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ABSTRACT Obstructive sleep apnea (OSA) is a respiratory disorder characterized by interruption to
breathing during sleep. Usually, the OSA is more severe in the supine sleeping position. Recent studies
also demonstrated that the head position may play an important role in the pathophysiology of the OSA.
Therefore, monitoring the sleeping body and the head position has high clinical importance to optimize
the treatment of the OSA. In this paper, three machine learning approaches were used to detect the head
position during sleep in infrared images. In the first two methods, supervised classifiers were trained to
estimate the head position based on different feature sets extracted from infrared images. In the third method,
three different convolutional neural network (CNN) structures (ResNet50, MobileNet, and Darknet19) were
trained to detect the head position during sleep. To detect the body position, the same CNN architectures
were trained on infrared images. Overnight sleeping data (sleep duration = 5±1 h) from 50 participants
(age: 53 ± 15 years, BMI: 29 ± 6 kg/m2, and 30 men/20 women) with various levels of OSA severity as
measured by the apnea–hypopnea index (AHI = 25 ± 29 events/h and OSA severity: 12 normal, 13 mild,
11 moderate, and 14 severe) were collected for this paper. The models were trained on the data collected
in one laboratory room from half of the participants and tested on the data from the other half collected in
a different laboratory room. The best performing model (Darknet19) correctly estimated the lateral versus
supine head position with 92% accuracy and 94% F1-Score and the lateral versus supine body position with
87% accuracy and 87% F1-Score.

INDEX TERMS Computer vision, machine learning, position detection, sleep apnea, non-contact
monitoring.

I. INTRODUCTION
Sleep apnea is a respiratory disorder characterized by
interruption to breathing during sleep. Obstructive sleep
apnea (OSA) is the most common type of sleep apnea which
is caused by the total (apnea) or partial (hypopnea) collapse
of the pharyngeal airway during sleep, blocking the flow
of air to the lungs [1], affecting an estimated 10% of the
adult population [2]. The severity of OSA is indicated by
the Apnea-Hypopnea Index (AHI), the number of apneas
and hypopneas per hour of sleep. Sleep apnea severity is

The associate editor coordinating the review of this manuscript and
approving it for publication was Thomas Penzel.

categorized as: normal (AHI<5), mild (5≤AHI<15), moder-
ate (15≤AHI<30), and severe (AHI≥30) [3]. OSA increases
the risk of cardiovascular diseases, stroke, and abnormal
glucose metabolism [4]. More importantly, up to 60% of
patients with OSA are not compliant to the current treatment
options [5]. A recent study found that the overall healthcare
costs of patients with untreated sleep apnea were nearly
25% higher than those patients undergoing treatment [6].
The severity of OSA is often associated with sleeping in the
supine position, meaning sleeping while facing upwards [7].
It was shown that positional therapy to change the posture
from supine to lateral can reduce the severity of OSA [8].
In addition, other studies have shown that changing the head
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position to lateral also plays an important role in decreasing
the AHI [9], [10].

Positional therapy involves wearing an item, such as a shirt
with a ball sewn in the back to encourage sleeping in the
lateral position. Although positional therapy is simple, its
limitation is that it is difficult to know for certain whether
the patient remained in the desired position throughout the
night. This motivates the need for a sleeping position mon-
itor that could provide feedback to patients and physicians.
In addition, analyzing changes in sleep position could have
applications in assessing sleep quality and irregular sleeping
patterns [11].

One approach to monitor the body and/or head position
during sleep is to attach a sensor to the body/head of the
patient. There are several examples of such contact meth-
ods, e.g. using accelerometer/gyroscope [12]. These contact
methods are sometimes inconvenient during sleep and could
potentially alter sleep conditions due to the addition of a
physical device.

