intelligence based on neural net-
works has experienced considerable progress and achieve-
ments. However, training and using neural networks is
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associated with high energy consumption, which limits their
use in low power embedded applications. Now, an emerg-
ing class of nanoelectronic elements can physically emulate
synaptic features using various types of internal switching
and diffusive dynamics, thus, ‘‘nanosynapes’’ [1], [2]. Using
these elements as a building block, several neuromorphic
architectures are possible [3]. Nanosynapses can be used for
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systems trained off-line (ex-situ), used only for inference.
Nevertheless, their most attractive use would be in learning-
capable systems, e.g, those which can learn to generalize
on new tasks in real-time using in-situ learning rules [4].
Notably, learning-capable systems reduce or entirely avoid
reliance on external servers and/or Graphics Processing
Units (GPUs) clusters which provide local accelerators pre-
computed weights. In this context, in-situmemristor learning
systems would have a broad range of applications, from
implementing mathematical kernels, to building bio-realistic
neural networks [5].

While simulated works explore various architectures,
hardware-implemented systems with in situ learning are typ-
ically one-layer neural networks [4], [6]–[8]. Recently, these
initial attempts have been extended to multi-layer percep-
tron (MLP) learning systems [9], [10], which implement
approximate versions of the backpropagation algorithm [11].
Despite these successes, such systems have important con-
straints: slow training/convergence especially as system
size (number of layers) grows [12], and deterioration rela-
tive to floating point performance due to imperfect device
effects. These include device non-linearity, asymmetry, lim-
ited writable resolution, and conductance drift/endurance
concerns [9], [13]–[15]. However, brains are able to learn
with synapses that are highly non-linear, have limited resolu-
tion, and behave stochastically [16], [17]. This suggests that
transposing learning techniques used in industrial machine
learningmight not be the best way tomake use of nanodevices
which play the role of synapses in learning systems.

One fast-learning alternative to fully back-propagating
neural networks that can nonetheless achieve promising per-
formance on a wide set of tasks in high-dimensional space,
and may require less stringent synapse properties, is the
Extreme Learning Machine or NoProp approach [18], [19].
Previous work has been done on porting ELM-inspired sys-
tems to nanotechnological substrates in order to take advan-
tage of high density and energy-efficiency, such as the
use of domain-wall nanowire logic systems [20], or resis-
tive memory crossbar systems [21], [22]; however, all pre-
vious proposals critically relied upon the energy-intensive
offsite computing requirement of computing a large matrix
inverse. As first proposed in [23], this inverse can be
locally and sequentially approximated on-chip; however,
until now this approach has never been rigorously bench-
marked compared to ELM software performance, or com-
peting nanotechnology-ready algorithms i.e. approximate
backpropagation.

Concretely, we contrast the efficiency of these categories
of neural networks built from memristive nanosynapses:
• Online MLP systems trained by standard back-
propagation, that learn according to a modern cost func-
tion, and with contrasting differential neuron designs

• Online NoProp systems, where the first layer realizes
random weights given intrinsic device-to-device varia-
tion, a simple neuron design optimized to reduce energy
consumption provides projections, and where the output

layer is trained sequentially via a sign-based implemen-
tation of the classic Widrow-Hoff learning rule.

Our studied neural networks always perform both weight
adaptation and inference operations in situ. We assess their
overall performance on a standard machine learning task,
with special attention paid to their requirements in terms of
nanodevice bit resolution, area overhead, and final projected
energy consumption over the learning experience.

We find that even if it requires more synapses and area, and
therefore might appear as a wasteful idea, the NoProp/ELM
system, by taking advantage of the natural properties of
nanodevices to realize random projection layers, can become
notably less demanding in terms of required second-layer
nanosynapse properties.Moreover, it can be trained using less
energy to reach similar performances than standard backprop-
agation systems, once device imperfections are taken into
account.

The paper consists of three sections: methodology, where
generic synapse models are introduced and the simulated
nanoelectronic ELM and MLP systems specified; results,
where the performance of these systems is demonstrated and
contrasted across a variety of parameters; and discussion,
where major themes are highlighted. A brief conclusion reit-
erates the implications of the work.

II. METHODOLOGY
A. ANALOG NANOSYNAPSES
Analog nanosynapses are nanoelectronic elements capable
of storing the weights of neural network architectures. They
should feature a dynamic mode (weights/conductances are
written) as well as a non-volatile mode (weights/conductance
are read). Device candidates for nanosynapses include float-
ing gate transistor structures [24], scaled capacitive cross-
point arrays [25], and in our case, resistive crosspoint arrays
where the analog state is stored physically as the conductance
of a nanodevice. In this case, weights/conductances can be
selectively modified based on the magnitude and/or polarity
of applied biases [26], [27]. In order to effectively use mem-
ristive nanodevices as analog nanosynapses, devices must
possess a large enough workable range, i.e., usable margin
to read and write between maximum conductance Gmax and
minimum conductanceGmin. They should also feature a large
number of analog addressable levels (multi-bit weight reso-
lution) within this range and good endurance, i.e. capability
for repeatable learning cycles without quickly aging or easily
destroying the device. Several varieties of industrial and aca-
demic devices including phase change memories [28]–[30],
filamentarymigrating oxide devices [31], filamentary devices
exploiting polymeric redox mechanisms [8], [32], and ferro-
electric tunnel junction synapses [33], meet these criteria and
may subsequently be integrated into dense crossbars capable
of on-chip learning in neuromorphic architectures.

In this work, we make use of generic nanodevice behav-
ioral models that can nonetheless account for critical physical
constraints confronting designers and users of memristive
devices as nanosynapses [14], [34], consisting notably of two
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mathematical models: ‘‘perfect’’ (linear), and ‘‘non-linear’’.
In the ‘‘perfect’’ model, conductance G evolves by a fixed
amount whenever the device experiences a programming
operation; it is changed by

1GL =
r

g− 1
. (1)

when a ‘‘positive’’ (or SET) programming operation is per-
formed, and by −1GL when a ‘‘negative’’ (or RESET) pro-
gramming operation is performed (r = Gmax − Gmin, and g
is the number of writable levels). In this model, all nanosy-
napses may have identical Gmin and Gmax value and writable
number of levels g; alternatively, the perfect model can also
consider variability by individualizing each device with dif-
ferent extrema andwritable depth parameters. There are some
emerging nanosynaptic devices which evolve approximately
linearly and symmetrically [32], [35], [36], and this model
serves as their approximation.

