
SPECIAL SECTION ON PROXIMITY SERVICE (PROSE)
CHALLENGES AND APPLICATIONS

Received April 16, 2019, accepted May 9, 2019, date of publication May 30, 2019, date of current version June 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2919651

Stochastic Computation Offloading and Scheduling
Based on Mobile Edge Computing
XIAO ZHENG 1,2, MINGCHU LI 1,2, MUHAMMAD TAHIR1,2, YUANFANG CHEN 3,
AND MUHAMMAD ALAM3
1School of Software, Dalian University of Technology, Dalian 116620, China
2Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian 116620, China
3School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China

Corresponding author: Yuanfang Chen (chenyuanfang@hdu.edu.cn)

This work was supported in part by the National Nature Science Foundation of China under Grant 61572095, Grant 61877007, and Grant
61802097, and in part by the Project of Qianjiang Talent under Grant QJD1802020.

ABSTRACT To improve the quality of service (QoS) for mobile users (MUs) and the quality of experi-
ence (QoE) of mobile devices (MDs), mobile edge computing (MEC) is a promising approach that offloads
a part of the computing task from MDs to nearby MUs. In this paper, we study computation offloading
involving multiple users and multiple base stations (BSs), where the MD that is connected to the MU is
wirelessly charged and BSs are available to be selected for computation offloading. We model the process of
solving an optimal computation offloading policy into a Markov decision process (MDP), in which our goal
is to maximize the long-term utility performance. Therefore, a computation offloading policy is obtained
based on the energy queue state, the task queue state, and the channel states between the MUs and BSs.
To address the problem of high dimensionality in the state space, we decompose the MDP into a series
of single-agent MDPs with reduced state spaces and apply an online local learning algorithm to learn the
optimal state value functions. Inspired by the structure of the utility function, we propose an algorithm based
on combining Q-function reconstruction with the post-decision state. It is proved that the proposed algorithm
can converge to an optimal computation offloading policy. The experimental results show that our algorithm
achieves significant performance in computation offloading and schedule compared with the other three
basic policies.

INDEX TERMS Quality-of-service (QoS), quality of experience (QoE), mobile device (MD), mobile edge
computing (MEC), Markov decision process (MDP), post-decision state.

I. INTRODUCTION
The rapid development of the Internet of Things (IoT) has
brought about exponentially growing types of terminal con-
nections and mobile data traffic and more diverse service
scenarios [1]. Low latency, high energy efficiency, high reli-
ability and high density connectivity have become essential
requirements for future mobile communication systems [2],
also accelerated the development and implementation of the
fifth generation (5G) mobile communication system. Com-
pared to the fourth generation (4G), the greatest technological
shift lies in the objective of its service, which changes from
the communication between people to an objective of a com-
prehensive connection between things. 5G is an extension

The associate editor coordinating the review of this manuscript and
approving it for publication was Zakirul Alam Bhuiyan.

of 4G, which is just another phase in the evolution of existing
wireless communication technologies, where more emphasis
is placed on user experience. In the 5G era, mobile internet
services, in addition to mobile phones and tablets, have added
many new business scenarios, such as autonomous driving,
virtual reality, augmented reality, and cloud desktops. 5G can
also be applied to real-life IoT scenarios, such as intelligence
smart grids, smart agriculture, smart cities, and environmental
monitoring [3]. The emergence of these new services places
greater demands on the delay, energy efficiency and relia-
bility, etc. Needless to say, the existing 4G communication
technology cannot meet the low-latency, high-efficiency and
high-reliability application requirements [4]. In the context
of the above applications, the academic community has pro-
posed a corresponding solution, which is to use mobile edge
computing (MEC) for computing and storage [5]. MEC is an

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

72247

https://orcid.org/0000-0003-4740-7695
https://orcid.org/0000-0001-7969-6415
https://orcid.org/0000-0002-1557-087X

X. Zheng et al.: Stochastic Computation Offloading and Scheduling Based on MEC

innovative computing mode in addition to centralized cloud
computing, which deploys computing, storage, caching, etc.
at the edge of the network and closer to the user, regardless
of geographical or network distance. This strategy not only
reduces the wasted resources of the traditional cloud com-
puting back-haul link, greatly reduces the delay. In addition,
this strategy meets the expanding computing requirements of
terminal devices and ensures high reliability when processing
tasks. Inmodern years, more computationally intensive appli-
cations have emerged and become popular. However, MDs
are often limited by resources such as the battery capacity
and local CPU computing power. Therefore, when perform-
ing computationally intensive tasks on MDs, the quality of
experience (QoE) of the computing tasks can be greatly
affected by the limited processing power of the device and
ultimately fail to meet the quality-of-service (QoS) require-
ments of MUs [6]. By offloading a portion of the application
tasks from MDs to nearby MEC, a promising alternative
method, which reduces the computational task execution
time and may inevitably prolong the lifetime of the MDs
can be provided. This paper mainly considers computation
offloading at an MEC that is composed of a set of MDs, and
each MD is wirelessly charged. Recently, significant work
has been conducted on the design of computation offload-
ing decision-making. Such research is mainly based on a
one-time optimization, which fails with respect to long-term
computational offloading performance. For example, in [7],
Wang et al. proposed a direct multiplicative alternative algo-
rithm to maximize revenues by optimizing the computation
offloading decision, content cashing policy and resource allo-
cation in an infinite energy multi-user MEC system with the
computational latency constrained. In [8], Wang et al. used
Lagrangian duality to minimize the overall system energy
consumption. Hu et al. in [9] designed a two-stage method
based on joint energy and time allocation when considering
cooperative computational offloading in an infinite energy
assisted transmission MEC system.