The alternative is to use methods and sensors which are
not in direct contact with the person to monitor their sleeping
position. In one proposed solution, Liu et al. used pres-
sure sensors under a bedsheet to produce high-resolution
pressure maps, which were then analyzed to extract a set
of geometrical features for sleep posture classification [13].
However, pressure sensors are expensive (>$10K), pre-
venting this approach from acquiring large-scale popularity.
To reduce the cost, Hsia et al. replaced pressure sensors with a
Force Sensing Resistor (FSR) [14]. They used Bayesian clas-
sification to estimate body posture. However, reducing the
number of sensors lowered the accuracy to 78%. To improve
performance, Huang et al. extracted feature from FSR sensor
and video camera and used support vector machines (SVM)
to detect body position [15]. With recent improvements in
computer vision techniques, Liu et al. were able to only
use a camera to capture images/videos of individuals during
sleep in order to predict sleep position [16]. They then used
histograms of oriented gradients (HOG) to extract features
from the images and the sleeping position was classified
with SVM. However, regular cameras cannot be applied in
low light sleep environment. To address this issue, a more
recent solution by Liu et al. used an infrared camera to
capture the videos [17]. A pre-trained convolutional neural
network (CNN) – namely the convolutional pose machine
(CPM) [18] – was then repurposed for sleeping position
detection via fine-tuning. Although CPM obtained good per-
formance for human pose tracking, the performance of the
developed method under various sleeping conditions, such as
when the body is covered or partially covered by a blanket,
was not investigated.

To address these challenges, we have implemented a
CNN-based image analysis algorithm to detect both body
posture and head position during sleep. Also, we have val-
idated the performance of the algorithm when the body was
covered with blankets.

II. DATA COLLECTION
The data were collected in two separate rooms at the sleep
laboratory of the Toronto Rehabilitation Institute. An Infrared
camera (a Point Grey Firefly MV, 0.3 MP, FMVU-03MTM)
was positioned about 1.4 m above the bed, which recorded
infrared videos of 50 participants sleeping overnight (Age:
53±15 years, BMI: 29±6 kg/m2, 30 men and 20 women,
AHI= 25±29 events/hour, sleep duration= 5±1 hours, OSA
severity: 12 normal, 13 mild, 11 moderate, and 14 severe).
Videos were recorded at a resolution of 640 × 480 and
480 × 640 (depending on the camera orientation landscape/
portrait during recording) at 30 frames per second.
The room was illuminated by an infrared light (Raytec
RM25-F-50). Simultaneously, full overnight polysomnog-
raphy was recorded for clinical diagnosis of sleep apnea
and AHI. The University Health Network Research Ethics
Board and the University of Toronto Research Ethics Board
approved this study. Participants submitted informed written
consent before taking part in the study. Figure 1 illustrates
(anonymized) sample image frames from this dataset.

FIGURE 1. Sample supine (left) and lateral (right) frames.

Since consecutive frames of the videos are not indepen-
dent, many of them would not contain any additional infor-
mation for the purposes of training a machine learning model.
Including them will only increase the computational cost and
might lead to over-fitting. Large movements (e.g. shifting
from supine to lateral, arm or leg movement) were auto-
matically detected by thresholding the total displacement
of tracked featured points [19] over one second. For each
participant, one image frame was selected at the beginning
of the night and also after each large movement, resulting in
a total of 4,113 image frames.

In gold standard polysomnography, sleep technicians man-
ually annotate the body positions only, by visually inspecting
the video that was recorded as part of polysomnography test.
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Accordingly, a technician manually annotated the head and
body positions (lateral/supine) in all captured video frames.
The criteria for annotating body posture was based on the
position of the shoulder. The body position was labeled as
lateral if one shoulder was lifted off the bed and any part of
the back (torso posterior) was visible to the left or right of the
shoulder. For head annotations, the position was considered
lateral if one ear could be seen and only one eye was visible.
In partial turns when both eyes were visible, image was
labeled as lateral if tip of nose was seen closer to outer corner
of the eye compared to the inner corner. If the body or head
was covered, technician made judgments based on compar-
ing visible parts with previous or subsequent images where
body/head was visible.