However, in the majority of candidate analog nanosy-
napses, SET and RESET behavior is non-linear as a func-
tion of number of programming operations and asymmetric
between these two modes for a variety of physical reasons.
In the first case, SET pulses have more adaptive power
(large 1G) when the device is low conductance and less
adaptive power (small 1G) as the device approaches its
maximum conductance; inversely, RESET pulses are more
effective when the device is in a high conductance state [37].
In the second, diverse classes of devices contrast a more
gradual/linear SET behavior with abrupt/non-linear RESET
behavior, hence they have asymmetric behavior between their
adaptive modes [8], [28]. To account for these phenomena,
we make use of a second non-linear and state-dependent
model. Conductance evolution now follows:

1GNL = β(G, r, g)exp(
−G
r

), (2)

with β dependent on all terms and unique for SET and
RESET:

βSET = αSET (Gmax − G)1GL (3)

βRESET = αRESET (G− Gmin)1GL , (4)

where αSET and αRESET are adjustable parameters of the
model, and thus, can be modified to implement various levels
of asymmetry.

In such a non-linear model, device states can easily cluster
near the conductance extrema of the devices. To form a basis
of comparison between the different models of nanosynapse,
αSET and αRESET constants were used to fit the curve with
more than g discrete states along the entire space, but only
g writable levels within the remaining, quasi-linear weight
space (clipped within 10% of either extremum).

B. NANOELECTRONIC LEARNING IMPLEMENTATION
To explore computing possibilities of networks built from
nanodevices the MNIST database of handwritten digits [38],
consisting of 60, 000 training digits and 10, 000 test digits,
was selected. The neural network architecture consists of:

• A number of input neurons, L. For the MNIST task,
L = 784 is set.

• A number of hidden layer neurons, M performing pro-
jection and/or gradient accumulation, whereM can vary
as a parameter.

• A number of output neurons N . Again for MNIST,
N = 10 is set according to the ten digit classes.

Like in standard computer vision tasks, images are vector-
ized before system presentation. A simple analog encoding
scheme maps images on a pixel-by-pixel basis into voltage
values. Given a numeric input channel or pixel of index i,
Xi a voltage within the range −Vread < Vi < +Vread is
assigned:

Vi = 2Vread(Xi/Lmax)− Vread, (5)

where Lmax is the maximum pixel intensity, and Vread is a
voltage that does not alter nanodevice conductances.

1) IN-SITU CROSSBAR INFERENCE AND ADAPTATION
As neural networks require negative weights, and conduc-
tances are physically positive values, we associate nanosy-
napses in pairs of differentially accessed devices. A crossbar
of closely connected paired nanosynapses can be sequentially
or simultaneously accessed in both programming modes,
when applied voltage pulses are greater than thresholds,
or inference mode, when applied pulses are below them.
Crossbars in this configuration can perform in-situ dot prod-
uct operations [31], [39], making them a natural building
block for on-chip neural networks.

This works because a collective output current is obtained
naturally through Kirchhoff’s laws when an array is voltage-
biased. For instance, if the differential synapses are arranged
along two output lines, one positive and one negative, then
the output at a given output neuron of index k will be:

Yk =
N∑
i=1

Wi+,kXi −
N∑
i=1

Wi−,kXi. (6)

where Wi+,k and Wi−,k are physically analog conductance
values (Gi+,k , Gi−,k ) (the bias can classically be included by
including a constant input).

Online learning in such a physical neural network takes
place by repeatedly alternating between inference and pro-
gramming modes. In the former, training images are applied
and the system output immediately demonstrates the error
cases; in the latter, appropriate programming pulses are
applied. During training stages, the final logic output of each
neuron,Ok , is a logic signal representing its sign (−1, 1). This
can be obtained using a circuit with a transimpedance ampli-
fier [8], [31]. When compared to expected Tk , the appro-
priate error case, if any, is revealed. For ANN applications,
during testing or inference stages, the sign-based output is
no longer appropriate. The analog values amongst all output
neurons of the ultimate layer must be compared, and the
output neuron with the highest value should be selected as
the output of the network. This approach, also referred to as
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max-out or winner take all, is a staple of learning operations in
neuro-computing.

Simultaneous pre-synaptic and post-synaptic voltage pro-
gramming pulses can naturally implement learning or
adaptation across a crossbar array. The precise voltage
pulse magnitude, polarity, and number of steps applied to
the periphery of the array to properly implement learn-
ing depends on the chosen nanodevice and learning policy.
Bipolar memristive devices require two consecutive array-
wide programming steps, while unipolar memristive devices
require only one, as illustrated in [40]. The combination
of post-synaptic programming voltage pulses Vp and pre-
synaptic, Vn, reduce error within all pair weights simulta-
neously, satisfying a simplified version of the Widrow-Hoff
learning algorithm:

1Wi,k = 1Gsign(Xi(Tk − Ok )), (7)

where1Wi,k is the weight change at each programming step
for the synapse connecting input i to output k , Tk is the
expected output, Ok the actual output, Xi the input value, and
1G the conductance change. Since 1G varies on a device-
by-device basis, every device has an intrinsic learning rate.
The rule is therefore not physically binary, but update polarity
relative to the combination of post and pre-synaptic error is
binary (has two directions). For clarity, we refer to the rule
hereafter as sign Widrow-Hoff (s-WH).

