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ABSTRACT In today’s Internet, killer network services and applications, such as video and audio streaming,
network storage, and online video games, are pushing the network infrastructure resources to the edge.
By design and for the most part, the Internet is the best offer delivery ecosystem with little or no end-
to-end quality-of-service (QoS) guarantees. Even, frameworks, such as IntServ and DiffServ that were
designed and implemented to provide QoS guarantees, still fail to solve this problem at a wide scale.
Software-defined networking (SDN) is a fast emerging networking paradigm that promises to provide end-
to-end QoS guaranteeing by offering greater network flexibility, abstraction, control, and programmability
to network resources. In this paper, we review, survey, and discuss the current state of the art on QoS
provisioning in the area of SDN, with respect to applying the concept of autonomic computing (AC) to
automatically support, provision, monitor, and maintain QoS requirements. This paper includes in-depth
classification, taxonomy, and comparative analysis for the autonomic-based QoS provisioning in accordance
with the famous influential and widely adopted the monitor-analyze-plan-execute-knowledge (MAPE-K)
IBM architectural model for autonomic computing.

INDEX TERMS Autonomic computing, autonomous systems, automation, autonomic networking, SDN,
QoS.

I. INTRODUCTION
In 2017, Cisco reported that the global annual IP traffic
reached 1.2 Zettabytes in 2016 and it is expected to reach
3.3 Zettabytes per year by 2021 [2]. In addition 82% of the
consumers’ Internet traffic will be IP video traffic by 2021.
From the overall Internet video traffic, 13% will be live video
traffic [2]. Also, the ratio of Internet-connected devices will
be three times the global population.

With this pressure on today’s Internet, service providers
were between two choices, either put in extra resources into
their networks, which adds extra costs, or apply strict policies,
which may not satisfy their customers. In addition, they are
obligated to provide services with certain quality as it is
agreed to in the Service Level Agreement (SLA). However,
the massive increase in the numbers of Internet-connected
devices (e.g. user’s mobile devices, servers, Things, etc) is
promising a lot of money at stake for service providers from
now and upon [2]. At that point, providing services with
certain QoS guarantee while efficiently utilizing the net-
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work resources becomes a challenging task for many service
providers or network operators [3].

There are two models proposed to support QoS over the
Internet, namely: Integrated Services (IntServ) [4] andDiffer-
entiated Services (DiffServ) [5]. The earliest one is designed
to reserve sufficient resources along the path that the ser-
vice packets use. The work is evolved into a design of a
signaling protocol called the Resource Reservation Protocol
(RSVP) [6] that was designed to work over IP protocol. How-
ever, it has a scalability problem since it needs to keep state on
each network node about each going traffic flow. In DiffServ,
packets are tagged to differentiate between the service level
they require (i.e. VoIP requires a 150ms maximum delay) or
receive. Therefore, each packet is treated differently based on
its tag or class and the QoS policy is configured on each node.
By doing that, different QoS classes can be defined for variant
services. DiffServ is designed to provide end-to-end QoS
support by assuring QoS application on each intermediate
node within the network.
DiffServ cannot provide guarantees like those offered by

IntServ, and suffers from dynamic changes of application
requirements. Moreover, the necessity to reconfigure each
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node within the network to reflect a change in QoS policy
or new SLA requirement causes a huge headache for net-
work operator probability of mistakes is high. The usage
of automated tools could be a solution. However, due to
the diversity of network vendors and the complexity of the
current architecture (i.e. traditional networks with different
types of equipment) makes it worse. To alleviate those prob-
lems, a new architecture that supports generality and pro-
grammability of network elements is defined by ONF (Open
Networking Foundation) [8]. By separating the control for the
data planes it provides agility and flexibility for the network
operator. The new architecture is called Software Defined
Networking [9]. SDN is built based on flow-based program-
ming in which network devices are programmed dynamically
and on the fly by installing flow rules to forward packets.
The control logic is centralized in a controller node, which
helps network operator to get global view and control of the
whole network. This allows operator to implement applica-
tions that adjust networks behavior tomeet new needs orman-
age themselves [10]. The simplicity of service and network
provisioning was the most important driver for investments
in SDN deployment by many service providers [11], [12] to
achieve organization goals [13].

Support of QoS is extensively addressed in the literature for
traditional networks. However, the emergence of SDN opens
the door to tackle that problem again. Promising features,
such as the decoupling of network control from forwarding,
also the global view of the whole network, gives SDN advan-
tage to support QoS.

This survey article is about QoS in SDN with focus on the
autonomic support of QoS in SDN-based networks. Readers
can find a comprehensive survey about the SDN architec-
ture in [18], [19]. In the literature, there are two surveys
about QoS in SDN [21] and [22]. In [21], the authors dis-
cuss the concept of QoS and how it can be improved via
SDN. They focused on four main fields, namely; resources
reservation, flow-based routing, queue management, and pol-
icy enforcement. The work in [22] is more comprehensive
than the previous one. The authors discussed more recent
research work done aforementioned four fields. Beside of
that, they focused on the user experience of QoS and net-
work monitoring as another prominent field to improve QoS
in SDN. In this work, we focus on QoS management and
provisioning research works that leverage the functionality
of Autonomic Computing(AC) [23] in QoS support within
SDN. The authors in [24] applied the concept of Autonomic
Computing on existing network architectures to identify
the characteristics of Autonomic Networking within. How-
ever, SDN is not considered by them since they focused
on projects implemented and tested by that time. For the
purpose of generality, we had to analyze the SDN fea-
tures against Autonomic Computing properties. The authors
in [15] discussed the autonomy of SDN communication in
conjunction with NFV (Network Functions Virtualization).
They focused on subjects such as testing and integration
network functions. However, the support of QoS is not

discussed by the previously mentioned work. The authors
in [16] went through network monitoring in SDN. Similarly,
the authors in [17] discuss the challenges in measurement
collections within SDN. Part of this survey is focusing on
SDN network monitoring as a function of autonomic QoS
provisioning in SDN based networks. The contribution of this
survey can be summarized as follows:
• This survey article provides a comprehensive overview
of SDN architecture with autonomic support for QoS.

• The article reviews, summarizes, and discusses the cur-
rent state-of-the-art on QoS provisioning from auton-
omy perceptive.

• In this article we try to answer the question, does current
literature contribute to support autonomic management
of QoS in SDN?

• The article provides thorough classification, taxon-
omy, and comparative analysis for autonomic-based
QoS provisioning in accordance with the popular
and widely adopted Monitor-Analyze-Plan-Execute-
Knowledge (MAPE-K) architectural model for auto-
nomic computing.

The remainder of this survey article is organized as follows.
In II we discuss the concept of Autonomic Computing and
Autonomic networking. In Section III, we give a brief back-
ground on SDN, analyze the SDN architecture and discuss
its features as Autonomic System. Next, we discuss related
work to support QoS provisioning and management based
on SDN in Section IV. Then, we discuss QoS requirements
specification in Section V. In Section VI, we discuss and
introduce future research directions. Lastly, we conclude our
survey article in Section VII.

II. AUTONOMIC COMPUTING
The management of complex systems is a challenging task
that requires well-skilled team. The cost scales with the
complexity of such systems. Therefore, the design of a
self-managed system reduces such costs. Moreover, it adapts
and reacts to its environments changes with no or little
intervention of humans, which is the vision of Autonomic
Computing (AC) [23]. The main goal of Autonomic Com-
puting is to design a self-managed system that operates
based on high-level rules or policies formed by the system
administrator(s) [23]. Those rules usually follow IF-THEN
or event-condition-action form [25]. This concept is inducted
from the human nervous system which operates autonom-
ically to control the human body [26], [27] (e.g. blood
sugar, temperature, heartbeats control) without intervention
from the outside. The delegation of system management
tasks(functions), frees human to focus on business goals that
increase organization profit.

A. SELF-* PROPERTIES OF AUTONOMIC COMPUTING (AC)
Autonomy of a system is a characteristic of the way it
controls its functions to achieve the self-management goal.
IBM characterized the self-management of an autonomic
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TABLE 1. Abbreviation/acronyms.

system (i.e., that follows the Autonomic Computing princi-
ple) in four self-* properties namely; self-configuration, self-
healing, self-optimization and self-protection [23], [27]–[31].

• Self-configuration. An autonomic system should be
able to configure itself in response to changes in its
environment and according to high-level policies that
define what the system should do.

• Self-healing. An autonomic system should detect prob-
lems and tries to recover or correct itself (if possible) by
adjusting or reconfiguring its components which makes
its daily operations fault-tolerance.

• Self-optimization. An autonomic system should maxi-
mize utilization of its resources and monitoring its per-
formance against an ideal case. This process should be
guided through high-level policies that may define a util-
ity function (i.e. utility based management) for the sys-
tem where some tasks are prioritized over others [32].
It also may need to acquire more resources or evacuate
others to achieve optimal state (its objectives).

• Self-protection. An autonomic system should detect
internal or external threads and protect its resources

FIGURE 1. IBM’s MAPE-K reference model [24].

through appropriate defense actions that assure its secu-
rity and privacy.