The recorded data of 25 participants (all in one room)
were used in the training and validation sets, which includes
2,113 frames (body labels: 45% lateral and 55% supine, head
labels: 71% lateral and 29% supine) and the remaining 25
(all recorded in another room) comprised the test set, includ-
ing 1,998 frames (body labels: 48% lateral and 52% supine,
Head labels: 64% lateral and 36% supine). The training and
test data sets were chosen to be from two different rooms
to make sure lighting and camera position did not impose
any kind of bias on our learning. This ensures generalization,
i.e. reported results already incorporate when images are
captured in a different setup with a different background and
camera placement.

Our dataset includes many images where sleeping posi-
tion are between supine and lateral, and the face is par-
tially or completely covered, which posed a challenge for
training CNNs. To help the network learn face features from
clearly distinct facial and body orientation, the mugshot
dataset [20] – that does not have any occlusion, poor lighting,
severe out of plane rotation, and in between supine and lateral
images – was used to augment the data for training CNN
models. The dataset consists of 3,248 images of subjects
facing left, right and front, which were used as additional
lateral (left and right) and supine (front) training images. The
sample of mugshot images are shown in Figure 2.

III. METHODOLOGY
We only seek to predict supine and lateral positions, since it is
not clinically useful to distinguish between the left and right
lateral positions. We also do not include prone position in our
labels since it is rare, as reported in the literature [21]. Our
dataset followed the same trend and contained only 13 prone
positions out of 4,126 video frames.

A. HEAD POSITION DETECTION
We compare two machine learning approaches for detecting
the head position (distinguishing supine from lateral): engi-
neered features vs. learned features. Two different sets of
engineered features were explored. In the first method (pres-
ence features), Haar feature-based cascade classifiers [22]
were used to detect nine binary features: the presence/absence
of left eye, right eye, both eyes, left ear, right ear, nose,

FIGURE 2. Sample of mugshot images.

mouth, frontal face, and side-view face. For instance, if the
(pre-trained) Haar-cascade classifier detects a ‘‘left eye’’ in
the image, the corresponding binary features would be 1
(or 0 otherwise). Each of the Presence Features is a weak
indicator for the head position; e.g. an ear is more likely to
be detected in the lateral position, while both eyes are more
likely to be detected in the supine position. The combina-
tion of these individually weak indicators could results in a
strong classifier. The overall steps of this model are shown
in Figure 3. The second method (landmark features) uses
the 3D coordinates of 68 facial landmarks detected via the
hourglass deep convolutional network [23]. The hourglass
network was fed the bounding box of the head, which was
automatically detected using the Dlib library [24]. Landmark
points were translated to place the nose tip at the origin
and were normalized to the nose length by dividing by the
nose length. Nose length was calculated as the distance
between top of the nose and nose tip. The overall steps of this
model are shown in Figure 3. Extracted features from each
method were used to train five different binary classifiers to
detect supine versus lateral head positions. Classifiers used
were linear and radial basis function (RBC) support vector
machine (SVM), logistic regression, multilayer perceptron,
and random forest.

For logistic regression, SVMs, and random forest clas-
sifiers, Scikit-learn [25] was used and hyper parameters
were tuned by coarse to fine grid search. For the multilayer
perceptron classifier, TensorFlow [26] was used and hyper
parameters were tuned by 40 random searches. Three-fold
cross validation was used to tune hyper-parameters of each
classifier. Data was divided into training and test sets based
on the rooms in which videos were recorded. That is, all
videos collected in one room were assigned to the training
set and all videos collected in the other room were assigned
to the test set. The training set was further split into training
and validation partitions based on the participants. That is,
all images from each participant were placed in one of the
validation or train sets.
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FIGURE 3. Presence Features (middle column) and Landmark Features (right column) are used to detect the head position (supine vs. lateral).

In addition to exploring engineered features for head posi-
tion detection, we also trained a CNN for this task. As before,
the mugshot dataset was used to augment the training set.