2) PROJECTION/REGRESSION SYSTEM (NoProp)
Our first considered system, NoProp uses a two-layer neural
network (Fig. 2(a)). The weights from the first layer Win are
random, and the state of the jth hidden neuron (ofM total) is
given by:

Hj = f (
N∑
i=1

Win,ijXi), (8)

where f is a non-linear activation function. As noted in [22],
in a nanodevice-based implementation, first layer random
weights can be efficiently physically realized by using the
natural dispersion of conductances around Gon and Goff. For
our simulations, we used the dispersion around the Goff state,
using measurements extracted from the physical devices
of [8]. Projections from this first layer are then transformed
from analog currents to voltages. Here, we used the simplest
activation function to implement: f (x) = sign(x).
In ex situ learning, the weights of the second layer Wout

are computed using a Moore-Penrose pseudo-inverse, or a
regularized form of ridge regression. Solving this pseudo-
inverse all at once or incrementally [41] in an off-chip con-
text involves substantial memory and computing overhead.
In addition, transferring collected activation functions to the
external computing cell and returning computed weights
incurs substantial energy expenditure. Here, we propose
a learning scheme especially adapted for in situ learning
on-chip. Our rule uses the high-dimensional projections from

Win and the labels supplied at the network’s output to imple-
ment the binary Widrow Hoff throughout the regression
layer Wout. This set-up is very similar to the rule proposed
in [42] for hardware ELM learning, but requires no external
normalization or learning rate parameters (these are provided
naturally by nanosynapse properties).

As in Fig. 2(a), when Wout is biased, post-synaptic cur-
rents (Yk ) are obtained and converted into voltage outputsOk .
When compared to expected Tk , error cases for every post-
synaptic neuron are immediately available and a conditional
pulse programming scheme can then correct the error case in
each pair. Note this learning rule is also sparse in the sense
that, if sign(Tk ) = sign(Yk ), as in the right-most column
of 2(a), no adjustments are taken in the synapses connected
to that sign-equivalent output neuron.

FIGURE 1. (a) and (b) show jump tables for device evolution starting at
Gon/Gmax and Goff/Gmin conductance respectively using the linear
model (Eqn. 1); (c) and (d) depict the same but for the non-linear case
(Eqn. 2) where 1G is now modulated by the device’s state relative to its
extrema.

In order to build a full range of projection weights available
for the hidden layer, we achieved best results with a scheme
called Simultaneous read-out (SRO). In SRO, pairs of projec-
tion lines are used, as in 2(a) (this doubles the area overhead
required for the projection crossbar). Read out in this case is
instantaneous, but the overhead is higher (crossbar requires
2M hidden layer read-out wires). This scheme is pictured
in Fig. 1(a).

3) MULTI-LAYER PERCEPTRON (MLP)
BACKPROPAGATION SYSTEMS
Our second considered system implements a multilayer per-
ceptron trained by backpropagation in nanoelectronic form

VOLUME 7, 2019 73941



C. H. Bennett et al.: Contrasting Advantages of Learning With Random Weights and Backpropagation

FIGURE 2. (a) Shows NoProp system, with input (dimension L, index i ) being projected to an M dimensional space (index j ) via fixed weights matrix
Lx2M; adaptive read-out performs multiple linear regression from M to the classification boundaries provided by the N ultimate output neurons
(index k). The bottom inset shows the Gaussian dispersions of conductance that can be used to naturally set the fixed weights; example data from [8].
(b) Shows MLP system with analog neuron and softmax training design, where error is now being backpropagated (arrows and purple computations). The
bottom insets show the differentiable functions and first derivatives we have considered.

(Fig. 1(b)). The architecture of the system is similar to
the NoProp system, with additional requirement that Win is
trained via backpropagated error. In this work, we chose a
cross-entropy (log-loss) cost function, with softmax one-hot
encoded outputs. The circuit output Ok is obtained as

Ok =
expγYk∑
expγYk

, (9)

where Yk is obtained as in Eq. 6, and γ is a normalizing
parameter. This choice indeed leads to excellent performance
in terms of machine learning [43], and can map relatively
naturally to crossbars of memristive nanodevices. The choice
of softmax leads to learning rules that are simplified with
regards to apparently simpler output choices. Following stan-
dard backpropagation calculations, the weights in the output
layer are adapted as:

1wj,k = −ηδj,k , (10)

where η is a learning rate, and δj,k = Hj(Ok − Tk ). For the
input layer,

1wi,j = −η
∑
k

δj,kwj,k f ′(Hj), (11)

where Hj is the activation of that middle layer neuron, and
f ′(Hj) its derivative. A drawback is that performing softmax
computations on-chip can be a significant cost in terms of
circuit overhead and energy. One such implementation that
is relatively efficient has been described in [44], yet the
computation cost of 690 µW is still high. For our energy
analysis, we have assumed a parallel and energy favorable
alternative, which exploits the natural exponential ability of
sub-threshold CMOS devices [45].

A critical constraint in on-chip backpropagation is that
activation functions must be differentiable. The sign func-
tion used in the projection network cannot meet this cri-
teria; therefore, we introduce and compare two additional

neural activation functions in the context of our MLP sys-
tems: Analog neurons, which may be the tanh activation
function, a rescaling of the classic invert logit (sigmoid )
function, or the sigmoid function itself, or Digital neurons,
in particular the rectifying linear function. To electrically
realize analog neural functions, we discovered a trade-off
between the smallest area circuits, e.g, a resistor and two
transistors [46], and those which provide the closest match
to the mathematical activation function. For the purpose of
our energy calculations, we then used a scaled version of the
circuit proposed in [47], which achieves reasonable efficiency
in energy and area (6 transistors) while better emulating the
function using triode and saturation regimes.

Another difference between the binary and analog differ-
entiable neurons involves the ease of computing and storing
their derivatives. While analog neurons can easily have com-
plex (e.g f ′(hj) = 1 − tanh(x)2) derivatives requiring many
bits to store, rectifier gradients are binary, which reduces con-
straints on accompanying analog CMOS circuitry. For sys-
tems using the rectifying linear function, which has achieved
state of the art results in machine learning [48], positive
outputs are instead projected by a constant α, hence dF

dx = α,
and negative ones by a constant β, thus dF

dx = β. Both are
visible in the bottom inset, Fig. 2(b).

The sum in Eqn. 11 used to propagate error backward, can
also be performed in-situ using the dot product operation [49],
as also visible in Fig. 2(b). Nevertheless, the calculation
of gradients for every pair of nanosynapses and its on-chip
implementation is non-trivial, and is a considerable circuit
overhead cost relative regards to the simpler NoProp system.

