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ABSTRACT The nervous system contains a neural network that regulates and coordinates all physiological
processes in our body, and as we all know, the damages within the system would lead to many neurological
diseases, such as epilepsy, Alzheimer’s disease, and Parkinson’s disease or schizophrenia. The bifurcation
phenomenon in the neuronal system is believed to be the cause, and thus, it is important to understand
the mechanism and find effective methods to resist. Several control methods have been proved useful
in the integer-order neuronal model. In this paper, we presented a novel control method based on a
fractional-order washout filter with time delay for Hopf bifurcation control in a fractional-order neuron
model, demonstrating and testing by a fractional-order Hodgkin–Huxley neuron model. The computer
simulation shows the effectiveness of the proposed method. Furthermore, we presented the bifurcation
phenomenon of fractional-order Hodgkin–Huxley neuron model with the decrease of the order and analyzed
the influence of the fractional-order washout filter gain on the Hopf bifurcation of the different order
Hodgkin–Huxley neuron model.

INDEX TERMS Fractional-order washout filter, Hopf bifurcation, fractional-order Hodgkin-Huxley model,
time delay.

I. INTRODUCTION
Over the past decades, more and more investigators have
been focusing on the bifurcation phenomenon of biologi-
cal neurons because many nervous system diseases, such as
Alzheimer’s disease [1], epilepsy [2], Parkinson’s disease [3],
and attention deficit hyperactivity disorder [4], are believed
result from bifurcation in cranial nerve [5]. Therefore, scien-
tists have paid a great attention to find possible approach to
control bifurcation and consequently cure diseases.

It is inspiring to see that many control methods have been
developed and proved to be useful, such as TS fuzzy con-
trol [6], sliding mode control [7], adaptive fuzzy control [8],
unscented Kalman filter [9], optimal control [10], washout
filter [11]–[13], adaptive passive control [14], feedback con-
trol [15]–[18]. However, most previous theoretical studies on
the bifurcation control of neuron have been in the form of
integer-order neuron models. Recently, studies have shown
that electrical properties of neuron membranes and the prop-
agation of neural signals are well represented by differential
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equations of fractional order. Lundstrom et al. think that sin-
gle neocortical pyramidal neurons adapt with a time scale that
depends on the time scale of changes in stimulus statistics.
This multiple time scale adaptation is consistent with frac-
tional order differentiation [19]. Auastasio et al. think that the
oculomotor integrator, which converts eye velocity into eye
position commands, may be of fractional order [20]. In this
way, it appears that fractional-order differential dynamical
systems are more rational to describe the electrical prop-
erties of certain neuronal membranes. At present, there are
few studies on fractional-order neuron system, mainly focus-
ing on synchronization [21], [22], dynamic behavior analy-
sis [23]. However, to our best knowledge, the research on
Hopf bifurcation control for fractional-order neuron model is
very few. For this reason, investigation of bifurcation control
of the fractional-order neuron model should be performed.

In this study, first, we proposed a fractional-order washout
filter with time delay for Hopf bifurcation control in
fractional-order neuron model. Second, we studied bifurca-
tion phenomenon of fractional-order Hodgkin-Huxley neuron
model with the decrease of the order. Third, based on the
proposed fractional-order washout filter, bifurcation control

77490
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-0230-6244
https://orcid.org/0000-0002-4584-793X
https://orcid.org/0000-0002-3943-1428


S. Chen et al.: Efficient Method for Hopf Bifurcation Control in Fractional-Order Neuron Model

problem of fractional-order Hodgkin-Huxley neuron model
is studied. Finally, we have analyzed the influence of the
fractional-order washout filter gain on Hopf bifurcation of
different order Hodgkin-Huxley neuron model. The main
contributions of this paper are summarized as follows.

(1) A fractional-order washout filter with time delay for
Hopf bifurcation control in fractional-order neuron model
was proposed. As far as we know, this is the first time that
fractional-order washout filter has been proposed.

(2) Bifurcation control problem of fractional-order
Hodgkin-Huxley neuron model is studied. As far as we know,
this is the first time that bifurcation control of fractional-order
Hodgkin-Huxley neuron model has been studied.

(3) Bifurcation phenomenon of fractional-order Hodgkin-
Huxley neuron model with the decrease of the order was
researched.