Artificially rotating (or translating, or sheering, or scaling)
the images by a small amount is a common method employed
in training deep neural networks as it improves robust-
ness with respect to small changes in test data [27]–[29].
Here, all training images were rotated from −30◦ to 30◦ in
step of 5◦ to simulate a range of possible body orientation
during sleep. Three different CNN architectures were used:
1) Darknet19 [30], 2) MobileNet [31], and 3) ResNet50 [32].
The details of the best performing architecture (Darket19, See
Section IV) are shown in Table 1. Leaky rectified linear units
(leaky ReLu) were used as the activation function in all of
the convolutional layers in all three architectures. A linear
activation function was used for all the fully connected layers.
Stochastic gradient descent with a momentum of 0.9 and
polynomial decay with power of four were used to optimized
the cross entropy cost function during training. An initial
value of 0.01 for the learning rate, 0.0001 for the decay rate,
and 128 for the batch size with subdivision of 2 were used.
Figure 4 illustrates the overall process.

To improve accuracy, e.g. when whole body and face are
covered by a blanket, when the detection confidence score is
lower than a threshold (60% in the experiments), the algo-
rithm checks the next and previous video frames and chooses
the prediction label with the highest confidence.

TABLE 1. Darknet19 architecture.

B. BODY POSITION DETECTION
To estimate the body position (distinguishing supine from
lateral), the recorded images were not cropped and the entire
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FIGURE 4. Convolutional neural network method to detect head and body position. The training set contains image data from 25 participants amounting
to a total of 2,113 image frames and the mugshot dataset which includes 3,248 images. The test set consists of 1,998 image frames from the remaining
25 participants.

image was used instead. Our dataset comprises three dif-
ferent image sizes including 256 × 256 for Mugshot and
640 × 480 and 480 × 640 for our infrared images. However,
training the CNN requires constant image size. All images
were therefore padded (with a white background) to the same
size of 640 × 640. The same three CNN architectures that
were used for head position detection were also used for body
position detection. The overall steps of this model are shown
in Figure 4.

For comparison, the HOG-based method [16], developed
by Liu et al., was also evaluated on our test dataset as a
baseline. We evaluated both the pre-trained model (as trained
by the authors) and also a re-trained model using our training
data.

IV. RESULTS
In line with previously published reports [7], [9], [10], in our
data of 50 participants, the difference between the partici-
pants’ AHI in supine vs. lateral sleep positions was statis-
tically significant (Wilcoxon signed-rank: W statistic = 112,
p < 10−5). As shown in the Table 2, although participants
spent more time in lateral position, the supine AHI is higher
than lateral AHI in all sleep apnea severity groups.

On average, participants changed their head position
15±10 times and body position 9±6 times during an average
of 5±1 hours of sleep.

For detecting the head position, results of the best classifier
(random forest) trained on the engineered feature sets and
result of the three CNN networks are shown in Table 3.

TABLE 2. Sleep duration and AHI in different sleep position by different
severity groups.

TABLE 3. Head position detection results (%).

The best performing model (Darknet19) achieved 88% accu-
racy, 87% precision, and 96% recall.Body position detec-
tion results are shown in Table 4. The best performing
model (Darknet19) achieves similar recall (95%), but a lower
precision (79%). Confusion matrices of the best models
(Darknet19) are shown in Figure 5 and Figure 6 for head and
body position respectively.

The best performing algorithm (Darknet19) could process
the whole night (5±1 hours) sleeping data of each patient
in 98±40 seconds on GPU(GeForce GTX 1080 Ti).
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TABLE 4. Body position detection results (%).

FIGURE 5. Head position labeling confusion matrix using Darknet19.

FIGURE 6. Body position labeling confusion matrix using Darknet19.

V. DISCUSSIONS
Both engineered feature sets that were explored had poor
performance in detecting the head position, as compared to
the CNN models. The landmark features performed better
than the presence features, but they rely on an accurate
detection of the face. Further analysis of the data revealed
that Dlib face detector failed in 65% of the images in our
dataset, of which 34% were in the supine position and the
remaining 66% were in the lateral position. The algorithm
returned a constant number for the cases where it failed to
detect a face. The classifiers then learned to label these points
as lateral based on the distribution of the data. Therefore,
the reported 66% accuracy of a random forest classifier using

TABLE 5. Head position detection with and without a blanket (%).