During learning, we adjust weights in accordance with a
backpropagation-friendly version of sign-WH (sign(δkxj,k ))
within both layers [50]. Additionally, in the following simu-
lations we always implement mini-batch stochastic gradient
descent by grouping training images into mini-batches of
b = 100 images, accumulating error while the n samples
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are presented, and applying a single programming cycle on
both layers (crossbars) after this multiple-inference period.
However, in hardware, minibatches requires associated mem-
ory or capacitor devices to store intermediate error gradients
(by storing only the sign, this complexity is greatly reduced).

C. TESTING AND SIMULATION METHODOLOGY
The testing phase reveals the generalization ability of the sys-
tem and consists of repeated inference operations. Unknown
samples are applied one at a time for T total tests, passing
through Win, activating each respective hidden layer neu-
ron, and passing through Wout to produce EO. The answer
is max( EO); if predicted neuron k is the actual label, counter c
is incremented. The final testing percentage is 100 c

T .
Our nano-synapse models have been integrated within a

crossbar simulator. Because the devices are non-volatile dur-
ing the inference steps, only active moments (programming
windows) track the evolution of weights and use fixed time
integration. Devices in learning layers are always initialized
in a random state between each of their respective extrema.
To smooth the effect of random initial conditions (device
conductances) upon learning outcomes, Monte Carlo sim-
ulations were run with different seeds. The mean of five
system’s learning performances is shown in the following
section unless otherwise noted. For off-chip comparisons,
scripts were written in Python, integrating functions avail-
able in the TensorFlow packages to build software ANNs
with floating point synapses [51]. Software gradient learning
system weights were always obtained with the same activa-
tion function and hidden layer dimensions, so as to make
a fair comparison with the companion nanosystem, and an
appropriate, constant learning rate. For off-chip imported or
software comparisons, NoProp second-layer weights were
always obtained analytically via regularized ridge regression.

III. RESULTS
A. EFFECTIVENESS SIGN-BASED ON-CHIP TRAINING
Previous work [52], [53] has argued that sign-based gradient
learning can serve as a satisfactory on-chip approximation
for fully featured gradient descent in multilayer perceptron
systems. We confirm this result, as our MLP results with
a constant learning rate and using tanh and ReLU hidden
neurons can achieve within 0.2% and 0.8% of the results
obtained with software synapses in Tensorflow, as visible
in Table 1. For the first time, we analogously confirm the
validity of our sign-WH appropriate on-chip learning with
NoProp/ELM systems.We have directly contrasted the ability
of our proposed system, which learns locally with only pre-
synaptic activation and post-synaptic error values obtained
from labels as in Fig. 2(a), to a comparison system which
collects hidden layer activations, computes output weights
off-chip analytically and then imports them before inference.
As visible in Figure 3, we find that the on-chip method
can perfectly approximate this result with linear synapses,
while requiring about twice as many examples. In addition,

TABLE 1. Direct comparison of systems.

FIGURE 3. On-chip learning policies: sign Widrow-Hoff, L2, and L1, are
compared to each other and inference results when output weights
computed off-chip. In all cases, M = 3000, g = 256, no learning rate used.
Normalization is provided by the device properties.

we have contrasted our proposed sign-WH approach with
two competing and more complex on-chip learning policies.
In contrast to learning by the proposed sign(Xi(Tk − Ok )),
in L1 learning, weight updates are scaled on a neuron-by-
neuron basis by Xiabs(Tk − Ok ); and L2 learning, or mean
square error, where weight updates are scaled asXi(Tk−Ok )2.
In addition to their extra complexity, as visible in Figure 3,
these rules perform inferior to sign-WH learning for both
linear and non-linear devices in the second layer.

B. BEST PERFORMANCE ON TASK
Fig. 4(a) demonstrates the convergence of in-situ NoProp
systems of varying synapse quality alongside a fully software
neural network. As visible, this ex-situ learning approach is
faster to converge; at M = 3000, maximum 94.3% perfor-
mance is analytically obtained given around 50, 000 samples.
In contrast, a full three epochs or 180, 000 training samples
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FIGURE 4. (a) Shows convergence of several studied online-learning systems shown in contrast to their software cousin systems, which
learn with floating point software synapses and gradients. Pictured MLP systems use analog (tanh) activation (b) Shows reliance of the
two considered online algorithm(s) and their two varieties of synaptic evolution on synaptic resolution g in the adaptive layer(s) (all
synapses have equivalent g).

are required to achieve on-chip convergence, which slightly
outperforms the software system at 94.5%.

Using the mini-batch stochastic gradient descent learning
policy (mini-batches of b = 100 images), cross-entropy and
softmax error as the cost function and following sign-based
gradient descent, we examined the success of several MLP
systems using varying hidden layer activation functions. The
strongest performing system used tanh; this system achieved
superior performance on the test set of the MNIST database
as compared to the NoProp system as well as others, at mean
96.3% recognition- but only when the system is built from
perfect (linear) devices. As visible in Fig 4(a), this system
approaches the performance of a software batch learning
system after 6-7 epochs (360k-420k training samples). When
using the non-linear model, this performance advantage dis-
appears. Moreover, as visible in Table 1, the generic (ReLU )
and best rectifier system struggle to completely match soft-
ware results. Moreover, these systems slightly under-perform
the NoProp systems when the perfect model, and sub-
stantially under-perform them when using the non-linear
model.

C. DEPENDENCE ON DEVICE/SYSTEM PARAMETERS
In the earlier results, g = 256 or 8 bit synapse resolution
was assumed, but it is not always the case that emerging
nanosynapses are of this quality. In addition, estimations of
emerging nanosynapse bit resolution can substantively vary
depending on the device class and the measurement style.
As a concrete example, for filamentary ReRAM devices
using oxygen anions, values as high as 6-7 bit [54] and
more modestly 4-5 bit [55] have been reported. Given this
uncertainty and the importance of this constraint, we vary
g between 2 bits (binary operation) and 9 bits (g = 512).
Fig. 4(b) shows the dependence of the best performing MLP
system (using tanh activation) and NoProp system within this
range, for both linear and non-linear synaptic behavior cases.