(4) The effects of the fractional-order washout filter gain on
Hopf bifurcation of different order Hodgkin-Huxley neuron
model were analyzed.

This paper is organized as follows. We proposed a
fractional-order washout filter in Section 2. In Section 3,
we studied bifurcation phenomenon of fractional-order
Hodgkin-Huxley neuronmodel with the decrease of the order.
Hopf bifurcation control of the fractional-order Hodgkin-
Huxley neuron model base on the fractional-order washout
filter is presented in Section 4. Section 5 is the conclusions.

II. FRACTIONAL-ORDER WASHOUT FILTER
A. DEFINITION OF FRACTIONAL CALCULUS
There are several definitions of fractional calculus, such as
Riemann-Liouville definition, Grünwald-Letinkov definition
and Caputo definition. Because physical meaning of initial
condition of the Caputo definition was clear, it was used in
this paper.

The α-order differentiation of f (t) in Caputo definition is
defined as follows

C
0 D

α
t f (t) =

1
0(n− α)

∫ t

0

f (n)(τ )
(t − τ )α−n+1

dτ, (1)

Here, n is the least integer that is not less than α (n − 1 <
α ≤ n); 0 and t are the lower and upper limits of the
integral, respectively. 0(n − α) is gamma function. f (n)(τ )
is nth derivative of the function f (τ ).

B. DEFINITION OF FRACTIONAL-ORDER WASHOUT FILTER
The integer-order washout filter with time delay is described
as follows

du(t)
dt
= x(t − τ )− du(t)

w(t) = k(x(t − τ )− du(t)) (2)

Here, τ , x(t), u(t) andw(t) represent time delay, state variable,
input variable, and output variable, respectively. k is control
gain. d is reciprocal of filter time constant.

In this paper, we proposed a fractional-order washout filter
with time delay depicted by:

dαu(t)
dtα

= x(t − τ )− du(t)

w(t) = k(x(t − τ )− du(t)) (3)

Here, α is the order of fractional-order. When α = 1,
the fractional-order washout filter degenerates to an ordinary
washout filter of integer-order. In this paper, we set d = 1.

III. FRACTIONAL-ORDER HODGKIN-HUXLEY NEURON
MODEL AND ITS DYNAMICS OF BIFURCATION
Using the Caputo definition of fractional-order differen-
tials and the definition of the fractional-order system,
the fractional-order Hodgkin-Huxley neuron model reads as
follows

dαv
dtα
= (I − gNam3h(v− ENa)− gKn4(v− EK )

− gL(v− EL))/C
dαm
dtα
= αm(1− m)− βmm

dαh
dtα
= αh(1− h)− βhh

dαn
dtα
= αn(1− n)− βnn (4)

Here, v represent membrane potential, I represent external
stimulus current. m, h and n represent sodium activation,
sodium inactivation, and potassium activation, respectively.
gL = 0.3, gK = 36, gNa = 120, EL = 10.6, EK = −12,
ENa = 115, C = 1. αm, βm, αh, βh, αn, βn are functions of v
that are defined as follows:

αm(v) = 0.1(−v+ 25)/(e−0.1v+2.5 − 1)

βm(v) = 4e−v/18

αh(v) = 0.07e−v/20

βh(v) = 1/(e−0.1v+3 + 1)

αn(v) = 0.01(−v+ 10)/(e−0.1v+1 − 1)

βn(v) = 0.125e−v/80 (5)

In this section, we studied bifurcation phenomenon of
fractional-order Hodgkin-Huxley neuron model with the
decrease of the order. Bifurcation diagram of different order
HH model is shown in Fig. 1. From Fig. 1, we can see that as
the external stimulus current I increases, the neuron under-
goes a Hopf bifurcation from quiescence to periodic spiking
at Ileft . When the external stimulus current I further increases,
the amplitude of the stable periodic oscillation decreases, and
the periodic oscillation terminates at another Hopf bifurcation
Iright . In addition, as the order α decreases, the left Hopf
bifurcation Ileft increased, the right Hopf bifurcation Iright
decreased, and the amplitude of the stable periodic oscillation
decreases.