TABLE 6. Body position detection with and without a blanket (%).

the landmark features over-represents the true performance
of the model. By contrast, the best performing CNN model
(Darknet19) achieved promising results, even in cases when
the person was partially covered by a blanket. To further
investigate this, the images in the test set were divided into
three groups based on whether the person was covered by
a blanket or not. Tables 5 and 6 show the performance of
our trained Darknet19 model on these subsets. As expected,
performance drops when both the head and the body are
covered by a blanket, e.g., head position detection accuracy
is 89% when no blanket is used, but 74% when both head and
body are covered.

While the CNNmodels trained to directly estimate a supine
vs. lateral model performed well, the CPMmodel repurposed
to detect full body position during sleep [17] did not perform
well in our data. This was primarily due to the fact that in the
majority of the cases (84%) the person was partially covered
by a blanket and the method was unable to recover full body
position. To illustrate this issue, we show sample output of
the algorithm in two sample frames (one supine and one
lateral body position) in which a blanket is used (Figure 7).
While the CPM model tries to detect 14 landmark points on
the body (e.g. the wrists, the elbows, the shoulders, etc.),
the repurposed model is only able to find the head position
correctly. Across all the test images, the repurposed CPM
model was able to correctly locate the head in 37% of the
image frames when the person was in a lateral body position,
and in 66% of the image frames when the person was in a
supine body position.

To evaluate the influence of the mugshot data on our per-
formance, we examined training the CNN models without
adding the mugshot dataset. This led to increased training
loss and the model did not converge. Adding the Mugshot
dataset increased the number of easy examples (i.e. no occlu-
sions, and no in-between cases) and, as shown in Section IV,
resulted in a model that successfully distinguished supine
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FIGURE 7. Repurposed CPM [17] performance on real data. The heat maps show detected body parts for each sample image is as follows.
First row: different stage of joint detection; Second row: pose visualization, head, neck, right shoulder, right elbow, right wrist, left shoulder,
left elbow; Third row: left wrist, right hip, right knee, right ankle, left hip, left knee, left ankle, background belief map.

versus lateral positions with high accuracy. We also explored
whether the mugshot dataset alone was sufficient in training
a model to accurately classify the sleeping position.

We trained the best performing model (Darknet19) with
only the mugshot dataset (i.e. without our infrared images
collected during sleep). This model achieved an accuracy
of 64% for head position detection and 57% for body position
detection (vs. 92% and 87% accuracy when both the mugshot
dataset and our sleep dataset were used).

Our study has some limitations. One limitation is a small
sample size (N = 50). Another limitation is the subjective
definition of supine and lateral when the position of the

head and body are in-between the two positions. In addition,
determining the true head and body position was difficult in
the video frames in which the person’s body was entirely cov-
ered by a blanket sheet. Ignoring these extremely challenging
images frames in the test set results in a large gain in accuracy
from 85% to 87% for body position and from 88% to 92% for
head position. The F1-Score is improved from 86% to 87%
for body position and from 91% to 94% for head position.

VI. CONCLUSIONS AND FUTURE WORK
In this work, we developed an algorithm that could auto-
matically and accurately detect both body posture and head
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position during sleep. The algorithm was validated vs. the
clinical gold standard of manual annotation using overnight
sleeping data of 50 individuals with various levels of sleep
apnea severity. The algorithm performed well in detecting the
head position and the body even when the body was covered
by a blanket. The developed method could be used to monitor
sleep positions overnight in order to provide feedback for
positional therapy and to assess sleep quality and irregular
sleeping patterns.

Future work involves collecting more data to further
improve accuracy and also implementing the resulting algo-
rithm in the form of a mobile application.
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