In order to achieve those four self-* properties, the autonomic
system needs to be able to monitor itself, its environment
and adjust itself through reconfiguration of its components.
This adjustment can be triggered by either a threat, an opti-
mization purpose, or a change in high-level policies. This is
referenced in a model by IBM [27] calledMAPE-K (i.e. short
for Monitor, Analyze, Plan, Execute and Knowledge), which
is performed and controlled by the main component of the
autonomic system, called ‘‘Autonomic Manager’’.

B. MAPE-K
Fig. 1 illustrates theMAPE-K reference architecture for auto-
nomic computing and its key functional components:
• Monitor. It collects data from the managed resources or
elements through touch-points or interfaces (i.e APIs).
Data could be events generated by the managed element,
its state, or its configuration. The size of such data
could be large, therefore, it may need to be filtered and
structured in a way to be ready for analysis.

• Analyze. It analyzes collected data by the monitor func-
tion and observe the system state. It may detect that
some policies are not met by the system or the system
performance is not as it should be. Therefore, a change
is issued to the plan function with all necessary details.

• Plan. Based on the requirement of changes, a plan to
change may be formed to the existing state or configura-
tion of the system. This plan defines the work to be done
in a suitable form and sends it to the execute function.

• Execute. This function performs a series of actions
on the system to reflect changes required by the plan
function. An action could be a change to the system
configuration or more resources are occupied.
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FIGURE 2. Unity architecture [24], [33].

• Knowledge. Data collected or generated by the above
functions such as system state, configurations, policies,
plans, actions’ history is stored in a knowledge source.

From Fig. 1, beside the MAPE-K control loop, it shows
components of such autonomic system (or element): 1) auto-
nomic manager, which execute the MAPE-K control loop,
2) managed resources such as servers, network devices (e.g.
switches, routers, firewalls, load balancers), 3) touch-points
that connects autonomic manager with managed resources,
4) sensors and effectors. Sensors could be agents for col-
lecting monitoring data and send it to the monitor function.
Similarly, effectors could be agents for executing commands
sent by the execute function to enforce a plan (e.g. opti-
mization plan). This structure is common in autonomic
system designs. Administration layer is above all of those,
which defined general rules or policies to guide the auton-
omy functioning of the system and to serve the business
goals.

Fig. 2 shows an architecture for one of those systems
that tried to tackle the self-management by the design of an
autonomic system. This architecture is calledUnity [33]–[35]
and it been carried out at IBM’s Thomas J. Watson Research
Center. In Unity, the system consists of autonomic elements
each is responsible for its behavior such as controlling its
resources or its internal operations. Also its external behavior
with other autonomic elements (i.e. through defined inter-
face only). By doing that, the self-management of the whole
system is achieved. Authors used the achievement of SLA
as the indication of the system success or its performance
(i.e. as an evaluation scenario). The system consists of one or
more application managers (i.e. applications 1 and 2) each
responsible for the application’s environment (e.g. the web
application). It predicts the changes in the application utility,
whether its resources are increased or decreased. A set of
servers are representing a pool of resources in which the other
system’s element, arbiter, controls. It can reassign resource
from one application to another. This element performs the
optimization of resources utilization to increase the overall

system utility and meeting requirements of each application
SLA. Each application’s environment contains a repository
that holds state information, which can be polled by the
arbiter or the system administrator. Also, another element
called sentinel it responsible to monitor the services func-
tionality. If any fault or a service stopped, it notifies the
interesting entities (e.g. administrators, or another element).
This is part of the self-healing property that Unity peruse.
Besides polling the repository, an administrator can inter-
face another element called policy repository for defining
the general rules or utility function that guide the system
behavior. This repository is also used by the arbiter while it
optimizes the resource allocation process. The arbiter asks
each application manager about the expected utility of its
environment when certain amount of resources is assigned
to. Based on that predicted utility, a utility-based optimization
for resources assignment is performed by the arbiter element.
Despite the system aimed to achieve all four autonomic com-
puting attributes, however, the self-protecting property was
not clear.

C. AUTONOMIC NETWORKING
Similarly and with the same Autonomic Computing con-
cept, a design for autonomic network architecture will solve
many management problems (i.e. due to network complex-
ity, cost, errors) and frees experts for innovation tasks.
Therefore, an autonomic network architecture should provide
self-management (i.e. the four self-* properties) for network
owners. The task of achieving autonomy for network man-
agement is more complex due to the high heterogeneity of
network elements and those protocols working upon.

There is a big difference between autonomicity and
automaticity in network management. Automaticity means
automating routine tasks that are handled by the networks,
either on the element level such processing of packets within
network router or at the administration level by using tools
or scripts to automatically collecting data from those ele-
ments through protocols such as SNMP [36]. The latter does
not involve self-optimization of the network performance to
achieve the best utility drawn by high-level rules or goals
which is the purpose of autonomicity. In current IP networks,
there are some forms of autonomicity. For instance, routing
protocols such as OSPF [37] makes routers work together to
autonomically coordinate packets’ routing process. However,
those network elements still need external configuration by
network administrators (i.e. especially if the environment
changed).

Many network architectures proposed to overcome man-
agement complexity or to introduce autonomic networking.
ANA (Autonomic Network Architecture) [38], [39] project
was one of those proposed in the literature. It aimed at provid-
ing a communication abstraction for different heterogeneous
network styles. An ANA node contains one or more Func-
tional Block, Information Channel, and Information Dispatch
Point. Instead of using protocol stack such as the one in OSI
model, one or more node’s functional block(s) perform the
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task or the service required. And for information or data
transmission, an information’s channel is used between those
interesting endpoints. Either between nodes within the same
context which they called compartment (or another compart-
ment’s nodes). Compartment defines its own communication
policies, membership, trust, addressing, routing and policies
to interact with other compartments. The address resolution
is defined by each compartment. It defines an information
dispatch point to reach its nodes. Information’s channels are
bounded to those dispatch point to allow flows of infor-
mation between interesting compartment or nodes within.
Also authors in [40] proposed a management architecture to
support self-configuration and self-optimization in current IP
networks. They divided the network management into two
layers, Objective definition layer and Objective achievement
layer. In the first one, network operators define requirements
of the system at the highest level which represent the business
view of the system. Then those requirements are transformed
into network utility functions (NUFs) by a main system
component called Objective Definition Point(ODP). Beside
network operators, at that management level, experts provide
management guidelines or strategies. NUFs represents the
polices to describe the network performance at the system
view (e.g. optimization functions). Those NUFs and experts
strategies are forwarded to another component called Global
Definition Point(GDP). This component analyzes the NUFs
and chooses the best expert strategies to achieve them. The
results are a set of goal policies or specifications. The network
infrastructure is divided into small domains managed by a
coordinator called Domain Goal Distribution Point(DGDP).
The GDP distribute those NUFs and goal policies to all
DGDPs. DGDP analyze them and identifies the appropri-
ate behavioral policies to achieve those goal policies. These
behavioral policies are targeting entities in the second man-
agement layer called goal achievement points. They repre-
sent the autonomic managed entities in the system (i.e. they
could be router, switch, gateway). They perform theMAPE-K
control to manage their behavior and interact with their con-
text guided by behavioral policies received from DGDPs.
In that system, human interaction with the system in two
ways, network operator who define system requirements and
experts who provide knowledge expressed in guidelines or
strategies.

In [24], the authors did a survey on similar exiting net-
working architectures which tries to apply autonomy prin-
ciples (i.e. early discussed in Section II-A) to achieve
self-management within networking. Authors also provided
qualitative and quantitative criteria to evaluate and compare
between such architectures. They mentioned that autonomic
network can be evaluated quantitatively, besides other crite-
ria, through QoS metrics since they can be used to measure
the performance of an autonomic network. We believe so,
however, we think of the network as a system that provides
a service of data transportation for its users and owners.
Therefore, management of QoS for services or applications
that use that system should be autonomic. Such management

FIGURE 3. Software defined networking architecture.

task could extensively benefit from the underlying autonomic
network. Also, the authors did not consider new network
architectures such as SDN and the opportunity in it to support
autonomy in networking.

III. SOFTWARE DEFINED NETWORKING
SDN is a new network architecture that decouples control
plane from data plane differently than the current network
architecture [9]. The idea behind it was to use flow tables
inside network devices and a standard interface for flow table
configuration, management, and manipulation. The standard
protocol to accomplish this task was called OpenFlow [14].
Those flow tables contain rules that match packet header
fields and actions to perform on those matched packets [14].
OpenFlow protocol has become the de-facto protocol for
SDN by which a central server controls network devices
through OpenFlow primitives to install and delete flow table
entries.

Fig. 3 shows an overview of the SDN architecture. Control
and data planes are physically separated differently from
today’s widely deployed network architecture. In which the
network device (e.g., router) controls the forwarding tasks
through routing protocol implemented within it. In the SDN,
there are three separate planes:
• Data Plane. This plane consists of OpenFlow com-
pliant forwarding devices of either physical or virtual
switches. They can be considered as dump forward-
ing devices with OpenFlow firmware installed on.
OpenVswitch [41] is an example of such platforms.
Many vendors of network devices made their new prod-
ucts compatible with OpenFlow protocol as Table 2
shows. The communication between SDN controller and
the switch is performed using a South-Bound Inter-
faces SBI) or Controller-Data Plane Interfaces (CDPI)
by which the controller can install, modify or delete flow
tables rules.