For a multi-user MEC system, computation offloading
requires the wireless transmission of data. Designing a wire-
less radio resource between an MD and the MEC over a
common wireless radio access network (WRAN) is quite a
challenge. Many computation offloading heuristics should
be considered, including but not limited to the channel state
over time, the task arrival and the energy state of the MD
in the existing dynamic environment [10]. Liu et al. [11]
proposed an optimal computation offloading delay problem
for anMDP and designed an efficient one-dimensional search
algorithm to find the optimal solution. However, this method
relies on the state of the previous channel in addition to the
task arrival status. Mao et al. in [12] used the Lyapunov algo-
rithm to form an optimal computation offloading policy in
the MEC system for an MD with wireless energy harvesting.
Meanwhile, the same method is used to consider the energy
delay trade-off in the case of computation task offloading
by Jiang and Mao [13] and Liu et al. [14]. Lyapunov opti-
mization can only achieve a near optimal solution, and so

Xu et al. [15] proposed a reinforcement learning (RL) [16],
[17] algorithm to optimize the computation offloading such
that knowledge of the previous network states is not required.
However, [15] only considered the computation offloading of
a set of MDs in a BS, failed to consider user movements, and
did not guarantee random offloading. In addition, Chen et al.
in [18] and [19] respectively proposed a scheme for multi-
user computation offloading using the game algorithm and
the Lyapunov algorithm. These were all based onmobile edge
cloud computing and were static.

When the MEC encounters an ultra-dense network or a
DQN, multiple BSs (with different data transmission states)
are selected to offload a given computation resource. In this
case, the explosion in the state spacemakes conventional rein-
forcement learning algorithms infeasible. Moreover, wireless
charging is integrated into the MEC system to obtain sustain-
able computing performance, which makes the design of the
stochastic computation offloading policy more challenging.
This paper proposes a stochastic computation offloading pol-
icy combining the Q-valued function with the post-decision
station.

The main contributions of this paper are as follows:
(1) We propose the stochastic computation offloading

policy in the WRAN in which the time-varying computa-
tional resources and communication qualities are taken into
account.

(2) To address the problem of the state space, we resort to
an online local learning algorithm based on combining the Q-
valued iterative function with a post-decision state to find an
optimal computation offloading policy.

(3) The decision process of each MU is modelled as a
single-agent Markov decision process (MDP). Then, we pro-
pose a linear decomposition method for each-MU MDP to
reduce the computational complexity of each MU.

(4) Finally, we use experimental results to validate the
theoretical study of this prove that the proposed algorithm
outperforms three baseline schemes.

The rest of this paper is organized as follows.
Section 2 introduces the system models and problem formu-
lation. Section 3 describes the problem of designing an opti-
mal computation offloading decision policy as an MDP and
proposes the optimal decision policy. Section 4 presents the
specific details of the online local learning algorithm. To ver-
ify the proposed solution, we use experiments to validate
our solution in different situations considering two aspects
in Section 5. The conclusions of the paper are highlighted
in Section 6. The notations of this paper are summarized
in Table 1.

II. SYSTEM MODEL
In this section, as shown in Figure 1:

We shall consider a virtualized WRAN containing a set of
BSs and a set of MDs. Both MEC services and traditional
communication transmission services are supported by the
public physical network infrastructure. It is also assumed that
the MD is wirelessly charged, the energy that is obtained is

72248 VOLUME 7, 2019

X. Zheng et al.: Stochastic Computation Offloading and Scheduling Based on MEC

TABLE 1. Key expressions used in this paper.

FIGURE 1. Diagram depicting Mobile-Edge Computing (MEC) in a wireless
radio access network (WRAN).

stored in an energy queue, and a centralized control (CC) unit
is responsible for all control decisions in the WRAN. MEC
is placed at the edge of the network to provide rich resources
for the MUs. The MU strategically offloads a computation
task to the MEC via a BS. The case in which an MU may
suddenly leave while offloading its computation task is also
considered. The goal of this paper is to design an optimal
computation offloading decision policy. The time is divided
into equal-length time slots δ (in seconds) and is indexed by
an integer i ∈ N .

The computation offloading task from the user across
the time slot is an independent identical distribution of a

Bernoulli random variable with a parameter λ ∈ [0, 1]. The
size of the computing task for each user is (µ, ν), where µ
denotes the input data size (bits), and ν denotes the total
number of CPU cycles required to complete the computing
task. A computation task in the queue can be either scheduled
on the localMDor offloaded it to a remoteMEC server. At the
beginning of each decision time slot i, an MU makes a
joint decision policy (si, ei), where si ∈ {0 ∪ B} represents
the computation offloading decision policy, and ei ∈ N is
the amount of energy to be allocated. If the user performs the
local computation on their own device, namely, si > 0. When
the MU chooses to offload the computation task to the MEC
service via a BS, then si ∈ B and si = 0. Note that when
ei = 0, no task will be executed in the queue.

When an MU executes the local computation at a MD
during a decision time slot i, i.e., si = 0. Let f i be the
computation capability (i.e., CPU cycles per second) of the
MU. Moreover, the CPU-cycle frequency is constrained by
f i ≤ f maxCPU . The time required for local computation is as
follows:

t imobile =
ν

f i
. (1)

where ν represents the total number of CPU cycles required
to complete the computation task.

We can compute the achievable data rate of the user who
chooses to offload computation tasks to the MEC via a BS:

r i = W · log2(1+
gib · p

i
tr

E
). (2)

Let gib be the channel gain between the MU and the BS
b ∈ B during the decision time slot i, E is the received aver-
age power of the interference plus the additive background
Gaussian noise, and

pitr =
ei

t imobile
, (3)

is the transmittance power where

t itr =
µ

r i
. (4)

is the time that the task input data is transmitted. In addition,
ei and µ indicate energy unit allocation by the MU and the
input data size, and t imobile and r i represent the number of
CPU cycles required to complete a computing task and the
achievable data rate of users, respectively.