At 4 bits, NoProp systems approach 80% accuracy, which is
still poor, but MLP systems fail catastrophically. At 5 bits,
NoProp systems perform within 5% of their maximum pos-
sible accuracy, while MLP systems still miss 20% of the
examples on the test set. At 6 bits, NoProp systems are only
within 1-2% of their maximum achievable values, even given
non-linear device behavior;MLP systems learningwith linear
synapses require 8 bits (g = 256) to do the same, while
9 bit (g = 512) is required to compensate for learning with
non-linear devices. This is a significant contrast which is
explained by the varying requirements of the two learning
algorithms. While Widrow-Hoff constructs a hyperplane to
separate classes, gradient systems traverse a more complex
error landscape, and dependencies are created between the
layers during the training process.

Uniquely for MLP learning systems, synapse requirements
for Win and Wout can be contrasted. Fig. 5(a) demonstrates
this analysis visually for the case of the tanh hidden layer
activation and perfect synapses, where the x axis is the first
(input) layer depth g1, the y axis is the second(output) layer
depth g2, and the z value at each place on the grid search is
the generalization ability on the MNIST test set. As visible,
the requirements for synapse depth are notably higher in the
first (Win) layers rather than the second (Wout) layers. For
instance, less than g = 100 can be an appropriate value for
the second layer weight resolution if first layer resolution is
high; however, any system with such low resolution in the
first layer would necessarily perform poorly. At this stage,
we are not certain whether the higher synapse quality require-
ment of the first layer is a property of the backpropagation
algorithm itself, or a numerical effect as δEk is transformed
into δEj via the vector-matrix multiply (δEk ∗Wout).
Varying the hidden layer sizeM can have a strong influence

on the quality of the learning outcomes. Fig. 5(b) shows that
only NoProp systems with larger hidden layers generalize
well on the test set. Only when M = 2L is benefit over the
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FIGURE 5. (a) Demonstrates a grid search of possible synapse depths in two adaptive layers of an MLP system; the coloring represents the
average performance of n = 5 systems learning with synapses at the resolution of those coordinates, as noted in the colorbar.
(b) Demonstrates dependence of all considered systems on the hidden layer dimension M; g is always fixed at 8 bits for all systems in
these simulations.

one-layer parallel perceptron system evident. At very small
hidden layer sizes, performance is actually inferior to one-
layer, direct task presentation (Table 1). Yet at dimensions of
3L and higher, the system improves towards 95% classifica-
tion accuracy, in the case of linear devices, and 93.5%, for
non-linear devices.

The quality of generalization of gradient learning systems
also depends on M . As visible in Fig. 5(b), analog differen-
tiable activation functions perform optimally at a smaller size,
between M = 100 and M = 500, whereas rectifier systems
perform at their best between M = 600 to M = 1500.
In the former case, too large systems suffer from over-fitting,
as a number of over-complete neurons leads to confusion in
learning outcomes. In the latter case, rectifier hidden layers
implement a form of implicit ‘‘drop-out’’- a form of nor-
malization that battles over-fitting. Explicitly, synapses in
the first layer connected to activations for ’dead’ (negative)
neurons - ReLu (β = 0), or asymmetrically small outputs
(β < α) do not adjust, or hardly adjust to weight updates,
respectively.

D. RESILIENCE TO DEVICE NON-IDEALITIES
As suggested in [56], non-volatile memory neural networks
are relatively in-sensitive to global device imperfections e.g.
inter-device variability, while being very sensitive to global
effects that steer the ability of all synaptic devices to adapt
appropriately. In this section, we quantify these sensitivities
in terms of the two considered learning algorithms.

1) SENSITIVITY TO INTER-DEVICE VARIABILITY
We consider two components of device-to-device variabil-
ity: increasing variability within device-to-device writable
range as extrema values (GMax, GMin) become increasingly
disperse, and increasing variability within device-to-device
writable capacity g. In the first case, every nanosynapse now

samples randomly from a Gaussian distribution of possible
maximal and minimal conductance values; in the second,
every device draws a unique g value from a Gaussian dis-
tribution centered around g = 256. In comparison to the
simulations producing Fig. 4(b) and Fig. 5(a), which assigned
g uniformly to assess overall impact of synaptic depth, this
assesses sensitivity to g’s inter-device variability.

As variability in these parameters increases, every device
will reach increasingly different extrema during the pro-
cess of its adaptation, and adapt at different rates, respec-
tively. As visible in Fig 6. (a),(b), the NoProp systems are
notably more resilient to both variability effects, with the
MLP-inspired system being mildly harmed by g dispersion,
but significantly harmed by the extrema dispersion. Extrema
variability is especially difficult to cope with in systems with
non-linear synapses since many devices can easily become
‘stuck-on’ at high GMax values, disturbing correct inference.
This can be partially accounted for by clipping the weights
to a common, quasi-linear region away from these extrema,
as in [8].

2) SENSITIVITY TO PROGRAMMING MODE ASYMMETRY
During programming-mode asymmetry, devices fundamen-
tally respond differently when being SET (increasing con-
ductance) as opposed to RESET (decreasing conductance).
We have simulated this effect by assuming RESET-mode
scaling by an asymmetric variable ζ . For non-linear devices:

βRESET = ζ ∗ αRESET (G− Gmin)1GL , (12)

And for linear ones, which is normally symmetric, asymme-
try has been added by specifying a different 1GL value for
RESET operations, as weighted by the respective ζ value.
As visible in Fig. 7(a), even small asymmetry values can
quickly overwhelm the adaptive power of both considered
online learning systems, but gradient learning systems suffer
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FIGURE 6. (a) Demonstrates resilience to increasing variaiblity in nanosynapse analog capacity; every adaptive device possesses slightly
different g values at the σ dispersion shown around mean g = 256 (b) Demonstrates resilience to increasing variability in extrema values
Gmax, Gmin, which both vary at the σ dispersion shown. Shaded regions depict standard deviations from mean points.