• Control Plane. In this plane, the control of the whole
network devices resides.Many other functionalities such
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TABLE 2. Sample of OpenFlow compatible switches.

TABLE 3. Sample of open source SDN controllers.

as forwarding, topology discovery, fault detection and
many others could be performed in this plane. SDN
controllers are the embodiment of the SDN architecture.
Different implementations are proposed and deployed
for acquiring SDN as shown in Table 3. The con-
troller provides an abstraction of the underlying network
infrastructure and services to the network applications.
Many network applications such as load balancer can
obtain information through through North-Bound Inter-
faces (NBI) from the controller. For instance, a load
balancer can retrieve information about the status of
the network switches or links since they are main-
tained and monitored by the controller. The main draw-
back of the SDN is that the control functionality is
centralized which makes it a single point of failure.
However, many researchers have proposed solutions to
overcome such problem by using multiple distributed
controllers [20].

• Application Plane. In this plane, network and busi-
ness applications reside. Programmability of the SDN
architecture allows these applications to interact with

the controller without concerning of complexity of the
network due to the abstract view that SDN provides
and availability of network data through northbound
APIs. Which separate complex network configuration
and from application developments.

A. AUTONOMY OF SDN
In legacy network architectures, network management is cen-
tralized while the control is distributed and implemented
within network devices (i.e., through routing protocols, span-
ning tree). The SDN architecture has the concept of removing
the control from network elements and put it in a logical
central place. This is the second concept that SDN was
intended to achieve which the abstraction of the network view
and control that allows multiple layers to coexist without
intervening with each others’ resources and control. This
decoupling of control and data flow, allows the concept of
network programmability to be a reality since the decision is
maintained centrally by the controller. Therefore, a developed
software can control the behavior of its network for its goals.
All on the fly just by installing OpenFlow rules within those
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FIGURE 4. Distribution of used SDN controllers in reviewed works.

managed elements. Therefore, the role of the SDN controller
is the most important or as it been the operating system of
the network to support autonomic networking using the SDN
architecture.

As discussed previously and in [24], achieving autonomic
networking is a dream for network providers and operators.
Moreover, it will be an advantage of any new architecture to
support autonomic management of its components. SDN is a
promising architecture due to its neutral design that is built
based on the decoupling of control and data planes. By pro-
viding simple primitives through which applications can pro-
gram the network and changes its behavior accordingly [67].
It allows SDN-based networks to change its configuration
just by replacing flow rules within network switches (Self-
Configuration). For instance, in response to changes in traffic
load or due to a link failure.

Central control of the forwarding decision allows the con-
troller to compare every connection request or flow initiation
against security policies. For instance, when new users want
to connect to an external website, that domain or IP can be
tested within the controller against a set of security rules by
which either that flow is admitted or rejected. The controller
creates flow rules within switches that allow/deny that flow’s
packets within the network (self-protecting). Also, network
operators can configure those switches to behave similarly to
mini-firewalls andmay steer specific type of traffic to another
system (i.e., such as IDS) either for more inspection [68]
or detection of possible threats [69]–[72]. Many SDN con-
trollers already implement firewall application within their
distribution such as in OpenDaylight and Floodlight con-
trollers.

The global view of the network provided by the SDN con-
troller allows optimizing the whole network traffic according
to specific objectives (self-optimization). For instance, a load

balancing application can use that information to distribute
flows along different paths (i.e., through the controller) [73].
Topology management is a critical module in most of SDN
controller. It builds a view about the status of network ele-
ments and links between them. For instance, protocols such
as Link Layer Discovery Protocol (LLDP) can be used for
failure detection. In response to such incident (i.e., or even
a threat detection), SDN controller can reconfigure those
devices to use other available paths instead of those failed
ones with little service interruption (self-healing) [74].

B. QoS SUPPORT IN OpenFlow
By design, SDN provides network operators with granular
control over traffic flows. Forwarding rules installed within
the flow table targeting a specific flow(s) using packet header
information (i.e., 2nd-level, 3rd-level or 4th-level of TCP/IP
stack). In its early specifications, OpenFlow allows actions
to be taken on a flow’s packet after it matches a rule within
the flow table. In OpenFlow 1.0 [76], an enqueue action is
defined by which a packet can be attached to one of the
output port queues. It allows the controller to assign different
flow traffic such as those to belong to VoIP service into a
specific queue (i.e., for sensitive delay requirements). This
feature is limited compared to what is already defined in the
traditional network devices. Moreover, queues configuration
task is assigned to another protocol that is later defined
called OF-Config [75]. In OpenFlow 1.1 [77], the ability of
multi-level VLAN/MPLS and traffic classes (i.g. ToS/DSCP)
matching was added. Also, an action was specified to add,
remove or modify those labels (or tags). Moreover, group
tables are introduced which allows flows aggregated action
to be performed. A flow entry(s) in the flow table can point
to an entry in the group table for more processing or to aggre-
gate statistics separately than forwarding rules. In OpenFlow
1.2 [78], the controller becomes able to query switches for
queues configuration such as max-rate. Also, it becomes
possible to attach queues to different ports. In OpenFlow
1.3 [79], the ONF working group guidelines offer to imple-
ment rate limiting by using meter tables with its structure
shown in Fig. 7. Meter table contains meter entries each one
is identified with a 32bit unsigned integer identifier. A meter
can be attached to flow entry. Counters within meter to count
packets that been processed by the meter. For rate limiting,
meter bands are used to compute the rate for flows attached to
that meter aggregately. Band type specifies what to do such as
marking the packet withDSCP value or drop it (i.e., by adding
it to the action or instruction set to execute). Therefore, if the
current flow(s) rate is below configuration, the meter band
is not executed. Multiple meter band can be defined, and the
band is executed when the rate configuration is reached. This
feature can be used tomonitor packet entering the ingress port
and apply metering or rate-limiting on their flows. In Open-
Flow 1.4 [80], the controller is supported with a scheme to
monitor a subset of the flow table(s) in the switch. This
feature is added due to the support of distributed controllers,
in which many controllers can manage the same network.

73390 VOLUME 7, 2019



A. BinSahaq et al.: Survey on Autonomic Provisioning and Management of QoS in SDN Networks

FIGURE 5. QoS in traditional and SDN networks.

Therefore, a controller can install monitors on a subset of
the flow table, and whenever an addition, modification or
removal or flows happen, an event packet is sent to the

controller to inform it about that change. OpenFlow 1.5 [81]
introduce new features such as the egress tables in output
ports. It also adds idle time statistic to count the time this
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TABLE 4. QoS in traditional and SDN networks.

flow entry is idle. Also, TCP flags matching is added (i.e.,
such as SYN, ACK and FIN), in which it helps to detect
the start/end of TCP connection. Moreover, flow statistics
triggers are added to allow the switch to push-up statistics
(i.e. beside the default poll-based) toward the controller when
their configured threshold/timeout is reached. Furthermore,
port configuration changes notificationmessage is introduced
to alert other controllers in a distributed deployment. Figure 5
and Table 4 compare implementation and main features of
QoS in traditional and SDN networks.

IV. AUTONOMIC QoS WITHIN SDN
Autonomy frees up managers from network management
duties and allows them to focus on improving business
goals. With this rapid development of new services, net-
work management will not be the same. Such services and
quality demands are always changing which increases the
CapEx/OpEx costs. A self-managed network is a dream of
the higher administration level [10]. Autonomy is a suggested
solution to overcome those challenges in deployment or man-
agement of such services. SDN can push toward achiev-
ing that goal with its generality and programmability which
leads to ease deployment of new services. SDN network can
be easily programmed to support the service or its users’
requirements by writing a simple program module within or
above the SDN controller with the conjunction of OpenFlow
primitives. When it is over, the changes to the network can be
rolled back by unplugging that software module. Therefore,
it is a design choice to offer an autonomy of QoSmanagement
within SDN networks. However, in order to do it, such design
should comply with those previously discussed functionali-
ties of an Autonomic System.

Therefore, in this section, we organize the research effort
in the literature of SDN-based QoS provisioning according to

theMAPE-Kmodel main functions, namely:Monitor, Analy-
sis, Plan, and Execute. Then, we review and discuss the orga-
nization of the Knowledge source. We chose the MAPE-K
because it is adopted by IBM for describing autonomic com-
puting and it is the most famous reference control model for
self-adaptive and autonomic systems. Also due to its clarity
and modularity to describe how QoS autonomic provisioning
and management should work. Therefore, we discuss each
function as been tackled in the literature in the field of QoS
management in SDN.

A. MONITOR
Monitoring of network services plays a key role. It helps
to detect any degradation of the quality and ensures such
services work correctly. Hence, problems can be resolved
without interrupting such services or affecting the user
satisfaction.

1) MONITORING IN OpenFlow
Each network system should know existing services and the
state of its components to support QoS provisioning. SDN
uses distance-based monitoring of network elements since
the control is separated from those devices and located in
a logically centralized place. OpenFlow provides within its
specification a messaging mechanism that allows the con-
troller to poll statistics (i.e., about flows, tables, ports, and
queues) from those compatible devices [80].