When an MU chooses to offload the computing task to an
MEC, i.e, si ∈ B. The association between the MU and BS
has to be established for the first time.We assume that the user
processes a computing task locally or no task is executed at
the decision time slot i−1. Then, the association between the
user and the BS will not occur, namely, mi = mi−1. In this
case, no handover will be triggered. let mi ∈ B be the system
status between the user and the BS during the decision time
slot.

mi = b · 1(s(i−1)=b,b∈B) + b · 1((s(i−1)=0)∧(m(i−1)=b)). (5)

VOLUME 7, 2019 72249

X. Zheng et al.: Stochastic Computation Offloading and Scheduling Based on MEC

The channel state transmission is modelled as a finite state
discrete Markov chain. Moreover, when the MU randomly
moves, the MU can choose different BSs so that a handover
time between the two BSs will occur. Let the handover time
be

hi = ζ · 1(si∈B)∧(si 6=mi), (6)

where ζ (in seconds) is the time for processing the signal
when one handover happens.

In addition, we assume in this paper that the battery capac-
ity at the MD of the MU is limited and the received energy
units across the time horizon take integer values. Let qie be
the length of the user energy queue at the beginning of the
decision time slot i, which evolves according to

qi+1e = min
{
qie − e

i
+ aie, q

max
e

}
, (7)

where qmaxe ∈ N denotes the battery capacity limit, and aie ∈
N denotes the number of energy units received by the end of
the decision time slot i.

III. PROBLEM FORMULATION
In this section, we study the problem of effective computation
offloading and the optimal solution in the MDP framework.

An important indicator for evaluating the computation
offloading task is the time delay experience. A computing
task’s execution time can be seen as the period when the
task arrives in the task queue until it is processed and leaves
the task queue. Thus, the experienced time includes the task
queue time and the data processing time. Therefore, we obtain
the task execution time as follows:

t i =

t imobile, if ei > 0 and si = 0;
hi + t itr , if ei > 0 and si ∈ B;
0, if ei = 0.

(8)

When the queue is full during the decision time slot, i.e, 0 <
t i ≤ δ, the computing task will be discarded and ensure that
the queue will not flow.

We denote a computing task discard as follows:

ρi = max
{
qi − r i + ai − qmax , 0

}
, (9)

where r i is the number of tasks that were transferred at the
decision time slot i.

When the computing task can be processed locally during
the decision time slot in the queue, the dynamics of the
computation task queue of the MU can be defined as follows:

σ i =
{
qi − 1(0<t i≤δ) + a

i, qmax
}
. (10)

When a computation task remains in the queue for a decision
time slot, a delay will be incurred by the task, that is, δ sec-
onds. Let the queuing delay during the decision time slot i
equal the length of a task queue, i.e.,

ηi = qie − 1{t i>0} (11)

If the MU moves randomly during the computation offload-
ing time slot, it will generate the payment for the local execu-
tion and computation offloading at the MEC service remote.
This payment is denoted as follows:

υ i=α(min
{
t i, δ

}
) · 1(si=0) + β(min

{
t i, δ

}
− hi) · 1(si∈B),

(12)

where α ∈ R+ represents the price that is paid for the local
computation in each time unit, and β ∈ R+ represents that
for the MEC service in each time unit.

The network state of theMU during each decision time slot
i can be expressed as χ i = (mi, gi, qi) ∈ X = {0, ...,B} ×
{×b∈BGb} × {0, 1, .., qmax}, where gi = (gib : b ∈ B).
At the beginning of time slot i, the MU strategically selects
a joint task offloading action (si, ei) ∈ A = {(0) ∪ B} ×{
0, 1, ...,Q(e)

}
.

We define an immediate utility at the decision time slot i
to measure the task computation qualities for the MU as,

u(χ i, (si, ei)) = α1u(1)(σ i)+ α2u(2)(ηi)

+ α3u(3)(υ i)+ α4u(4)(ρi), (13)

where we suppose that u(1)(·), u(2)(·), and u(3)(·) are positive
monotonically deceasing functions, u(1)(·), u(2)(·), u(3)(·) and
u(4)(·) measure the satisfactions of the task execution delay,
the task queuing delay, the payment of accessing the MEC
service and the computation task drops, respectively; and
α1, α2, α3, α4 ∈ R+ are the wights that combine the different
types of functions with the different performances into a
common utility function. To unify the notation expression,
we rewrite u(1)(·), u(2)(·), u(3)(·) and u(4)(·) as u1(χ i, (si, ei)),
u2(χ i, (si, ei)),u3(χ i, (si, ei)) and u4(χ i, (si, ei)).
Definition 1: A joint task computation offloading and

energy allocation decision policy 9 is expressed as the map-
ping function:9 : X → A. Namely,9 is the mapping from a
user state to an action. Moreover, theMU determines the joint
decision action 9(χ i) = (9(s)(χ i),9(e)(χ i)) = (si, ei) ∈ A
according to 9 after considering the network state χ ∈ X
during the beginning of each decision time slot i.
Given a joint decision policy 9, the

{
χ i : i ∈ N+

}
rep-

resents a controlled Markov chain with the following state
transmission distribution probability. The joint decision pol-
icy 9 induces a probability distribution over the sequence of
global network states

{
χ i : i ∈ N+

}
, and hence a probability

distribution over the sequences of the per-time slot utility
{u(χ i, (si, ei)) : i ∈ N+}. From the assumptions on the
system states, the channel states and the energy states, χ i, i ∈
N+, is Markovian with the following transition probability:

Pr
{
χ i+1|χ i,9(χ i)

}
= Pr

{
mi+1|mi,9(χ i)

}
· Pr

{
qi+1|qi,9(χ i)

}
·

∏
b∈B

Pr
{
gi+1b |g

i
b

}
, (14)

where Pr{.} represents the probability of a user’s action,
9(χ i) = (si, ei) ∈ A represents the global channel state,

72250 VOLUME 7, 2019

X. Zheng et al.: Stochastic Computation Offloading and Scheduling Based on MEC

and si and ei represent the joint task offloading and energy
allocation policies, respectively.