FIGURE 7. (a) Shows system performance as ζ scales RESET behavior asymmetrically to SET; (b) shows effect of cycle-to-cycle noise on
every device’s individual update at distribution width σ . All systems learn with g = 256; NoProp has M = 3000, MLP M = 300.

more in comparison. For instance, when ζ is 1.25, or RESET
operations are 125% more powerful than SET operations,
MLP performances with non-linear synapses fall below 75%,
while the best performing, NoProp with linear synapses,
is still at about 91%. At more dramatic values, e.g. ζ = 1.5,
all considered systems generalize less well than a single layer
network learning with symmetric synapses.

3) SENSITIVITY TO WRITE-CYCLE STATISTICAL VARIATIONS
Finally, we consider the case where individual device-by-
device updates are different than the ideal ones implemented
according to the algorithm, whether due to random device
effects, or imperfect electrical behaviors in the crossbar,
e.g. parasitic capacitance or currents. This cycle-to-cycle or
write variability is added by

1Wi,k = c ∗1Gsign(Xi(Tk − Ok )), (13)

where c is a small scalar value that has been drawn from
a Gaussian distribution with its mean from an average 1G
value considered by calculating globally, for the perfect

model, or from the initial device value, for the non-linear
one, and the σ as varied. Note that, as the device updates are
very small, at large σ , sign-flips contrary to the s-WH rule
are possible. As visible in Fig. 7(b), broadening the write-
cycle variability has a non-negligible effect on the ability
of the network to generalize. However, only in the non-
linear MLP case does the performance drop off drastically,
i.e. to substantially less than a single layer network could
achieve.

E. LEARNING ENERGY ANALYSIS
Aprimary energy cost during the learning phase of the system
comes from the programming of the memories. We col-
lected write energy budgets, along with typically smaller read
energy budgets, from the literature or computed it using the
approach in [57], for a suite of candidate emerging nanosy-
napses that have sufficiently low-voltage operation modes,
and may be scaled appropriately for ultra-dense learning set-
ups. Specifically, we examined two ‘perfect’ or highly linear
emerging devices: the polymeric ENODe device described
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in [32] and a novel lithium non-volatile transistor (NVT)
device called ‘LISTA’ [58], alongside two more non-linear
but fully scaled existing NVM devices, the ferroelectric
tunnel memristor [33], and the tantalum oxide ReRAM
device [59]. Notably, switching programming pulses for each
of these (Vprog) are 10 pJ , 10 aJ , 1.48 pJ , and 12.5 pJ
respectively (note that LISTA’s low write pulse is somewhat
compensated by a far larger read pulse energy). Assuming
an access device on each output neuron minimizes parasitic
current losses [60], [61], each learning mode step requires
a serial (column-by-column) write in both analog arrays for
the MLP system and the second only for NoProp, and fully
parallel inference/read operation in both systems. By scaling
these basic operation costs up to respective system dimen-
sions, as well as including the additional energy costs for
the studied CMOS companion systems (ultra-low power sign
neurons for NoProp systems, digital or analog hidden layer
neurons for MLP systems, and additional soft-max operation
for MLP), we have estimated energy costs for learning.

Regarding the neuron designs, our NoProp digital design
uses the simple, low-power CMOS inverter design proposed
and successfully demonstrated in [62]. This system has a total
energy footprint of less than 10 fJ per neuron. For analog
gradient systems, our studied sigmoid circuit uses input in the
form of current and gives a output in form of a voltage closely
modeling the sigmoid function. It is based on a modified
version of the circuit provided in [47] at the CMOS design
node of 90 nm. In order to verify functionality, DC analysis
was performed while varying input current from −100µA
to 100µA; the results showed an almost complete swing
between 0V and 1.25V . For obtaining power values, transient
analysis was performed using a pulsed current source with
100 ns period for a duration of 10 µs (100 cycles). These
yielded the following leakage and dynamic energy values,
respectively: 40µW , and 43.8 pJ .
For the digital hidden layer neuron design, a 16-bit fixed-

point ReLU VHDL activation function block was designed
based on an earlier version proposed in [63]. Estimates for
the block design were extracted with dynamic power based
on activity file extracted from testbench, taking into account
leakage power. The energy estimates for leakage power and
dynamic energy were 4.2µW , and 0.151 pJ , respectively.

Table 2 shows final energy costs for a variety of devices
and highlighted learning policies (note that, as the ENODe
device had almost equivalent energy costs as the TaOx, it is
not shown). It demonstrates that No-Prop learning systems
always save energy compared to MLP systems within the
same device class. The energy superiority of NoProp systems
stems from three basic advantages: energy-savings of faster
convergence (Fig. 4(a)),, energy-savings from only having
to adjust weights in one of two layers, and energy-savings
from ultra-low power sign neurons, which almost wholly
offset the impact of the very large M in these systems.
Table 2 also emphasizes that the choice between single-
example and batch-style programming, as well as the cho-
sen device’s elementary programming costs, can have more

TABLE 2. Energy fingerprint of systems.

significant implications on the final energy costs of learning
than just this learning policy choice, however.

Fig 8(a) shows the final energy and performance fin-
gerprint of all considered nanosynapse multi-layer learning
systems as a function of the device’s core read/write costs:
driven by learning policy and the device model (TaOx and
ferroelectric employed the non-linear analytical model, while
ENODe and LISTA used the perfect/linear one) along with
the required system periphery. As visible, a wide variety of
outcomes are possible, with the most promising ones rep-
resented by the academic LISTA device. However, NoProp
learning with the Ferroelectric and TaOx synapses represents
a promising application point as well, as it avoids the low-
performance, high-energy area that several of the systems
built with the same synapses fall into.

Fig. 8(b),(c) demonstrates a per-batch energy budget
(b = 100, that is 99 inference steps followed by one program-
ming event) for the Ferroelectric NVM device for NoProp (b)
andMLP analog (c) learning policy. Meanwhile, Fig. 8(d),(e)
demonstrate the same policy contrast but for the ENODe
NVM device. Note that, in both cases peripheral neuron
energy is negligible in the NoProp case but significant in the
MLP case. However, the relative dominance of read v. write
energy budgets is device-dependent; for instance, ENODe has
far more equivalent read-write operation costs. In the case
of batch-learning, this information could be used to calibrate
trade-offs between accuracy or energy-savings. Promisingly
for on-chip MLP set-ups, the softmax operation, which may
have been a large budget with a standard CMOS design,
constitutes a negligible part of the per-batch programming
budget when using the proposed sub-threshold design.