In SDN, the monitoring function can be implemented
within or above the controller to observe the network state.
The controller internally keeps three different views of each
device; capabilities, configurations, and statistics as shown
in Fig. 6. Upon establishing the connection with the con-
troller, each network device sends its capabilities ( i.e., actu-
ally the controller asks for it by sending a feature request
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FIGURE 6. Three views of OpenFlow (OF) Switch from the controller point of view.

to the switch). Features such as the maximum number of
flow tables, and if the switch supports metering or grouping
of flows and how many flow entries each table can hold.
Moreover, it knows the speed, and the configuration of con-
nected links and the number of queues each line has as
shown in Fig. 6. This helps the controller to know what the
network can do. Beside capabilities, the controller can get
the current configuration of each device. To know the state
of the network, the controller can send StatReq messages to
poll statistics from those network devices as shown in Fig. 7.

Fig. 7 depicts the format of the control messages between
a switch and the controller. Whenever a new flow arrives,
a PacketIn message is sent to the controller informing it
about this unrecognized flow packets. Upon reception of
that packet, the controller replies by FlowMod message(s)
to create a new entry for that flow within switches along the
specified flow path. A flow entry holds counters for packets
matching that flow. Moreover, other counters for that flow
can coexist in other tables in that switch such as the meter
table that is used to band the traffic generated by that flow.
An entry expires after certain time of inactivity called Idle-
Timeout or after a HardTimout elapsed even if the flow still
active. At which, the switch removes expired flow entry and
informs the controller by sending a FlowRemoved message
(i.e., a flow-removed flag is used along with that flow entry).
FlowRemoved packet contains statistics about that dead flow.
Fig. 7 shows the structure of those counters in each switch
and which OpenFlow version support. This approach used

in SDN simplified the monitoring function. Simple counters
are used and southbound APIs made available by the switch
to allow the controller acquiring them. The authors in [84]
investigated the OpenFlow monitoring capabilities and visu-
alize the collected statistics in a GUI for the network operator.

Monitoring is a key component in QoS provision-
ing. In order to comply with SLA requirements, accurate
and timely measurements should be provided and made
available [85]. In this section, we review and discuss research
works related to network monitoring within SDN.

2) ACTIVE VS PASSIVE
The process of collecting measurements can either be active
or passive. In the active measurement, initiation of that pro-
cess usually done by the controller, not the switches. As men-
tioned before, controller sends StatReq messages to grab
counters data stored within switches.

Most of the research work in [86]–[92], [94]–[100], [102]–
[104], [106], [107], [109], [110], [112]–[116], [181]–[183],
[195] uses the same approach.

The approach used in [86] collects network statistics
through OpenFlow messages. It measures QoS metrics (e.g.,
utilization of port bandwidth and loss) and makes it available
for upper applications such as traffic engineering. Those
messages are sent periodically within a predefined polling
interval (i.e., every 5 seconds). For instance in OpenTM [87],
a single query is issued during each polling interval (i.e. also
5 seconds) for every different source-destination pairs. They
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FIGURE 7. ONF architecture for OpenFlow.

used source-destination pairs to identify flows and compute
the volume of traffic in between. In [88], port statistics are
periodically polled from network switches (i.e., every 500ms
for accurate results) by the controller. Transmitted bytes by
each switch’s port is used to compute the consumed band-
width between any two neighbor switches. In [89], controller
polls network switches periodically (i.e., every second) to
collects queues statistics. They used these retrieved statistics
to compute queue’s delay and the available bandwidth. Also,
the authors in [182] periodically collect statistics to compute
packets loss and estimates their effect on VoIP quality.

The authors in [83] proposed FlowVisa as a plugin module
in the control plane. It is used to identify traffic flows that
belong to the critical application. So those can be explic-
itly monitored or carefully. Instead of packet sampling or
using deep packet inspection to identify that flow belong
to which business application, FlowVisa communicate with
such business application through northbound API to retrieve
information that helps in digging the network traffic for those
flows. By the identification of flows, switches that serve them
identified and polled to receive statistic for those critical
monitor flows. Using the same application interaction,
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FIGURE 8. Classification and taxonomy of prior work on SDN based on MAPE-K reference model.

FlowVisa can get information about flow’s lifetime which can
help in stoppingmonitoring process before they expired in the
flow tables as it will reduce the communication cost caused
by StatReq messages.

Frequently used StatReq messages will overload the net-
work. Therefore, some research works as it the case in [94]
sacrificed accuracy for low overhead. They used IP prefixes

as a matching rule for flows forwarding. By that, fewer
per-flow statistics messages are sent along the network. Also,
wild-card flow entries aggregation is an excellent choice to
reduce statistic collection communication overhead. How-
ever, it loses fine-granular forwarding that many network
applications are pursuing. Therefore, the authors in [90], [91]
used an approach (i.e., called CeMoC) that achieves flows
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statistic aggregated collection while keeping fine-grained for-
warding. Authors use the group table within the switch for
that task. They create a group entry for each aggregated set
of flows, with a group type set to SELECT. Each of these
flows’ action within the flow table points to that group entry
identifier. Each group entry collects statistics for packets
processed by that entry similar to those used in the per-flow
within flow table (i.e., flows statistics aggregation). Each
group entry contains a list of action buckets that is applied to
those processed packets. Selection of which bucket to be exe-
cuted depends on the criteria implemented by the SELECT
group type. For instance, a hash value could be computed for
the packet by the switch to choose between those buckets.
Bucket action could be to forward the packet to a specific port
similarly to those specified in the flow table entries. By doing
that, the approach preserves the fine-granular forwarding.
Instead of using per-flow (i.e., two messages) or poll-all (i.e.,
1+multi-part reply messages) statistic polling, the controller
can polls group’s statistic held within group entries. This
approach may cause extra computation on the switch, and
the selection criteria need to be carefully designed to achieve
perfect forwarding. Fig. 9 shows the design of both works.
It consists of a RequestDispatcher that receive user’s statistic
requests and converts it to low-level queries, a FlowTracker
that tracks all active flows within the network, aGroupMaker
that is responsible for creating group entries for the aggre-
gated or grouped flows, a QueryMaker that polls statistics
from the selected switches by sending StatReq messages
and a Collector that collects statistics received from network
switches. In [90], a PollingScheduler module configures the
polling interval. In [91], that module shifted to the upper
coordination layer.

Besides the communication cost trade-off, TCAM should
be wisely used when installing flows entries either for for-
warding or monitoring [93]. InOpenMeaure [92], the authors
start by installing destination-based coarse rules for routing.
Then, an initial flow-size estimation is obtained from those
periodically collected statistics. Online learning is used to
identify the most interesting flows to monitor. Therefore,
fine-grained rules are installed which allows OpenMeasure
to select interesting large flows to track and measure.

The authors in [94] exploit the way OpenFlow forwarding
works to monitor the network. They use a set of rules within
the switch to match traffic that under monitoring. More-
over, by changing rule priority, the controller can dynam-
ically changes which the most critical traffic to monitor.
The approach they used is simple, and their objective is to
overcome the need to change data structure for monitoring
purpose. They scarify the accuracy with low overhead since
large aggregation is performed in rule installation (i.e., they
used IP prefixes as matching rules). They adapt those rules
to focus on flows that are more likely to have high traffic
volume, i.e., to tackle the problem of hierarchical heavy hitter
detection). They assume that there is only monitoring rules
and no actions that drop or forward the packet which not the
case in current OpenFlow networks.

The authors in [176] focus on getting fine-granular mea-
surements of more rewarding flows. From their perspective,
most massive volume flows are themost important candidates
for per-flow monitoring. Therefore, they used an intelligent
Multi-Armed Bandit (MAB) algorithm to select those flows
and stamped as important. Part of flow entries in switch
TCAM are reserved to fine-granularly measure them while
the rest is flows are optimally aggregated, and flow rules are
installed at the other part of TCAM. This division is evaluated
dynamically within a specific monitoring interval.

The authors in [177] decouple monitoring from the for-
warding process. They create a separate monitoring table
with match fields similar to those in the flow table. How-
ever, the decision of monitoring of flows is chosen by the
application through the controller by changing monitoring
match fields in the monitoring table. This process is con-
trolled in the switch by the local control application that
uses configured bloom-filer entries for faster monitoring
decision. For instance, the incoming packet head matched
the bloom-filter element, and this packet is not monitored.
Otherwise, the packet header is matched with those entries
in the monitoring table. Counters are updates if there is a
match. Otherwise, a sampling ratio is used to decide to moni-
tor this new flow or not. If the decision was not to monitor this
flow, a new element is created in the bloom-filter to announce
non-monitoring for this flow in the future. These statistics are
stored in a database within the switch which polled by the
controller based on the applications’ requirement. This work
requires a change to the switch and may addmore processing,
and storage overhead to it. The controller glues between the
application and the switches through the monitoring APIs.
They are used to configure the monitoring process within the
switch (e.g., enable or disable, change matching fields). Then
the authors tried in [178] to distribute the monitoring load of
flows between network switches. Since the controller has the
global view of the monitoring data, flows that are monitored
by multiples switches are filtered. Switches with the highest
number of monitoring entries remove the monitoring entry
belong to that flow from their tables. Moreover, in [179], they
considered switch resources. They choose switches that have
enough memory or computation (i.e., idle CPU time).