In this paper, we just focus our discussion on the left Hopf
bifurcation Ileft because external stimulus current can’t be too
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FIGURE 1. Bifurcation diagram of different order Hodgkin-Huxley model.
The blue line, black line and red line represent equilibrium points,
maxima limit cycles and minima limit cycles, respectively. (a) α = 1.00.
(b) α = 0.99. (c) α = 0.95. (d) α = 0.90. (e) α = 0.85. (f) α = 0.80.

large, otherwise it would destroy physiological nerve struc-
ture. At α = 0.80, the left Hopf bifurcation Ileft = 25.666,
dynamical responses to the fractional-order HH system with

FIGURE 2. Dynamical responses to 0.8-order Hodgkin-Huxley model.
(a) State of v. (b) State of m, n, h.

initial conditions

(v0,m0, h0, n0) = (−5,
αm(v0)

αm(v0)+ βm(v0)
,

αh(v0)
αh(v0)+ βh(v0)

,
αn(v0)

αn(v0)+ βn(v0)
) (6)

are shown in Fig. 2.

IV. HOPF BIFURCATION CONTROL OF THE
FRACTIONAL-ORDER HH MODEL
A general fractional-order nonlinear autonomous system can
be described by the following equation

dαx
dtα
= f (x) (7)

Here, x ∈ Rn represent the state vector. Assume that x ∈ Rn as
the equilibrium point of system (7), and f (x) have first-order
partial derivative at equilibrium point x. Let J be the Jacobia
matrix of system (7) at equilibrium point x. Then, the linear
topological equivalence of system (7) in a sufficient small
neighborhood of x has the following form:

dαx
dtα
= Jx (8)

Lemma 1: Let λ be the eigenvalue of the matrix J , the con-
clusions as following:
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FIGURE 3. Stable and unstable regions of a linear fractional-order system
of order α.

(1) If | arg(λ) |> απ
2 , then the equilibrium point x is locally

asymptotically stable.
(2) If | arg(λ) | ≥ απ

2 , then the equilibrium point x is locally
stable.

(3) If | arg(λ) | < απ
2 , then the equilibrium point x is

unstable.
Lemma 2 (Routh-Hurwitz stability criterion):
Define characteristic polynomial of J is

g(λ) = det(λIn − J )

= a0λn + a1λn−1 + · · · + an−1λ+ an (9)

Here, a0 = 1, ak ∈ R, k = 1, · · · , n.
And define a matrix:

Ha = Ha(aij)

=


a1 a0 0 · · · 0
a3 a2 a1 · · · 0
a5 a4 a3 · · · 0
· · · · · · · · · · · · · · ·

a2n−3 a2n−4 · · · an−1 an−2
a2n−1 a2n−2 · · · an+1 an

 (10)

Here, aij = a2i−j, (i, j=1, 2, · · · ,n; where ak = 0, if k < 0 or
k > n).

Then all roots of g(λ) have negative real parts if and only if
order principal minor determinant of Ha are all positive. That
is, all eigenvalues λ of the Jacobian matrix J have negative
real parts if and only if order principal minor determinant of
Ha are all positive.
Theorem 1: The equilibrium point x is locally asymptoti-

cally stable if order principal minor determinant of Ha are all
positive.

Proof: According to Lemma 1, the region of stability
in the equilibrium point x is shown in Fig. 3.
Obviously, the equilibrium point x is locally asymptoti-

cally stable if all eigenvalues λ of Jacobian matrix J have
negative real parts.

Then, according to Lemma 2, all eigenvalues λ of the
Jacobian matrix J have negative real parts if and only if order
principal minor determinant of Ha are all positive.

Since, the equilibrium point x is locally asymptotically
stable if order principal minor determinant of Ha are all
positive. �
We study Hopf bifurcation control in 0.8-order Hodgkin-

Huxley model, and I = 25.666 is the left Hopf bifurcation.
The equilibrium points of system (4) at I = 25.666 are
solutions (v,m, h, n) to

(I − gNam3h(v− ENa)− gKn4(v− EK )

− gL(v− EL))/C = 0

αm(1− m)− βmm = 0

αh(1− h)− βhh = 0

αn(1− n)− βnn = 0 (11)

We only consider the equilibrium point

(ve,me, he, ne)= (9.6807, 0.15311, 0.27126, 0.47050) (12)