Note that our objective here was not to provide a definitive
estimate of power for these systems by including all acces-
sory sub-circuits and modules as in [64]. However, as these
outstanding sub-systems, e.g., accessory circuits for batch-
learning, or the logic core for on-chip learning, would be
constantly implemented regardless of policy, these power
estimates should still serve as meaningful benchmarks for
base operations of these NVM accelerators.
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FIGURE 8. (a) Scatter plot showing policy and device accuracy and energy outcomes for all considered families of analog nanosynapses and the two
contrasting learning policies (along with contrasting activation choice for MLP); for these estimates, candidate systems have been calibrated with
different hidden layer M and number of training examples, according to results shown in Table. 1. Only batch learning estimates are shown. (b)-(e) show
single batch energy budgets; (b) and (c) for the ferroelectric memristor, and (d)-(e) for the polymeric ENODe NVM.

F. IMPROVING GENERALIZATION ABILITIES OF
MEMRISTIVE NoProp SYSTEMS
Deep networks have achieved better generalization and
hence, performance on competitive tasks, in comparison to
single-layer (shallow) networks [65]–[67]. Recently, there
has been significant interest in building deeper ELM-like
systems- or Multiple Hidden-Layer (M-HL) ELM systems
that allow for depth and online training, while reducing
training iterations as compared to full backpropagation net-
works. In order to achieve this, such systems require an auto-
encoder system [68] at an earlier part of the network to
encode representations of the task data more informative than
random weights. While typical auto-encoder systems require
the equivalent of training labels during pre-training, recent
proposals have demonstrated a hierarchical auto-encoder
approach toM-HLELM learning inwhich unsupervised filter
banks, rather than fine-tuned backpropagated gradients, set
projections used by the final regression system [69], [70].
This approach bears some similarity to convolutional neural
networks (CNNs), and indeed, has been demonstrated to
achieve state-of-the-art performance on typical image tasks.
We have designed and tested a partially and fully on-chip
version of an M-HL ELM learning system which uses a
single unsupervised auto-encoder as pre-processing for the
later primary systems, as shown in Fig. 9. This architecture
is similar to that of deep belief networks (DBNs), however it
does not require the use of contrastive divergence.

In our proposedM-HLELMarchitecture, a random layer is
followed by an auto-encoder layer of dimension Mae, which
trains prior to the second system. Subsequently, the training
data is pre-processed by the auto-encoder layer and presented
to a ELM classifier with hidden layer dimensionMelm. In our
simulations, weights for projection layers are randomly ini-
tialized based on device-to-device variability (OFF-state) for
memristive devices as before. Each layer-to-layer connection
can be realized using separate crossbars, though a single large
layer with random device states can be re-used during the
prior and primary training stages.

FIGURE 9. This figure demonstrates the M-HL ELM system, which uses a
random initial projection, an ELM auto-encoder, and finally, a standard
random projection and regression system (equivalent to the SHL-ELM
system already detailed). Temporally, the Auto-encoder is trained first,
and then serves as pre-processor to the secondary classifier during
primary learning.

TABLE 3. Performance of multiple hidden layer (M-HL) memristive
systems.

We consider two cases: one in which the devices in the final
output (regression) layer are written following collected hid-
den layer activation (off-chip); a second, in which s−WH pol-
icy implements local learning (on-chip). As seen in Table 3,
minimal loss in learning performance (< 1%) exists between
the software version of the M-HL ELM system, and the
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system using off-chip written memristive synapses. In the
online scheme, an additional 1% accuracy is lost, consider-
ing a large ultimate hidden layer size M , and assuming the
nanosynapses in the ultimate layer have a resolution of 8 bits
and are linear/quasi-linear. This case is somewhat different
than the single hidden layer nanodevice ELM systems, where
wewere able to show complete convergence between off-chip
collected/computed weights and the online approach with
s-WH rule. Preliminary analysis suggests this slight loss can
be ameliorated by modulating auto-encoder Mae and final
layerMelm dimension. For instance, as in Table 3, expanding
Melm brings more accuracy; we expect a broader parameter
search could show parity. Nonetheless, even at the smaller
Melm dimension case shown, we still see a greater than 1%
gain in generalization on the test set relative to a simple
memristive ELM. While the proposed M-HL ELM system
achieves inferior results to alternative memristve CNN pro-
posals, the system we simulated was a proof of concept and
atypically used only one unsupervised AE unit; these units
can be stacked/cascaded, expanding computational capabil-
ities. Thus, while these results confirm the possibility of
deeper memristive NoProp architectures and exceed MLP
system performance, comparisons with more elaborate back-
prop models (e.g., CNN) and DBNs remain a future research
task.

IV. DISCUSSION
A. RELATIONSHIP TO STATE-OF-THE-ART
NVM GRADIENT LEARNING
A key result is that, unlike NoProp, memristive gradient
systems learning with a sign approximate of the gradient
(s-WH in both layers as sign(δkxj,k )), require g > 256 or eight
bit weight resolution to do so effectively ( losing 1% or less
compared to software comparison systems). This observation
is consistent with the machine learning literature, which has
suggested that less than 8 bit weight resolution can signif-
icantly impede network generalization and accuracy when
gradient updates are binarized [71], [72]. In [37] a parameter
analysis shows that g = 64 or 6 bits are sufficient for
NVM backprop online learning. This is not necessarily an
inconsistent result as the updates used to manifest backprop
in that case are precisely calibrated, which requires addi-
tional overhead on the core to calculate magnitudes of δkxj,k
for every row and/or column. Lastly, by separating out the
relative synapse depth requirements of the first and second
layer, we have also shown that the stringency requirement
for g is higher in the earlier layers than it will be in the later
ones. A natural extension of this work would be to examine
if the trend continues in deeper networks (i.e. more than
1 hidden layer) using gradient learning; this could limit the
possibility of building deeper gradient learning systems using
our proposed energy-efficient update scheme. On the other
hand, more complicated and energy expensive choices could
be taken.