The authors in [96] periodically collect port and flow
statistics for packet loss calculation. However, and differently
from previous works, the authors pointed that non-data traffic
is contributing to such statistics (i.e., port specifically). There-
fore, and for accurate loss estimation, non-data statistics need
to be discounted from collected measurements based on their
previous work in [97] that estimates non-data traffic in the
network.

The authors in [95] proposed schemes to reduce the com-
munication cost imposed by request/reply messages, for
global monitoring of SDN network, by producing optimized
polling schemes for network switches. Instead of polling
all switches along the path of a single flow, they heuristi-
cally choose switches that cover most of those active flows.
This process continues until all active flows are covered.
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FIGURE 9. Illustrative diagram of CeMOC as reported in [90], [91].
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FIGURE 10. Illustrative diagram for FlowCover/CeMon scheme as
reported in [95], [98].

Fig. 10 shows their proposed approach. It consists of five
modules: flow event handler which handles flow arrival or
expiringmessages and forward it to flow state tracker. It holds
and maintains a list of active flows within the network.
Then a polling scheme optimizer uses that list of flows
and their routing paths (i.e., from the routing module) to
produce an optimized polling scheme. It is used by flow
stat collector to poll statistics from switches. Received data
are passed to flow stat aggregator to make it available for
upper applications. If a new flow is detected by the flow
state tracker, the optimizer checks if it been covered by an
already generated scheme, if not a new polling rule adding
to the existing scheme. Polling scheme is recomputed peri-
odically by the optimizer to achieve the most up to date
view. They assumed out-band control in which the distance
between the controller and switches is assumed to be the
same. However, in [98] they added in-band control network
in which the location of the controller is counted (i.e., or the
hops to the switch is counted) onto the cost of polling the
switch.

In [99], [100], the authors proposed a method to minimize
the number of polling queries by limiting it to switches
that offer valuable information to the monitoring process.
Therefore, they cluster the switches based on the number of
ports and their criticality. The switch criticality is defined
as how many times it appears in the forwarding paths from
a client to server hosts. Switches with three or more ports
are cluster based on their criticality. A polling algorithm ran-
domly chooses switches from such a cluster. By doing that,

not all switches are queried together in the same monitoring
interval tmon.

In [102], the authors propose a greedy polling algorithm
called lonely flow first (LFF) in which the lonely flows are
covered first with a poll-all message. Lonely flow is a flow
that passes through only one switch. By finding such flows,
the algorithm divides the network switches into two groups,
with/without lonely flows. They define two communication
costs that are taken into account, the distance and the message
overhead (i.e., request/reply messages) for using poll-single
or poll-all. Within each group of switches, the cost is com-
pared, if the poll-all is higher, the poll-single messages are
used and vice versa until all flows are covered by which the
polling cycle finish.

In [90], the authors design an adaptive polling interval
algorithm that reacts to traffic fluctuation. It uses the dif-
ference between the current and the previous traffic mea-
surements for a group of flows to detect the fluctuation.
A shorter interval is used when the fluctuation is high and a
longer interval otherwise. Also, the authors in [95], [98] use
an adaptive approach to compute the polling frequency of
sampling interval. It adjusts the frequency according to traf-
fic changes, hugely changing traffic requires shorter polling
period. In order to alleviate fluctuation, they used an adaptive
sliding window of traffic history for smoothing the changes.

In [103], the authors poll flow’s statistics from a net-
work switch according to a predefined polling interval (i.e.
min(0.5s), max(5s)). However, to detect the fluctuation in
flow’s rate, the static configuration is not enough and adap-
tion is required. They use a sliding window queue (i.e., queue
size = 3) to keep the history of consequence byte counts
measurements. Then, the difference between the current and
last measurement (i.e., transmission within the last interval)
is compared with this sliding window queue mean added to
its standard deviation. If the new value is larger than the mean
and standard deviation sum, the polling interval for that flow
is decreased, and its sliding window queue size is reduced
also. Otherwise, the polling interval and the queue size is
increased. That adaptive approach is called AdaRate. Then,
they made another modification in which a random choice
is made to adapt according to AdaRate or to use a minimum
polling interval (i.e., called RAdaRate) to detect any missed
fluctuation between two measurements.

The authors in [105] adapt the polling frequency accord-
ing to ports/switches activity. They use the exponen-
tial moving average to reduce the effects of instanta-
neous fluctuations while maintaining measurement accuracy.
In OpenNetMon [104], the arrival of new flows is used in
adapting the polling interval as an indication of the network
the activity. Thus, switches are polled at a faster rate. Other-
wise, when the state is static or no changes in flows routes,
counters are polled periodically.

Based on OpenNetMon, the authors in [106] built
their architecture and called it OpenLL (OpenFlow-based
Low-cost and Low-error). They use adaptive sampling in
order to reduce the communication overhead and improve
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accuracy. They compared the difference between the current
and previously computed flow throughput. Also, adaption
coefficients are to change the polling interval. The interval
is limited by a low (i.e., 1s) and a max(i.e., 30s) bounds.
The authors in [107] used a similar approach to measure a
flow rate. Within each polling interval, N requests are sent
to both first and last switches (i.e., each switch receive N/2
requests unless N is not an even, then the last switch is polled
once more than the first one). The polling interval is adapted
and bounded between two values, a min(1s) and a max(15s).
Authors use historical computed flow rate values to predict
future ones. Then, they compute the change of the prediction
based on the changed value. The interval either increases or
decreased or stay the same. For instance, if the changes are
faster than recent prediction, the polling interval is decreased.
They used the same concept used in TCP congestion control
to change the value of the polling interval. An additive
increase (i.e., incremented by 1) and Multiplicative decrease
(i.e., divided by 2).

For active flows identification, the authors in [109] mon-
itored the arrival of PacketIn and FlowRemoved messages.
Even this approach is not practical in the proactive flow
entries deployment. For polling schedule, they used a
time-out ( t in milliseconds) for both the flow to expire
and polling request to be issued. If the flows FlowRemoved
message is received within that interval, the statistics will be
embedded within. Otherwise, the flow statistics are polled.
The difference between the counted value and the last mea-
surement is computed and compared to a specific threshold.
If the difference is lower, then the time-out value is increased
by a multiple of a constant value. If the flow rate still slow,
the process repeated until it reaches some maximum value.
This process is performed similarly if the flow rate is high
by which the time-out value is decreased by dividing it with
another constant until the maximum value is reached. This
process may cause overhead. Therefore, initial time-out val-
ues need to be carefully chosen.

The authors in [110] proposed a model to capture the
nature of the behavior of a flow’s traffic or volume by sam-
pling flow’s packets. They implement two sampling algo-
rithms; a stochastic and a systematic. The first one samples
flow’s packets based on certain probability while the other
uses sampling ratio (i.e., sample m packets after N conse-
quence ones) similar to sFlow. Based on these sampled statis-
tics the polling interval is adapted. For instance, if the traffic is
stable, the scheduler increases the interval. Otherwise, it uses
a shorter one (i.e., 0.5s to 5s is the used interval bounds). So,
it adapts to have higher accuracy when necessary and reduces
the overhead when it is not worthing like the work in [107].
Therefore, the flow sampling is used to help the controller
adapt flow’s polling interval. Implementation of the sampling
algorithms requires changes to the data-plane.

Differently that previously discussed works, other types of
measurement cannot be inferred from polled switch coun-
ters. For instance, the authors in [195] proposed a framework
called SLAM to monitor path latency in SDN-based data

center networks. High delay network segments need to be
detected. Authors used a customized probe packet to trigger
PacktIn notification packets. Then it measures the latency
based on the arrival time of the PacktIn message to the
controller. Also, the authors, in [113] used special packets
injected to test end-to-end delay for flows. Each packet trav-
els the path from first to the last switch and goes back to
the controller. This process is repeated periodically for each
monitored flow. And similarly, the work in [112], [183] and
in OpenNetMon [104].

In [114], probe packets are injected to test link delay.
Instead of using static short paths and due to computation
expensive path optimization, they used a random walk based
on weighted links that satisfy a min-max probe rate for
each link. The authors in [115] utilize the same probe-based
approach to obtain the link delay. Instead of probing for every
link, in [116], the authors used the network graph built by
the topology discovery module to produce a tree that covers
all links with the least number of hops. Then, sub-paths are
probed similarly to previous works to path delays. Therefore,
to compute the delay of a link in a specific tree level, its
previous levels links delays are subtracted from its sup-path
delay. So, there is no need to probe switches for link delay if
that link resides in a sub-path that its delay is computed.

The authors in [180] used an approach called Bidirectional
forwarding detection (BFD) that detect link failures in OVSs.
In which switches send messages in between, absences of
such message means link failure. Authors implemented an
echo mode in which a switch sends echo messages between
each other through those connected ports. Then, by comput-
ing the difference of reception and sending times, link delay
can be estimated. This value is stored and added to LLDP
packets when passed by the switch to be forwarded to the
controller.

The authors in [181] use test machines to send probe
packets periodically that travel along structured rings. Those
probes are used to test link delay and loss ratios.

Active measurement provides accurate results;
however, it leads to more overhead due to request/replay
statistic messages or probe packets. The authors in [109],
[110], [117]–[120], [123]–[129] proposed ways to reduce
such overhead by pushing up statistic toward the controller.