We add the fractional-order washout filter with time delay
to system (4), and get controlled fractional-order Hodgkin-
Huxley model as follows:

dαv(t)
dtα

= (I − gNam3(t)h(t)(v(t)− ENa)

− gKn4(t)(v(t)− EK )− gL(v(t)− EL))/C

+ k(v(t − τ )− du(t))
dαm(t)
dtα

= αm(t)(1− m(t))− βmm(t)

dαh(t)
dtα

= αh(t)(1− h(t))− βhh(t)

dαn(t)
dtα

= αn(t)(1− n(t))− βnn(t)

dαu(t)
dtα

= v(t − τ )− du(t) (13)

Here, τ ≥ 0 is time delay.
The Jacobian matrix for the system (13) at equilibrium

point (ve,me, he, ne) is

J =


J11 J12 J13 J14 −kd
J21 J22 0 0 0
J31 0 J33 0 0
J41 0 0 J44 0
e(−λτ ) 0 0 0 −d

 (14)

where

J11 = −
(gNam3

ehe − gKn
4
e − gL)

C
+ ke(−λτ )

J12 = −
3gNam2

ehe(ve − ENa)
C

J13 = −
gNam3(ve − ENa)

C

J14 = −
4gKn3e(ve − ENa)

C

J21 =
(0.15− 0.01ve)e−0.1ve+2.5 + 0.1

(e−0.1ve+2.5 − 1)2
(1− me)
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+
2
9
mee−

ve
18

J22 = −(αm + βm)

J31 = −0.0035e−
ve
20 (1−he) −

0.1e−0.1ve+3

(e−0.1ve+3 + 1)2
he

J33 = −(αh + βh)

J41 =
0.01− 0.001vee−0.1ve+1

(e−0.1ve+1 − 1)2
(1− ne)

+ 0.0015625ne−
ve
80

J44 = −(αn + βn) (15)

Then, the linear topological equivalence of system (13)
in a sufficient small neighborhood of equilibrium point
(ve,me, he, ne) has the following form:

dαv
dtα
= J11v(t)+ J12n(t)+ J13h(t)+ J14m(t)

− kdu(t)
dαm
dtα
= J21v(t)+ J22m(t)

dαh
dtα
= J31v(t)+ J33h(t)

dαn
dtα
= J41v(t)+ J44n(t)

dαu
dtα
= e(−λτ )v(t)− du(t) (16)

Then the characteristic equation for the linearized system
of (16) is

g(λ) = det(λI5 − J )

= a0λ5 + a1λ4 + a2λ3 + a3λ2 + a4λ+ a5 = 0 (17)

Here, I5 is 5-order identity matrix.
We can get the coefficients of as follows:

a0 = 1

a1 = −ke(−λτ ) + 6.3076

a2 = −3.1266ke(−λτ ) + 4.2726

a3 = −1.0489ke(−λτ ) + 1.2906

a4 = −0.091757ke(−λτ ) + 2.7681

a5 = 0.44247 (18)

Based on Theorem 1, we deduce control gain k of the
fractional-order washout filter for τ = 0 and τ 6= 0,
respectively.

A. τ = 0
When τ = 0, the coefficients a0, a1, a2, a3, a4, a5 as follows:

a0 = 1

a1 = −k + 6.3076

a2 = −3.1266k + 4.2726

a3 = −1.0489k + 1.2906

a4 = −0.091757k + 2.7681

a5 = 0.44247 (19)

Define a matrix:

Ha =


a1 a0 0 0 0
a3 a2 a1 a0 0
a5 a4 a3 a2 a1
0 0 a5 a4 a3
0 0 0 0 a5

 (20)

According toTheorem 1, we can get the stability condition
of the equilibrium point (ve,me, he, ne)

D1 = −k + 6.3076 > 0

D2 = 3.1266k2 − 22.945k + 25.659 > 0

D3 = −3.1878k3 + 24.177k2 − 18.399k

− 74.228 > 0

D4 = 0.29250k4 − 6.7173k3 + 31.002k2

+ 33.274k − 246.46 > 0

D5 = 0.12942k4 − 2.9723k3 + 13.718k2

+ 14.723k − 109.05 > 0 (21)

Solving the above inequalities, we can get

k < −2.5715 (22)

In this we set k = −3. The dynamical response to the
controlled 0.8-order HH model at the 0.8-order washout fil-
ter without time delay and comparisons with integer-order
washout filter without time delay are shown in Fig.4. From
the Fig.4, we can see that the 0.8-order washout filter takes a
shorter than the integer-order washout filter for the controlled
0.8-order HH model to be stabilized.