Taking the expectation with respect to the sequence of each
time slot utility, the expected long-term utility of an MU for a
given initial state (χ)1 = χ can be characterized as follows:

V (χ ,9)=E9 [(1− γ) ·
∞∑
i=1

(γ)i−1 · µ(χ i,9(χ i))|χ], (15)

where χ = (s, q,G) ∈ X , G = (gb, b ∈ B), γ ∈ [0, 1)
denotes the discount factor, and (γ)i−1 denotes the discount
factor to the (i − 1)-th power. µ(χ i,9(χ i)) is the per-slot
utility over the sequence of network states χ i under action
9(χ i) at decision time slot i. V (χ ,9) is also called the state-
value function for the user in the state χ under 9.
Problem 1: The purpose of the user is to design an optimal

decision policy 9∗ that maximizes the expected long-term
utility, V (χ ,9), for any given initial network state χ , which
can be formed by in the next

9∗ = argmax9V (χ ,9), ∀χ ∈ X . (16)

V (χ) = V (χ ,9∗) is called the optimal state-value function,
∀χ ∈ X .

The decision policy attaining the optimal state-value func-
tion can be expressed as solving the following Bellman’s
equation [20]: ∀χ ∈ X ,

V (χ) = max
(s,e)

(1− γ)u(χ , (s, e))
+ γ

∑
χ′

Pr
{
χ ′|χ , (s, e)

}
V (χ ′)

, (17)

where the u(χ , (s, e)) represents the achieved utility when a
joint decision policy (s, e) ∈ Y is executed under network
state χ , and χ ′ = (q′, s′, g′b) ∈ X represents the next network
state with g′ = (g′b : b ∈ B).

We express the right-hand side of equation (16) as

Q(χ , (s, e)) =

(1−γ) · u(χ , (s, e))
+ γ ·

∑
χ′

Pr
{
χ ′|χ , (s, e)

}
· V (χ ′)

 (18)

∀χ ∈ X .
The optimal state-value function V (χ) can be directly

attained from

V (χ) = max
(s,e)

Q(χ , (s, e)). (19)

By replacing equation (18) with equation (17), we then
obtain

Q(χ , (s, e)) = (1− γ) · u(χ , (s, e))

+ γ ·
∑
χ′

Pr
{
χ ′|χ , (s, e)

}
· max
(s′,e′)

Q(χ ′, (s′, e′)), (20)

where we let (s′, e′) ∈ A be a joint decision policy carried
out under the network state χ ′. In fact, the computation task’s
arrival and the amount of energy that can be obtained by the
end of decision time slot are not available in advance.

The solutions of equation (16) are generally based on the
policy iteration or value iteration where it is necessary to fully
know the channel state transfer information, the computation
task’s arrival status and the obtained energy status. It is a great
challenge to not know the previous channel transmission
states and data arrivals. To address the challenge, we define
an online local learning algorithm based on combination of
the Q-valued function reconstruction with a post-decision
[21], [22] to learn the optimal decision policy. Here, the newly
arrived data are independent of the channel state and the
computation offloading decision policy.

IV. FINDING THE OPTIMAL POLICY
In this section, we will address the optimal computation
offloading decision policy by combining the Q-valued func-
tion reconstruction with the post-decision state.

At the current decision time slot, the post-decision state of
an MU is defined by χ̃ i = (s̃i, g̃i, q̃i− r i) ∈ X , where g̃i = gi

and 9̃(χ̃ i) = 9(χ i)−9∗(si, ei).
Motivated by an additive structure, we can linearly decom-

pose the utility function in (12) into two parts, corresponding
to α1 u(1)(·)+ α2 u(2)(·)+ α3 u(3)(·) and α4 u(4)(·). The state
transmission probability from χ i to (χ i)′ can be expressed as
follows:

Pr
{
(χ i)′|χ i,9(χ i)

}
= Pr

{
(χ i)′|χ̃ i

}
Pr
{
χ̃ i|χ i,9(χ i)

}
= Pr

{
g̃i
}
Pr
{
9 ′(χ i)− 9̃(χ i)

}
, (21)

where Pr
{
χ̃ i|χ i,9(χ i)

}
= 1. Let Ṽ (χ̃ i) be the each-MU

optimal post-decision state value function given by:

Ṽ (χ̃ i) = (1− γ)u4(χ i, (si, ei))

+ γ ·
∑

(χ i)′∈X
Pr
{
(χ i)′|χ i

}
V (χ i)′. (22)

At the beginning of the computation offloading decision
time slot i, because the data arriving later are independent of
the previous state, we only consider the last utility, i.e., the
amount of data to be transmitted, Ri, during scheduling time
slot i is expressed as follows:

Ri = max
(s,e)

{
(1− γ)(α1u(1)(χ i, (si, ei))+ α2u(2)(χ i, (si, ei))

+ α2u(3)(χ i, (si, ei))+ Ṽ (χ̃ i)
}
. (23)

Combining equations (12) and (16), we can get

V (χ i) = max
(s,e)

{
(1− γ)(α1u(1)(σ i)+ α2u(1)(ηi)

+ α3u(3)(υ i))+ Ṽ (χ̃ i)
}
. (24)

VOLUME 7, 2019 72251

X. Zheng et al.: Stochastic Computation Offloading and Scheduling Based on MEC

Through equation (12), we find that the optimal state value
function of each user can be directly attained from the user’s
optimal post-decision state value function that maximizes all
feasible computation offloading policies.