In [117], [118], flow discovery is used to identify which
flows need to be monitored, the proposed approach called
NFO. For this purpose, NFO installs aggregated flow entries
called discovery entries within a set of network switches in a
way that balances the monitoring load. Available capacity of
the flow table is used to direct the discovery module in which
switch(s) those entries are installed. The switch sends the
matched packet to the controller (i.e., action ‘‘to controller’’
is used in the installed discovery entries). Upon reception
of PacketIn that been generated due to matched discovery
flow entry, the controller installs an exact match entry for that
identified active flow. A push-based approach is implemented
by setting a timeout and flow-remove flag along with this
newly created flow entry. The timeout value determines the
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frequency in which statistic is pushed for that flow. Every
time a flow expires, a FlowRemoved packet is sent to the
controller with counted statistics. In response to FlowRe-
movedmessage, a flow entry is created by the controller (i.e.,
if the flow needs to be monitored) with a new timeout value
computed by a frequency scheduler module similar to that
used in [109].

In [119], the authors leverage OpenFlow control mes-
sages to monitor network utilization passively. In OpenFlow,
a PacketIn and FlowRemoved packets is sent to inform the
controller the new and expired flows respectively. Authors
used those two messages to create discrete time checkpoints
depict the lifetime interval of each flow. Along with the
FlowRemoved packet, a statistics about count bytes matched
and duration of that flow.

The authors in [120] proposed a solution to reduce com-
munication cost by reducing the rate at which statistics are
polled using StatReqmessages. They leveraged a new feature
in OpenFlow 1.5 that allows the switch to push flow statistics
based on a preconfigured threshold or its multiples. They
also utilized the statistics contained within FlowRemoved
messages to enhance the granularity with no cost. If both
previously discussed method was not enough in the polling
interval T timeout, a StatReqmessage is sent to poll statistics
for that flow. The approach uses the rate in which it receives
the flow-stat trigger messages to adapt the threshold, and
hence reduces the overhead. It increases the threshold if the
trigger rabidly ignited and vice versa to increase the flow-stat
triggering by reducing that configured threshold.

Instead of using OpenFlow messages, the authors in [123]
used sFlow protocol [121] as their source of the network
measurements. sFlow is a packet sample protocol that takes
one sample from N packets that traverse the switch and sends
packet’s header with some meta-data toward a central sFlow
collector which is the SDN controller in that work. Therefore,
the accuracy depends on N and the rate is variable due to N
and the variability of packets arrival rate. Authors used sFlow
due it is stateless as it is not the case in NetFlow [122] since
the sampled packet is sent automatically to the collector.

In [110] authors implement two per-flow sampling algo-
rithms; stochastic and systematic. The first one samples
flow’s packet based on a certain probability while the other
uses sampling ratio ( i.e., sample m packet after N con-
sequence packets) similar to sFlow [121]. They used these
sampled packets to tune polling interval by the controller.
Similarly, the authors in [111] modified actions specified
with flows’ entry to implement sampling. An m out of
n consequence packets (i.e., deterministic) or with proba-
bility p (i.e., stochastic) are sampled from the monitored
flow.

The authors in [124]–[126] implement a NetFlow [122]
similar sampling using OpenFlow existing features. They
developed two methods: one is an IP prefix based in which
controller install special monitoring rules that match certain
IP prefixes by matching the last n bits of the source and
destination IP address. They claim that the sampling rate

depends on the number of bits masked. The other method
computes a hash value of the 5-tuple of the packet header
and checks if this computed value is within a particular
range. In both methods, the switch sends the matched packets
for those monitored flows to the controller. This approach
requires the installation of a set of monitoring rules within
the OpenFlow switch which may consume more spaces if it
needs to monitor more granular flows. In [127], the switch
monitors a link statistics and send its statistic periodically
toward the controller. Therefore, the controller gets a final
value to compute a link utilization table.

Some OpenFlow enabled switches may also support other
measurement protocols such as sFlow. The authors in [128]
exploited such feature and developed a monitoring mod-
ule for the Floodlight controller called SDNMon. It used
two approaches for collecting statistics, polling through
OpenFlow statistic messages and sampling through sFlow
protocol. Similarly, the authors of [129] used two random
sampling, per-packet and per-byte. The switch send those
sampled packets to the controller for heavy flow detection
modules that uses them to detected suspicious massive flows
based on some thresholds. Upon suspicion, count rules are
installed within that switch to count the flow. These counters
are polled periodically by the controller for the heavy flow
detection module.

3) FROM PART VS ALL ELEMENTS
The source of measurements has a primary effect on the
monitoring process. There are two directions in the literature:
polling part or all of the network elements.

In OpenTM [87], the authors try different algorithms such
as querying the last switch only, round-robin, non-uniform
random and others. They found that polling the last switches
before destination gives the best accuracy but adds more load
on them. While in OpenNetMon [104], the authors decide
to collect statistics from ingress and egress switches only.
Moreover, instead of polling, all switches along the path
of a single flow, authors in [95], [98] heuristically choose
switches that cover most of the active flows. This pro-
cess continues until all active flows are covered. Works
done in [113], [174], [186], [187] make the two end switches.
Where the path’s delay is under test, send probe messages
toward the controller. In [90], used approach polls group
statistic from edge switches in a data center fat-tree topology.
In [91], a coordination layer arranges the operation of flows
measurements collection within a distributed control environ-
ment (i.e., multiple controllers coexist). At the coordinator,
a switch selection process is performed with the purpose
of maximizing flows’ coverage. Then a controller selection
process is performed to minimize the communication cost,
propagation delay, and controller overhead.

In OpenMeaure [92], after interesting flows are identi-
fied, two heuristic algorithms are proposed to do rule place-
ment within network switches. Therefore, from candidates,
a switch is chosen to monitor the flow if it had enough TCAM
entries and closer to the destination (i.e., last hop approach) or
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it has the maximum entries for covering a minimum number
of flows (i.e., greedy approach). Differently, than inOpenTM,
it uses the last switch only, the authors in [106] collected
measurement from edge switches (i.e., first and last) that flow
passes through and the same is done in [107].

In [99], [100], switches with two ports (i.e., In and Out)
only labeled as a 2-grade cluster in which data rate going
from them are inferred from their others neighbor switches.
Therefore, there is no need to query them. Other switches,
with three or more ports, are cluster based on their criticality.
A polling algorithm randomly chooses switches from such
clusters. By doing that, not all switches in a cluster are queried
together in the same monitoring interval. This reservation
works well only if such two port switches exist in the network
which is not always the case.

The work of authors in [101] divides the monitoring of
flows between switches in which 5-tuple fine-granular rules
installed to monitor application level flow in a switch for
a chosen pair of the hosts while other switches in the path
use 2-tuple coarse rules for forwarding. Therefore, with the
same number of rules and instead of using ingress switches,
application flows can be monitored.

In [103] all switches are polled. Also, in [89] all switches
by the controller are polled periodically (i.e., every second)
to collects queues statistics. Similarly, all switches are polled
in [86] to collects network statistics through OpenFlow mes-
sages. In [88], the authors use the topology that is maintained
by the controller to query network switches. Transmitted
bytes by each switch’s port is collected and used to estimate
link capacity. In [127], all switches are monitored in which
port statistics are computed and pushed toward the controller
to get a global macro view of the network utilization. In [96],
port and flow statistics are polled from all networks switches.
Similarly did authors in [155], [158], they periodically collect
port statistic from all network switches.

Instead of acquiring statistics, in [123] authors used sFlow
as the source of measurement. Sampled measurements are
sent from network switches toward the controller. Of course,
idle ones are not considered here since no flows pack-
ets to pass along. Similarly, the authors in [128] use
sFlow along with OpenFlow to get statistics from all
devices. Similarly, the authors in [124]–[126] implement a
NetFlow [122] similar sampling using the OpenFlow exit-
ing features. All switches along the path are expected to
send matched packets toward the controller. Even the work
in [119] uses only OpenFlow PacketIn and FlowRemoved
messages to collect measurement, all active switches are
expected to be a source of such data. The work has been
done in [186], [187] made switches along the tested path
send PacketIn messages toward the controller to compute
links’delay.

4) OVERHEAD
Achieving accurate measurements is always drawn back by
cost in memory and communications. In this section, we dis-
cuss reviewed work from that point of view.

a: MINIMAL OR BASIC
In [119], the authors leverage OpenFlow control messages to
monitor network utilization passively. In OpenFlow, a Pack-
etIn packet is sent to inform the controller about the
unmatched packet, upon reception of it the controller sends
flow installation message that matches this new flow packets
and programs the switch how to forward them. Along each
flow, an expiration period after which if there are no packets
received from that flow, the flow is expired and removed
from the flow entries. After that, a FlowRemoved packet
is sent to inform the controller of the flow entry removal.
Authors used those two messages to create discrete time
checkpoints depict the lifetime interval of each flowwith zero
extra overhead. However, they scarify the accuracy. Authors
of OpenMeaure [92] proposed schemes to adapt the moni-
toring process by obtaining a coarse-grained measurement
at the beginning. Then additional fine-grained measurements
are collected from most rewarding flows (i.e., large flows).
In [96], the authors poll all network switches every k seconds.
Two requests are sent within every round for every switch
(2N within every k seconds, where N is the number of
switches). Work in [109] depend mainly on FlowRemoved
packets for measurements collection. A flow is polled if a
timeout counter is expired without receiving any information
about that flow. Both [86], [87] poll the network every 5 sec-
onds which adequate to get good accuracy.

b: EXTRA RULES
In [94], the authors use a set of monitoring rules with the
switch to match traffic under test. A monitoring rule updates
counters without forwarding actions. By changing rule’s pri-
ority, the controller can dynamically change which most
vital traffic to monitor. The approach they use is simple,
and their objective is to overcome the need to change data
structure for monitoring purpose, also by doing that they
scarify accuracy with low overhead. Since high aggregation
is performed in rule installation (i.e., they used IP prefixes
as a matching rule). Also, the approach used in [124]–[126]
requires the installation of a set of monitoring rules within
the OpenFlow switches which may consume more spaces if
more granular flows need to be monitored. They implement
a NetFlow [122] similar sampling using OpenFlow exiting
features.