As in other works, we show MLP gradient learning sys-
tems are especially fragile to non-linear weight updates.

For instance, the best-performing MLP system (containing
fine-tuned analog differentiable neuron) lost nearly 5% when
taking this natural effect in many emerging nanosynapses into
account. While there are potential mitigation strategies on
both the device-level, e.g. building more linear synapses [58],
and on the circuit level, e.g. designing multiple weight-
range synapses [73], they may require unacceptably slow sys-
tem operation or significant additional peripheral circuitry,
respectively. Other studies have shown that, when nanode-
vices are paired with additional CMOS devices such as lin-
ear capacitors and access transistors [74], or a non-linear
cell-selector [75], a complete mitigation of asymmetric non-
linearity issues can be obtained. While the energy and area
overhead of these approaches at the systems-level is unclear,
it is certain an increasing bit cell size larger than 1R or 1T1R
could limit the ultimate density of memory accelerators.

In contrast to proposals for deep neural networks [72],
which binarize neuron activations and weights but require
highly analog gradient values to be accumulated, our
approach binarized batch gradients but always maintains
highly analog weights. This contrast highlights that ultra-
dense implementations of gradient learning can binarize in
most places yet must store a highly analog value somewhere.
Our work highlights that doing so within emerging nanosy-
napses themselves is a good strategy, given that these devices
are reasonably linear and symmetric.

The idea of implementing differentiable systems with only
scalar derivatives is appealing and has worked well in stan-
dardmachine learning. However, our analysis has highlighted
the difficulty in incorporating this approach in in-situ nanosy-
naptic learning systems, whether binary (ReLu) or quasi-
binary (PrReLU) activation nodes are chosen. Other works
have suggested memristive MLP systems using binary acti-
vation functions should perform better than we showed here,
yet these assumed either analog updates [76] or complicated
pulse-based learning schemes [52]. In our ultra-low power
set-up, we find that rectifier systems require an intermediate
layer size between analog MLP and NoProp; this outweighs
any energy benefit gained from the simpler neuronal circuitry
itself.

B. ADVANTAGES AND CONSTRAINTS
OF NVM NoProp LEARNING
The online learning NoProp learning systems we analyzed
were only able to converge to software quality results with
sufficient writable depth, and perfect (linear) evolution. Yet,
unlike gradient-learning alternatives, the required writable
depth requirement is gentle, with 6 bits g = 64 being ideal
but 4-5 bits (g = 16 − 32) performing well too. In [77],
4 bits were shown sufficient to implement weights executing
simple STDP (temporal correlation) learning, which is a sim-
ilar operation to s-WH. In addition, a memristive two-layer
system using the locally competitive algorithm in the first
layer (unsupervised) and supervised learning in the second
layer also required between 4-6 bits depending on device con-
siderations [78]. These consistent results could inspire further
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research on the potential advantages of random/unsupervised
pre-processing layers cooperating with later supervised ones.

We have shown that the NoProp systems were more
resilient to learning with devices that update weights non-
linearly than their gradient-learning competitors, and that
such systems are comparatively resilient as all critical nan-
odevice parameters ( GMax, GMin, writable depth g) become
increasingly variable (Fig. 6). Lastly, our energy analysis
confirmed that NoProp systems always use less energy to per-
form in-situ learningwhen considering the same nanosynapse
and learning policy, but that accessory circuit considerations
as well as learning style (batch v. single-example) can easily
have as much of an affect on the final energy fingerprint as
this choice.

One of the difficulties involved in realizing NVM-powered
NoProp/ELM hardware systems will be to mitigate the
significant additional area overhead need to realize larger
hidden-layer neuronal arrays. Possible routes to confront this
challenge are time-multiplexing, to allow a smaller physi-
cal layer to do the work of many more neuronal functions,
or further exploring the use of ultra-dense emerging devices
as nano-neurons.

V. CONCLUSION
In this work, we have designed an energy-efficient in-situ
learning rule and system inspired by software-based
NoProp/ELM systems, and found that it can successfully
compete with imported weight (inference-only) memristive
as well as software alternatives. Using the rule, we obtained
state-of-the-art results for single hidden-layer memristive
ELM: 94.5%, and multiple hidden-layer memristive ELM
(M-HLELM): 96.83% on theMNIST task, the latter of which
was competitive with results obtainedwith amemristiveMLP
system with similar constraints (96.3%.)

We also found that NoProp/ELM systems learning with
this rule obtain special properties. Foremost, they manage to
learn with synapses with less than 8 bit quality, while this
serves as a necessary minimal requirement for MLP online
learning systems learning with the sign-based learning rule.
Additionally, we discovered that device non-linearity has
a differential impact between NoProp/ELM v. MLP online
learning styles. While only perfect/linear devices can fully
emulate software results in all cases, NoProp/ELM systems
are notably more resilient to systems learning with non-linear
synapses. Lastly, we found that device-to-device variability,
asymmetry and cycle-to-cycle noise again have a differential
impact between the two learning approaches. NoProp/ELM
systems seem to be more resilient to several of the effects;
however, no system is immune to them.

An energy estimation of online learning in memristive
MLP and NoProp systems- taking into the array’s core oper-
ation costs as well as key peripheral CMOS systems for a
few candidate nanosynapses classes- showed that NoProp
systems save energy head-to-head versus competitor MLP
systems. Total savings varied between 70x-120x, depending
on the device class. However, the highest performing system

with only one hidden-layer still uses backpropagation of
error, and the effect of chosen nanodevice synapse and CMOS
neuron designs can easily outweigh learning policy gains.

Overall, our results suggest that the NoProp/ELM learn-
ing system we have introduced here may be an uncon-
ventional but attractive option for neuromorphic designers.
By exploiting a natural device property usually seen as an
enemy - device-to-device variability- and locally perform-
ing computation based on their projections with an energy-
efficient learning policy, we have suggested a new pathway
towards low-cost inference and learning in edge computing
systems.
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