B. τ 6= 0
In this subsectoion, we deduce control gain k of the
fractional-order washout filter for τ = 1. When τ = 1,
the coefficients a0, a1, a2, a3, a4, a5 as follows:

a0 = 1

a1 = −ke−λ + 6.3076

a2 = −3.1266ke−λ + 4.2726

a3 = −1.0489ke−λ + 1.2906

a4 = −0.091757ke−λ + 2.7681

a5 = 0.44247 (23)

Padé approximation of order (m, n) to e(−λτ ) is define
as a rational function Pm,n(τ, λ) expressed in the form
of [24], [25]

Pm,n(τ, λ) =
q0 + q1(τλ)+ · · · + qm(τλ)m

r0 + r1(τλ)+ · · · + rn(τλ)n
(24)

where

qi = (−1)i
(m+ n− i)!m!

(m+ n)!(m− i)!i!
, i ∈ {0, 1, 2, · · · ,m}

rj =
(m+ n− j)!n!

(m+ n)!(n− j)!j!
j ∈ {0, 1, 2, · · · , n} (25)
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FIGURE 4. Dynamical responses to the 0.8-order Hodgkin-Huxley model.
(a) State response of v under 0.8-order washout filter without time delay.
(b) State response of m, n, h under 0.8-order washout filter without time
delay. (c) State response of v under integer-order washout filter without
time delay. (d) State response of m, n, h under integer-order washout
filter without time delay.

In this m = 3, n = 3.

e(−λ) =
apade
bpade

(26)

where

apade = 120− 60λ+ 12λ2 − λ3

bpade = 120+ 60λ+ 12λ2 + λ3
(27)

Then characteristic equation (17), multiply both sides by
bpade:

p0λ8 + p1λ7 + p2λ6 + p3λ5 + p4λ4

+ p5λ3 + p6λ2 + p7λ+ p8λ = 0 (28)

where

p0 = 1

p1 = k + 18.307

p2 = −8.8733k + 139.96

p3 = 23.529k + 551.02

p4 = 55.102k + 1031.5

p5 = −313.36k + 623.81

p6 = −120.36k + 326.28

p7 = −11.011k + 358.73

p8 = 53.097 (29)

Define a matrix:

Hpade =



p1 p0 0 0 0 0 0 0
p3 p2 p1 p0 0 0 0 0
p5 p4 p3 p2 p1 p0 0 0
p7 p6 p5 p4 p3 p2 p1 p0
0 p8 p7 p6 p5 p4 p3 p2
0 0 0 p8 p7 p6 p5 p4
0 0 0 0 0 p8 p7 p6
0 0 0 0 0 0 0 p8


(30)

According toTheorem 1, we can get the stability condition
of the equilibrium point (ve,me, he, ne)

D1 = k + 18.308 > 0

D2 = −8.8734k2 − 46.015k + 2011.4 > 0

D3 = −2.6389k3 − 93.346k2 − 393.80k + 7740.1 > 0

D4 = 0.11258k4 − 10.921k3 − 197.99k2 + 971.32k

+ 6454.8 > 0

D5 = −0.046368k5 + 3.0067k4 + 50.073k3

− 403.13k2 − 1005.3k + 3080.8 > 0

D6 = 0.0056751k6 − 0.38506k5 − 5.1548k4

+ 70.919k3 + 59.025k2 − 1128.5k − 1114.4 > 0

D7 = −0.00062467k7 + 0.055037k6 − 0.29638k5

− 18.936k4 + 162.80k3 + 282.64k2

− 2972.0k − 4406.9 > 0

D8 = −0.00033179k7 + 0.029223k6 − 0.15737k5

− 10.055k4 + 86.442k3 + 150.07k2

− 1578.0k − 2340.0 > 0 (31)
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FIGURE 5. Dynamical responses to the 0.8-order Hodgkin-Huxley model.
(a) State response of v under 0.8-order washout filter with time delay.
(b) State response of m, n, h under 0.8-order washout filter with time
delay. (c) State response of v under integer-order washout filter with time
delay. (d) State response of m, n, h under integer-order washout filter
with time delay.