All latency or link delay approaches that depend on
in injecting probe packet or specially crafted packets to
make switches send the PacketIn message toward the con-
troller requires extra rules to be installed along paths
followed by those packets as it is the case in works
done in [112], [174], [186], [187]. In [114], SDProber, probe
packets travel through the network after adding special for-
warding rules for them. Those rules are modified to route
the probe packets toward areas that congestion could occur.
In [90], [91], the authors utilize group table to accumulate
grouped flows statistics. Therefore, a new entry is created
within the group table for every set of flows shares a specific
switch link.
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FIGURE 11. Link delay measurements in SDN.

c: ADDITIONAL PROBES OR MESSAGES
In all of the reviewed works, testing a link or path latency
is done through injecting packets that loop through that path
until the controller receives it. Fig. 11 shows how that process
is done. The authors in [104], [112]–[114], [116], [174],
[183], [186], [187], [195] use similar ways to compute link
latency with minimal differences. In [104], the approach uses
injected packets that travel between ingress&egress switches
along the same interested flow’s path and come back to
the controller which computes the delay it took. In [112],
the authors used probe-based approach to test the delay of
a specific path. Controller injects a special packet that loop
over the chosen path and at the completion of a loop, a copy
is sent to the controller.

In [174] authors injected a packet into the network that
loops along the tested path and goes back to the controller
to compute the latency from its departure and arrival times.
Similarly, did the authors in [183], the authors in [195] pro-
posed a framework called SLAM to monitor path latency in
SDN-based data center networks in order to detect high delay
network segments. Authors use a customized probe packet
to trigger PacktInt notification packets toward the controller
when a new unmatched packet is received in the network
switch. Then, it measures the latency based on the arrival time
of the PacktInt message to the controller similar to the work
been done in [104], [109]. Similarly, the authors, in [113] use
special packets injected to test the end-to-end delay for a flow.
Each packet travels the path from the first to the last switch
and goes back to the controller. This process is repeated
periodically for each monitored flow. Also, the approach
been used in [175] requires probe packet to travel the link to
estimate its propagation delay.

The authors in [186], [187] use LLDP packets instead of
probes for link discovery and delay estimation. Echo mes-
sages are used to tell the delay between the controller and
switches.

The authors in [106] injected probe packets that travel the
path between the first and the last switches and goes back
to the controller to estimate the per-flow delay. Similarly did
the authors in [114]. However, they tried to control the rate
by which links are probed within defined bounds defined by
the network operator which leads to resource conservation
and to detect delayed links in a timely way. Also, there
is a maximum threshold for probes per a minute for the
whole network. By using those constraints, optimization of
route selectionwill consume computation. Therefore, probes’
routing is done based on a random walk and the probe rates.
They used a weighted network graph that is reflected on the
network’s switches and its connecting links. High weights
mean higher probability that the node and specifically that
link will be probed in the next route. Dynamic changes of
those weights allow the adaption of the probe process to
comply with the probe rate constraints.

In [89], the authors utilized the same probe-based
approach. However, they test the link’s queue delay. Sim-
ilarly, the authors in [115] utilize the same probe-based
approach (i.e. similar to LLDP packets in Fig. 11) to obtain
the link delay. However, they optimize the measurement pro-
cess to reduce the overhead ( i.e., on controller and network).
Therefore, the time of the next link delay measurement is
chosen based on a sequence of the previous measurements.
The jitter of a sequence of N , recent delay, measurements is
analyzed to determine the detection interval. Accurate control
of it keeps results accurate and reduces the overhead. The
sequence of measurements is updated after each measure-
ment and continuously analyzed to detect the delay changes
that will affect the next measurement time.

5) AVAILABILITY
Collected measurements would not be useful unless other
modules analyze it. Therefore, availability in a natural way
is an essential advantage for QoS provisioning.

a: INTERNALLY
Work done inOpenTM [87] was intended to compute volume
of network traffic. Collected measurement are used to builds
traffic matrix. It has been made it available internally for
other controller applications. Similarly, per-flow and per-port
statistics are collected by the approach in [128] stored and
made available for internal access only. Other modules such
as multi-path routing module can get the benefit of it. Simi-
larly did the authors in [98].

b: EXTERNALLY
It is not necessary for QoS application or any other applica-
tion plane modules to be implemented within the controller.
Therefore, the accessibility of information offered by the
controller is a necessity especially monitoring measurements.
The authors in [109] implemented a monitoring framework
on top of Floodlight controller to offer statistics polling
service for network applications. They provide RESTful
API from which application can access those collected
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statistics about network state with different aggregation lev-
els. Similarly, the authors in [91] tackle the problem of
flow measurement collection in a distributed controller envi-
ronment. The architecture consist of a set of controllers
each manage a set of switches or flows within differ-
ent switches and an upper ordination layer to collect and
aggregate all measurements received from those different
controllers. Each controller makes its collected measure-
ments available for the coordinator through UDP datagram
socket.

The approach used inOpenSample [123] collects data from
the network and build a snapshot of it to offer elephant flow
detection and link utilization information. The produced net-
work snapshot is offered and made accessible through an API
for application such as traffic engineering as the authors used
for their evaluation. The authors in [86] developed a network
monitor application called OOFMonitor. That informs Ryu
controller through northbound API to collect network statis-
tics through OpenFlow messages. In that design, Statistics
Manager is the module within the controller that receive
requests from the application and offer collected statistics
through JSON API. Similarly, the authors in [82] implement
a network monitoring application called SOFTmon that lever-
age northbound API (i.e., REST) to interact with the con-
troller for statistic collection process. Then collected data are
visualized for the network operator.

The approach used in [86] collects network statistics
through OpenFlow messages. Then it computes four (utiliza-
tion of port bandwidth, delay, jettier and loss) QoS metrics
and makes it available for other applications such as traf-
fic engineering or QoS routing through JSON northbound
APIs.

6) APPLICATIONS
Many network applications can benefit from collected mea-
surements by the monitoring function. However, we focus on
applications more related to QoS provisioning as follows.

a: TRAFFIC MATRIX
The authors in [87] leverage flow tracking within switches
(i.e., counter per flow ) and routing information within the
controller to build a traffic matrix estimator. Traffic matrix
usually helps in load balancing applications since it repre-
sents the traffic amount between all possible pairs within the
network. OpenMeasure [92] used online learning to estimate
per-flow size and identify expected large flows. By adapt-
ing rule installation, a list of flows and there sizes that are
used to estimate Traffic Matrix. Furthermore, the authors
in [90], [91] used group-based flow statistic aggregation in
network switches to collected measurements and use it to
estimate traffic matrix in a data-center environment. Simi-
larly, the authors in [95] utilized monitoring measurements
to estimate traffic matrix.

b: QoS
Quality assurance of network services is performed by mea-
suring certain performance metrics such as:

Throughput: Instead of just collecting data, the authors
in [104] developed a QoS monitoring module for POX con-
troller. The main purpose of it is to offer QoS information
or measurements for applications such as traffic engineer-
ing. In [104], the monitoring module polls statistics from
ingress&egress switches to compute throughput by counting
the number of bytes sent along the duration of that flow.
Similarly, the authors in [106] use the path’s first and last
switches to measure per-flow throughput. Moreover, authors
in [107] measure the flow rate by polling statistics from the
first and the last switches. The difference between the current
and the recent measurements over their time window is used
to compute the flow rate. The authors in [185] use OpenFlow
statistic collection messages to collect bytes and packets
passed through switch ports. They are interested in computing
the current transmission rate of each link by counting the
bytes that pass the link over some time. Those computed
values by the monitoring module are used by the forwarding
module for load balancingwhen a new connection is received.
In which, when a link utilization reached a certain threshold
equals 80%, another path is chosen instead of the shortest path
to avoid packet loss.

In [119] the flows utilization is computed as the count of
bytes matched at the switch for each flow over its duration.
If flows are overlapping (i.e., which is in real life), the uti-
lization is accumulated at each checkpoint which means that
utilization of the next expiring flow will be added to the
checkpoint created by the last expired flow if those two flow
overlaps. Even it creates no overhead, this approach cannot
offer instant utilization of the network, and it depends on
PacketIn messages, if no match is happening, which is a
problem if the switch is instantiated with proactive flow rules.
Also, the expired message may take more time for long-living
flows to expire.