To the best of our knowledge, due to the randommovement
of the user and at the end of the scheduling decision time
slot, new arrival data are not available in advance, and so
the data are discarded at this time. In this case, we do not
directly compute the user’s optimal post-decision state value
function that is represented by (21). This approach is based
on the investigation of the local network state χ i, and the
number of packet departures r i, the number of packet arrivals
ai, the number of packet drops max

{
qi − r i + ai − qmax , 0

}
,

at current scheduling slot i. We propose an online local learn-
ing algorithm to find the optimal post-decision state value
function by reconstructing the value iterative equation. At the
next decision time slot i+1, we dynamically update the user’s
post-decision state value function as follows:

Ṽ (χ̃ i+1) = (1− ζ i)Ṽ (χ̃ i)

+ ζ t ((1− γ)u(4)(χ i, (si, ei))+ γV (χ i+1), (25)

where ζ i ∈ [0, 1) denotes the learning rate, and the conver-
gence of the learning method is guaranteed by

∑
∞

i=1 ζ
i
= ∞

and
∑
∞

i=1(ζ
i)2 <∞. Therefore, that at the next decision time

slot i+ 1 is evaluated by the following:

V (χ i+1) = max
(si,ei)

{
(1− γ)(α1u(1)(χ i+1, (si+1, ei+1))

+ α2u(2)(χ i+1, (si+1, ei+1))

+ α3u(3)(χ i+1, (si+1, ei+1))+ Ṽ (χ̃
i+1)

}
. (26)

An online local learning algorithm for finding the optimal
post-decision state value function of the user is summarized
as Algorithm 1. Theorem 1 ensures the convergence of the
online local learning algorithm.
Theorem 1: For each user, the state value function{
Ṽ (χ̃ i) : ∀i ∈ N+

}
generated by Algorithm 1 converges

to the optimal post-decision state value function Ṽ (χ̃ i),
∀χ̃ ∈ X , if and only if the learning rate ζ i is satisfied
∞∑
i=1
ζ i = ∞ and

∞∑
t=1

(ζ i)2 <∞.

The proof of Theorem 1 is given in Appendix.

V. NUMERICAL RESULTS
In this section, we process to evaluate the computation
offloading performance obtained from our proposed online
local learning algorithm. When this scheme is executed,
Algorithm 1 determines the user’s optimal post-decision state
value function within the scheduling decision time slot.

A. GENERAL SETUP
We suppose the channel between the MU and the BS
is Rayleigh channel across the scheduling time slots.
Meanwhile, suppose exist B = 4 BSs connecting the
user with the MEC server in the system. At each deci-
sion time slot i, the channel state across the base band

Algorithm 1 An Online Local Learning Algorithm for Find-
ing the User’s Optimal Post-Decision State Value Function at
the Decision Time Slot i in the Network
1: initialize The user’s post-decision state value function,
Ṽ (χ̃ i),∀χ̃ i ∈ X .
2: repeat
3: The user chooses network state χ i, computes Ṽ (χ̃ i)
according to (21) and V (χ i) according to (23) at the begin-
ning of each scheduling decision time slot i.
4: According to (22), the user makes computation offload-
ing scheduling decisions.
5: After the data is scheduled to be transmitted, the user
observes the post-decision state χ̃ i = (si, gi, qi − r i)
and the utility u(4)(χ i, (si, ei)) realized by data discard-
ing at scheduling decision time slot i. At the next
scheduling decision time slot i + 1, the network state is
χ i+1 = (q̃i + ai, gi+1)
6: The user computes the state value function V (χ i+1)
and updates the post-decision state value function Ṽ (χ̃ i+1)
according to equations (25) and (24), respectively.
7: The scheduling decision time slot is updated by
i← i+ 1.
8:until Our predefined stop conditions are met.

is an exponentially distributed random variable with a
mean of H̄ (dB). The value of H i is determined by
the common channel state space of discrete values, i.e.,
H = {−16,−14,−12,−10,−8,−6,−4}(dB), the amount
of energy from wireless transmission obeys the Poisson
arrival process, and the average arrival rate is defined as λ(e)
(data per scheduling decision time slot).

while the u(1)(χ i, (si, ei)), u(2)(χ i, (si, ei)), u(3)(χ i, (si, ei)),
u(4)(χ i, (si, ei)) in (12) were chosen as the exponential func-
tions. namely,

u1(χ i, (si, ei)) = α · u(1)(χ i, (si, ei)) = α1 · e−σ
i

(27)

u2(χ i, (si, ei)) = α · u(2)(χ i, (si, ei)) = α2 · e−η
i

(28)

u3(χ i, (si, ei)) = α · u(3)(χ i, (si, ei)) = α3 · e−υ
i

(29)

u4(χ i, (si, ei)) = α · u(4)(χ i, (si, ei)) = α4 · e−ρ
i

(30)

This experiment is completed by an Q-valued iterative
function learning model, other general parameters used in the
simulation experiments are given in Table 2.

For comparison with performance, we also simulated three
basic experiments:

1) Mobile Execution-The user performs all computation
offloading tasks on the local MD with the maximum possible
energy, i.e., at each decision time slot i, si = 0 and

ei =

{
min

{
qi, b(f (max)(CPU))

3
· τc

}
if qi > 0;

0, if qi = 0;
(31)

where the allocation of energy considers the maximum CPU-
cycle frequency f (max)(CPU) and b·c denotes the floor function.

72252 VOLUME 7, 2019

X. Zheng et al.: Stochastic Computation Offloading and Scheduling Based on MEC

TABLE 2. Parameter values in experiments.

2) Server Execution-Since the maximum possible energy
queue in the energy queue meets the maximum transmission
energy limit, the user always chooses a BS that gets the
minimum execution delay to perform the offload scheduling
computation task size for the MEC sever.

3) Greedy Execution-At each decision time slot, the user
decides to perform a computing task on the local device
or offload it to the MEC for processing with the goal of
minimizing the immediate task execution delay.