Solving the above inequalities, we can get

−3.4728 < k < −1.4821 (32)

FIGURE 6. The curve denotes the Hopf bifurcation boundary. The region
of below and above the curve represent stable region and unstable
region.

FIGURE 7. Bifurcation diagram of the controlled HH model with
k = 1.06892.

For comparison with τ = 0, it is also set k = −3. The
dynamical response to the controlled 0.8-order HH model at
the 0.8-order washout filter with time delay and comparisons
with integer-order washout filter with time delay are shown
in Fig.5. From the Fig.5, the controlled 0.8-order HH model
become stable under the action of the 0.8-order washout filter,
or form a limit cycle under the action of the integer-order
washout filter. In addition, comparingFig.4 andFig.5, we can
see that time delay increases the fluctuation of the controlled
0.8-order HH model.

C. EFFECTS OF FRACTIONAL-ORDER WASHOUT FILTER
ON HOPF BIFURCATION
In this subsection, we consider the influence of the
fractional-order washout filter gain k on Hopf bifurcation
of different order Hodgkin-Huxley neuron model. Exter-
nal stimulus current I increases from 0 to 180, based on
Lemma 1, we deduce controller gain k to make different
order Hodgkin-Huxley neuronmodel stable at its correspond-
ing equilibrium point, and then get the stable region on the
two-dimension parameter plane (I , k), as shown in Fig.6.
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FIGURE 8. Stability of equilibrium point in controlled fractional-order HH
model with k = −1.

From the Fig.6, for any order, there always exits k to make
the controlled system stable on the domain I ∈ [0, 180], thus,
the Hopf bifurcation point can be move to any target location
by choosing gain k properly. In addition, with order fallen
from 1 to 0.8, the I -k curve move in positive direction of k
axis, thus, the decrease of order may help improves system
stability.

Further analysis the effects of fractional-order washout
filter on Hopf bifurcation when α = 0.80. From the Fig.6,
the equilibrium point of the controlled system is stable on
the domain I ∈ [0, 180] when k < −0.85435. To move
the bifurcation point to I = 10, based on Lemma 1, we can
get the controller gain k = 1.0689. Fig.7 shows the Hopf
bifurcation diagram of the controlled fractional-order HH
model when k = 1.0689. From the Fig.7, we can see that
the Hopf bifurcation point has been successfully moved to
I = 10. Fig.8 shows the stability of equilibrium point in
the controlled fractional-order HH model when k = −1
(k < −0.85435). From the Fig.8, we can see that the Hopf
bifurcation has been successfully removed. The reason is that
the system (4) is stable for any external stimulus current I
when k < −0.85435. From the physical sense, washout filter
likely decreases neuronal discharge when k < 0, or increases
neuronal discharge when k > 0. Thus, choosing appropriate
k can completely inhibit neuronal discharge, in other words,
Hopf bifurcation disappear [26].

V. CONCLUSION
In this paper, fractional-order washout filter for fractional-
order neuron model bifurcation control was proposed for
the first time. On the other hand, based on the pro-
posed fractional-order washout filter, bifurcation control
problem of fractional-order Hodgkin-Huxley neuron model
is studied. Conclusions are as follows. (1) The proposed
fractional-order washout filter is effective and reasonable. (2)
The fractional-order washout filter with time delay increases
fluctuation of the controlled fractional-order Hodgkin-
Huxley neuron model comparison with the fractional-order
washout filter without time delay.

In addition, we presented bifurcation phenomenon of
fractional-order Hodgkin-Huxley neuron model with the
decrease of the order and analyzed the influence of the
fractional-order washout filter gain on Hopf bifurcation of
different order Hodgkin-Huxley neuron model. Conclusions
are as follows. (1) The order of Hodgkin-Huxley neuron
model will affect its bifurcation behavior. (2) The decrease of
order of Hodgkin-Huxley neuron model may help improves
system stability.
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