B. EXPERIMENT RESULTS
We conduct experiments under different conditions to verify
the proposed scheme in this paper.

1) EXPERIMENT 1-CONVERGENCE OF THE PROPOSED
ALGORITHM
In this experiment, our main purpose is to verify the conver-
gence of our proposed algorithm, i.e, online local learning
algorithm based on post-decision state. We suppose that there
are totally 10 channels shared by the user in the wireless
radio network. At each scheduling decision time slot, each
user’s task is achieved according to an average arrival rate
λ = 2 (data per scheduling decision time slot) with a Poisson
distribution. We have a fixed channel state mean H̄ = −2 dB
for all users. We draw the simulation variables in V (χ , (s, e))
(where χ = (4, 4, 4, (−16,−16,−12,−10,−16,−16)),
(s, e) = (2, 4)) for proposed algorithm at the decision time
slot in Fig. 2, which shows that our proposed algorithm
converges at a reasonable speed.

2) EXPERIMENT 2-TASK ARRIVAL RATE PERFORMANCE
This experiment tries to prove the average computation
offloading performance per scheduling decision time slot in
terms of the average utility, the average execution delay,
the average task discards and the average MEC service
payment under different computing task arrival probabil-
ity. The results are showed in Fig.3. Fig.3(a) illustrates the
average utility performance when the MU implements local
learning algorithm. Figs.3(b)-(d) illustrate the average task

FIGURE 2. Diagram convergence property of our proposed online
learning algorithm.

execution delay, the average task drops, the average MEC
service payment.

Each graph represents the performance of the proposed
solution and the comparison of the other three basic compu-
tation offloading performance. We can see that the proposed
scheme has achieved huge gains in terms of average util-
ity. As the probability of computing tasks arrival increases,
the average utility decreases due to the increase in average
task execution delay, average task discards and average MEC
service payments. Although each user’s average execution
delay and average task discard can be compared with other
three schemes during an average decision time slot. Since
there is not enough energy in the energy queue, to avoid
task discarding, only part of the queue energy is used to
allocate processing scheduling tasks, thus resulting in more
queue tasks. This reason is explained by the network set-
ting that changes the average arrival rate in the simulation.
As the average task arrival rate increases, the average rev-
enue performance decreases. Because there are not enough
channels for all users during one decision time slot, there
might be the case that only some of channel be scheduled
for execution, which gives rise to the number of tasks being
discarded.

3) Experiment 3-Performance under Various Means of
Channel States:

We compare the user’s performance from the proposed
scheme to the baselines below:

(1) Channel-sensitive decision policy-The user estimates
the channel requirements required for task transmission based
on channel state rather than queue state at each decision time
slot.

(2) Queue-sensitive decision policy-At each decision time
slot, the user determines performance in getting a channel or
not considering maximizing the expected long-term number
of tasks being delivered [23].

(3) Random decision policy-This policy randomly gener-
ates a value with one channel or no for the user at a decision
time slot, then submits it to the network with maximum per-
formance. This means that the random policy in the network
is not considered dynamically.

VOLUME 7, 2019 72253

X. Zheng et al.: Stochastic Computation Offloading and Scheduling Based on MEC

FIGURE 3. Average computation offloading performance in contrast with
task arrival probabilities. (a) Average utility per decision time slot.
(b) Average execution delay per decision time slot. (c) Average task
discard per decision time slot. (d) Average MEC service payment per
decision time slot.

We do simulation experiments to compare the performance
of each user obtained from the proposed scheme with other
three baselines in term of the channel mean. The parameter
values we used in the simulation are as follows: H̄ = −6 dB,
and λ = 3 (task each decision time slot), average execution

FIGURE 4. Average computation offloading performance in contrast with
means of channel states. (a) Average utility per decision time slot.
(b) Average execution delay per decision time slot. (c) Average task
discard per decision time slot. (d) Average MEC service payment per
decision time slot.

delay, average task discard, average the MEC service pay-
ments as well as each user’s average utility through the entire
learning process are depicted in Figure 4. From the figure we
can clearly see that the better the average channel condition,
the less the average transmission energy is necessary for
data transmission. This is because the number of channel

72254 VOLUME 7, 2019

X. Zheng et al.: Stochastic Computation Offloading and Scheduling Based on MEC

required is guaranteed to meet user needs. However, baseline
method 1 only considers the channel state without
considering the number of task queues, so each user’s aver-
age task discard and average revenue achieve the worst
performance.

Overall, from Experiments 2 and Experiments 3, the pro-
posed local learning based scheme outperforms the three
baseline schemes with respect to the per-MU average utility
performance in all simulations. When making the channel
status and task scheduling decisions following our proposed
scheme, the BSs and the MUs obviously strike a strategic
tradeoff between the immediate payoff performance and the
potential payoffs from future competitive interactions.

VI. CONCLUSION
In this paper, we study the design of stochastic computing
offload policy in a MEC system, which considers the energy
obtained from the wireless network, the arrival of computing
tasks, and the channel state dynamically generated from time-
varying change between users and BSs. The computation
offloading problem is modeled as a MDP problem, in which
an online local learning algorithm is proposed to find the
optimal computation offloading policy. This algorithm over-
comes the high dimensionality of the state space that does
not require any previous dynamic information network. Com-
pared with other three basic schemes, our proposed scheme
can achieve better long-term utility performance, indicating
an optimal trade-off between the computing task execution
delay, task discard and MEC service payment.

APPENDIX
PROOF OF THEOREM 1
Due to the symmetry during the learning process, we consider
the online local learning algorithm based on the optimal post-
decision state value function for an arbitrary user. Let Y :
R|X |→ R|X | be a mapping such that
Y (Ṽ) = [Y (Ṽ (χ̃ i) : χ̃ i ∈ X] where Ṽ = [Ṽ (χ̃ i) : χ̃ i ∈ X]

and Y (Ṽ (χ̃ i)) is defined by:

Y (Ṽ (χ̃ i))

= (1− γ)u(3)(χ i, (si, ei))+ γ
∑

(χ i)′∈X
pr
{
((χ)i)′|χ̃ i

}
× max

(si,ei)

{
(1− γ)(α1u(1)(((χ)i)′, (si, ei))

+ α2u(2)(((χ)i)′, (si, ei))Ṽ ((χ)i)′
}
− Ṽ (χ̃ i) (32)

Define Z : R|X |→ R|X | by:

Z (Ṽ) = Y (Ṽ)+ Ṽ (33)

The updating rule for the post-decision state value func-
tions of MU n given by (24) at current decision slot i can be
reformulated as the recursion:

Ṽ (χ̃ i+1) = Ṽ (χ̃ i)+ ζ i(Z (Ṽ (χ̃ i)))− Ṽ (χ̃ i)+ ξ (χ̃ i) (34)

where ξ (χ̃ i) is the martingale, given by:

ξ (χ̃ i) = γ [max
(s′,e′)

{
(1− γ)(α1 u(1)((χ i)′, (s′, e′))

+ (α2 u(2)((χ i)′, (s′, e′))+ Ṽ (χ i)′
}

−

∑
(χ i)′∈X

Pr
{
(χ i)′|χ̃

}
× max

(s′,e′)

{
(1− γ)(α1u(1)((χ i)′, (s′, e′))

+ (α2u(2)((χ i)′, (s′, e′))+ Ṽ (χ i)′
}
] (35)

Let F(i) = σ (
{
V ī, ξ ī : ī ≤ i

}
) be the history of the learn-

ing procedure during the first i decision slots, From(33), it is
automatic that

E[ξ (χ̃ i)|F(i)] = 0 (36)

By taking the conditional variance of both sides of (33),
it is not hard to obtain as follow, where Var(·) denotes the
variance.

E[(ξ (χ̃ i))2|F(i)] ≤ γVar((1− γ)(α1 u(1)((χ i)′, (s′, e′))

+α2 u(2)((χ i)′, (s′, e′)))+ γ max
χ̃ i∈X

(Ṽ (χ̃ i))2 (37)

From a lemma in [24], the convergence of the learning rule
in (32) then is equivalent to the convergence of the associated
ordinary differential equation,i.e.,

˙̃V = Z (Ṽ)− Ṽ := Y (Ṽ). (38)

For a discount factor γ ∈ [0, 1), (31) yields∥∥∥Z (Ṽ)− Z (Ṽ ′)∥∥∥
∞

= max
χ∈X
|Z (Ṽ (χ))− Z (Ṽ ′(χ))| ≤ γ

∥∥∥Ṽ − Ṽ ′∥∥∥
∞

∀Ṽ , Ṽ ′.

(39)

In particular, Z is a norm γ -contraction mapping.
The Assumptions 1,2,3 and 5 of [25] hold. Therefore,
Theorem 1 establishes the convergence of the learning
process.

REFERENCES
[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its

role in the Internet of Things,’’ in Proc. 1st Ed. MCC Workshop Mobile
Cloud Comput., Aug. 2012, pp. 13–16.

[2] B. P. Rimal, D. P. Van, andM.Maier, ‘‘Mobile edge computing empowered
fiber-wireless access networks in the 5G era,’’ IEEE Commun. Mag.,
vol. 55, no. 2, pp. 192–200, Feb. 2017.

[3] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, ‘‘A survey of computa-
tion offloading for mobile systems,’’ Mobile Netw. Appl., vol. 18, no. 1,
pp. 129–140, Feb. 2013.

[4] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos, and
N. Venkatasubramanian, ‘‘Mobile cloud computing: A survey, state
of art and future directions,’’ Mobile Netw. Appl., vol. 19, no. 2,
pp. 133–143, 2014.

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘‘The case for VM-
based cloudlets in mobile computing,’’ IEEE Pervasive Comput., vol. 8,
no. 4, pp. 14–23, Oct./Dec. 2009.

[6] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Computer,
vol. 50, no. 1, pp. 30–39, 2017.

VOLUME 7, 2019 72255

X. Zheng et al.: Stochastic Computation Offloading and Scheduling Based on MEC

[7] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, ‘‘Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,’’ IEEE Trans. Wireless Commun., vol. 16, no. 8,
pp. 4924–4938, Aug. 2017.

[8] F. Wang, J. Xu, X. Wang, and S. Cui, ‘‘Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,’’ IEEE
Trans. Wireless Commun., vol. 17, no. 3, pp. 1784–1797, Mar. 2018.

[9] X. Hu, K.-K.Wong, and K. Yang, ‘‘Wireless powered cooperation-assisted
mobile edge computing,’’ IEEE Trans. Wireless Commun., vol. 17, no. 4,
pp. 2375–2388, Apr. 2018.

[10] Y. Chen, M. Guizani, Y. Zhang, L. Wang, N. Crespi, G. M. Lee, and T. Wu,
‘‘When traffic flow prediction and wireless big data analytics meet,’’ IEEE
Netw., to be published.

[11] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, ‘‘Delay-optimal computation
task scheduling for mobile-edge computing systems,’’ in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jul. 2016, pp. 1451–1455.

[12] Y. Mao, J. Zhang, Z. Chen, and K. B. Letaief, ‘‘Dynamic computation
offloading for mobile-edge computing with energy harvesting devices,’’
IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[13] Z. Jiang and S. Mao, ‘‘Energy delay tradeoff in cloud offloading for multi-
core mobile devices,’’ IEEE Access, vol. 3, pp. 2306–2316, 2015.

[14] C.-F. Liu, M. Bennis, and H. V. Poor, ‘‘Latency and reliability-aware task
offloading and resource allocation for mobile edge computing,’’ in Proc.
IEEE Globecom Workshops (GC Wkshps), Dec. 2017, pp. 1–7.

[15] J. Xu, L. Chen, and S. Ren, ‘‘Online learning for offloading and autoscaling
in energy harvesting mobile edge computing,’’ IEEE Trans. Cogn. Com-
mun. Netw., vol. 3, no. 3, pp. 361–373, Sep. 2017.

[16] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[18] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation
offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[19] W. Chen, D.Wang, and K. Li, ‘‘Multi-user multi-task computation offload-
ing in green mobile edge cloud computing,’’ IEEE Trans. Services Com-
put., to be published.

[20] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, ‘‘Optimized
computation offloading performance in virtual edge computing systems via
deep reinforcement learning,’’ IEEE Internet Things J., to be published.

[21] N. Mastronarde and M. van der Schaar, ‘‘Joint physical-layer and
system-level power management for delay-sensitive wireless communi-
cations,’’ IEEE Trans. Mobile Comput., vol. 12, no. 4, pp. 694–709,
Apr. 2013.

[22] N. Salodkar, A. Bhorkar, A. Karandikar, and V. S. Borkar, ‘‘An on-
line learning algorithm for energy efficient delay constrained scheduling
over a fading channel,’’ IEEE J. Sel. Areas Commun., vol. 26, no. 4,
pp. 732–742, May 2008.

[23] F. Fu and M. V. D. Schaar, ‘‘Learning to compete for resources in
wireless stochastic games,’’ IEEE Trans. Veh. Technol., vol. 58, no. 4,
pp. 1904–1919, May 2009.

[24] V. S. Borkar and K. Soumyanatha, ‘‘An analog scheme for fixed point
computation. I. Theory,’’ IEEE Trans. Circuits Syst. I, Fundam. Theory
Appl., vol. 44, no. 4, pp. 351–355, Apr. 1997.

[25] J. N. Tsitsiklis, ‘‘Asynchronous stochastic approximation and Q-learning,’’
Mach. Learn., vol. 16, no. 16, pp. 185–202, Sep. 1994.

XIAO ZHENG received the B.S. degree from
Shandong University, in 2010, and theM.S. degree
from Xihua University, Chengdu, China, in 2016.
She is currently pursuing the Ph.D. degree with the
School of Software, Dalian University of Technol-
ogy. Her current research interests include mobile
edge computing and Game Theory.

MINGCHU LI received the B.S. degree in mathe-
matics fromo Jiangxi Normal University, in 1983,
the M.S. degree in applied science from the
University of Science and Technology Beijing,
in 1989, and the Ph.D. degree in mathematics from
the University of Toronto, in 1997. He was an
Associate Professor with the University of Sci-
ence and Technology Beijing, from 1989 to 1994.
He was engaged in the research and development
of information security at Long view Solution Inc.

and Compute ware Inc., from 1997 to 2002. Since 2002, he has been
with the School of Software, Tianjin University, as a Full Professor, and
since 2004, he has been with the School of Software Technology, Dalian
University of Technology, as a Full Professor, a Ph.D. Supervisor, and the
Vice Dean. His main research interests include theoretical computer science
and cryptography.

MUHAMMAD TAHIR received the B.S. degree in
software engineering from theUniversity of Sindh,
Jamshoro Sindh, Pakistan, in 2008, and the M.S.
degree in software engineering from the School
of Software Engineering, Chongqing University,
China, in 2014. He is currently pursuing the Ph.D.
degree in software engineering with the School of
Software Technology, Dalian University of Tech-
nology, China. He is on Ph.D. Study leave from
Lecturer position with the Department of Com-

puter Science, COMSATSUniversity Islamabad, Sahiwal Campus, Pakistan.
He has authored/coauthored publications in World renowned journals. His
research interests include network security, web application performance
tuning, mobile edge computing, game theory, artificial intelligence, and
machine learning.

YUANFANG CHEN received the M.S. and Ph.D.
degrees from the Dalian University of Technology,
China, and the second Ph.D. degree from Univer-
sity Pierre and Marie CURIE (Paris VI), France.
She is currently with Hangzhou Dianzi University,
as a Professor. She was an Assistant Researcher
of the Illinois Institute of Technology, USA, along
with Prof. X. Li. She has been invited as the
Session Chair of some conferences, the Associate
Editor of Industrial Networks and Intelligent
Systems, and the Guest Editor of the MONET.

MUHAMMAD ALAM received the Ph.D. degree
in computer science from the University of Aveiro,
Portugal, in 2014, with a specialization in Inter
Layer and Cooperative Design Strategies for
Green Mobile Networks. In 2009, he joined the
Instituto de Telecomunicacoes-Aveiro, Portugal,
as a Researcher. He has participated in several
European Union FP7 projects, such as Hurricane,
C2POWER, ICSI, and PEACE and Portuguese
government funded projects such SmartVision.

He is currently a Senior Researcher with the Instituto de Telecomunicacoes
and participating in European Union and Portuguese government funded
projects. His research interests include the IoT, real-time wireless commu-
nication, 5G, vehicular networks, context-aware systems, and radio resource
management in next generation wireless networks. He is the Editor of the
Book Intelligent Transportation Systems, Dependable Vehicular Communi-
cations for Improved Road Safety.

72256 VOLUME 7, 2019

	INTRODUCTION
	SYSTEM MODEL
	PROBLEM FORMULATION
	FINDING THE OPTIMAL POLICY
	NUMERICAL RESULTS
	GENERAL SETUP
	EXPERIMENT RESULTS
	EXPERIMENT 1-CONVERGENCE OF THE PROPOSED ALGORITHM
	EXPERIMENT 2-TASK ARRIVAL RATE PERFORMANCE

	CONCLUSION
	REFERENCES
	Biographies
	XIAO ZHENG
	MINGCHU LI
	MUHAMMAD TAHIR
	YUANFANG CHEN
	MUHAMMAD ALAM