Delay or Latency: The authors in [186] propose an
approach for link latency monitoring. It consists of two mod-
ules namely; LLDP discovery and Echo monitoring. The first
module tests the link latency between two switches using
Link Layer Discovery Protocol (LLDP) packets. For the
directional test, the controller sends an LLDP packet to the
first switch which already guides by the controller to forward
that it the second switch as in Fig. 11. It has no rules to tell
how to deal with this packet ( i.e., or guided to forward such
packets to the controller as in Fig. 11). Therefore, it send a
packetIn message to the controller. By this process, the con-
troller records the link latency between the two switches in
one direction only, if the opposite direction is tested another
process is performed. The second module is used to calculate
the propagation delay from the controller toward a network
switch by sending times-tamped Echo messages towards that
switch. Upon reception of that packet, the switch returns it
to the controller, see Fig. 11. By doing that the controller
computes the link latency between any to switches. Simi-
larly did the authors in [187] by exploiting LLDP packets
for link delay estimation and using Echo messages to tell
the propagation delay between the controller and switches.
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In [86] implemented a link discovery approach similar to
LLDP but with smaller packets. LLDP works as in Fig. 11
in its simple form. Authors used that discovery procedure
to measure links delay and periodically repeat that task.
In [174], the authors injected a packet into the network that
loops along the test path and goes back to the controller to
test the latency, and this is called TTL loop. Similar to all
probe-based approaches, it needs to insert rules for match-
ing those packet TTL, decrements its value and forwarding
toward controller when TTL = 0. Similarly, the work done
in [112], [113], [183], [195] use similar approach to compute
the link delay. In [112], the authors use probes arrival delays
and RTT (Round Trip Time) values to compute path delay.
Using the same way, the authors in [113] measures the flow’s
end-to-end delay. Each probe packet travels the path from
the first to the last switch and goes back to the controller.
This process is repeated periodically for each monitored flow.
Upon its reception, the flow delay is estimated after subtract-
ing the RTT from the controller to both switches. In [106],
however, the authors added a coefficient of proportionality
varying from 0 to 1 and considered the Round Trip Time from
the first and last switched toward the controller. Similarly,
In [116] delay is measured using probe-based approach for
sub-paths. Link delay is inferred from those sub-paths delays
unless it is uncovered, it is tested similarly to previously
discussed works.

The authors in [195] proposed a framework called SLAM
to monitor path latency in SDN-based data center networks
in order to detect high delay network segments. Authors
use customized probe packet to trigger PacktInt notification
packets toward the controller when a new unmatched packet
is received in the network switch. Then, it measures the
latency based on the arrival times of the PacktInt message to
the controller

For path delay, approach used in OpenNetMon [104]
injected packets that travel between edge switches along the
same interested flow’s path. The delay is computed as the
difference between arrival (i.e., at egress switch) and depar-
ture (i.e., from ingress switch) of that injected packet. The
difference of probe packets arrival and departure is also used
in [114] to compute link latency. The authors in [115] utilize
the same probe-based approach (i.e. similar to LLDP packets
in Fig. 11) to obtain the link delay.

For testing the queue delay, the authors in [89] utilize the
same probe-based approach. In which, a special packet is sent
to the first switch which is configured to send it to the next
one. The receiving switch sends the packet to the controller
since it does not know what to do. The difference in this work
is in the first switch, along with the output action, the tested
queue is selected by using enqueue action (i.e., changed to
set_queue in later OF versions). By that, queue delay could
be tested according to that approach, as in Fig. 11 the queue’s
delay between S1 and S2. Differently, the authors in [175],
derive a queue delay model from network parameters such
as queue buffer size, queue bandwidth, number of flows, link
propagation delay. Then, an estimated average queue delay

is obtained from that model and used to control the end-
to-end flow’s delay. To fulfill a specific delay requirement
a flow(s) can be switched to a different queue when an
upper delay bound is reached. The most interesting of this
work is that most of the parameters used in that model is
maintained by the controller or can be polled from switches.
The propagation delay on a network link can be estimated
by injecting probe packets at an earlier stage when no traffic
exists. Authors assume that the queue delay is the dominant
cause for network delay, the packet processing is neglectable
and the propagation is constant.

Bandwidth: In [99], [100], the data rate is computed as the
difference between sent bytes measurement in the monitoring
interval. In [128], bandwidth is computed as a function of the
transmitted bytes per time unit. The authors in [88] use that
port statistics for link and path capacity estimation. A network
topology that is maintained by the controller is used to query
network switches to get transmitted bytes by each switch port.
The difference between transmitted bytes between any two
neighbor switches represents the bandwidth consumed by the
link between them. Then, it is discounted from the maximum
link capacity to compute the available link bandwidth or
capacity. For a flow, the available path bandwidth is the
minimum of all links estimated capacities along that path.

In [89], available queue bandwidth is monitored by polling
queue statistic from network switches. Utilization of a queue
bandwidth is computed from the difference between two
consequence transmitted bytes readings over that time win-
dow. Available bandwidth is obtained by subtracting utilized
bandwidth fromwhat the queue is configured with. Similarly,
the authors in [86] measure link utilization by considering
transmitted bytes over the polling time interval (i.e., 5 sec-
onds). This measurement is compared with the configured
link bandwidth.

In [127] switches are used to compute link utilization in
both direction (i.e. send/receive). The difference between the
current and the last port statistics (sent/received bytes) is
computed over the monitored interval.

In [90], [91] link utilization is measured by accumulating
flows statistics that share it. Therefore, flows are grouped by
that link and group table entries are polled to collect flows
statistic that shares that specific link.

Loss: For packets loss measurement, the authors
in [104], [106] compute it as the difference of flows packets
statistics at both ingress and egress switches. The authors
in [86] measure the link loss from port retrieved statistics.
Over the conducted polling interval, transmit drop bytes are
used to compute the loss rate of that link. In [99], the loss rate
is computed as one value for the link in both directions by
taking the difference of port sent and received bytes on the
arc between the two adjacent switches over the monitoring
interval.

In [181], the authors logically partition the network into
different ring-based link-exclusive probe structure to test link
loss rate and position the loss location. Rules are installed
into switched to define such structure. Each probe structure
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is probed by a test machine that sends probe packets period-
ically based on instructions from the controller. The number,
loss, and delay of received probes from those previously sent
ones are reported to the controller by the test machines. Based
on, and with statistic collection from switches, the controller
can determine the link loss rate and position it within the
network.

The authors in [96] aim to improve the accuracy of packet
loss statistics by taking the effect of raw packets (i.e.,
non-data traffic) into account. It is applied only on link loss
statistic since it does not count on flow traffics. Therefore,
for any two communicating switches, traffic loss is com-
puted as the difference of sent and received packets at both
source and destination ports in the source and destination
switches respectively. Similarly, the loss in non-data traffic
is computed which is discounted from traffic loss to remove
non-data noise in loss monitoring. For flow loss calculation,
non-data traffic is not considered.

In [182], the authors used loss statistics from net-
work switches and computed the MOS metric for VoIP
QoE and see the effect of loss on that metric. So they
periodically polled statistics from network switches, and
then the link loss rate of each two adjacent switches is
computed.

Table 5 shows those monitored QoS metrics against their
tested entities. Flow monitoring over micro view of the net-
work, which is more coarser in link based monitoring that
gives a macro view of the network state.

c: FLOW SIZE
Large size flows consume network bandwidth and make it
difficult for short living flows. In [94], the authors test their
approach to tackle the problem of the hierarchical heavy
hitter for identifying large traffics. Also, they assume that
there is only monitoring rules and no actions that either
drop or forward the packet. Authors of [129] use two ran-
dom sampling, per packets and per bytes. Those sampled
packets are sent to the controller for heavy flow detection
modules that uses those sampled packets to detected suspi-
cious heavy flows based on some threshold. Upon suspicious,
count rules are installed within the switch to count the flow.
In [130], the sampled packet is marked, so they not sampled
by consequence switches. Also if suspicious flow’s packets
are traversing multiple paths, counter rules are installed in all
those switches to aggregate them at the controllers as for one
flow. These counters are polled periodically by the controller
for the heavy flow detection module. OpenMeasure [92]
use online learning to estimate per-flow size and identify
expected large flows. By adapting rule installation, a list of
flows and their sizes are monitored.

Table 5 gives a summary of QoS monitoring work in SDN
that been reviewed in this survey.

In summary, we can make the following remarks:

• In measurements collection, there is always a trade-off
between accuracy and collection costs (i.e., commu-
nication or TCAM memory). Therefore, the statistic

collection should be adapted, and there is no place for
static configuration.

• Another essential aspect that may affect measurements
accuracy which the non-data traffic. Network manage-
ment packets for link discovery, DHCP and many other
that is produced or consumed by switches. For sure,
these are counted in some statistics, especially link
related ones. The authors in [96], [97] pointed out that
problem and tried to estimate it and remove that noise
from data traffic measurements. Also, control messages
need be monitored besides the data traffic, either to
obtain the volume of that traffic or visibility to net-
work operators. For instance, the authors in [131] imple-
mented a module for monitoring OpenFlow control
messages In/Out of the ONOS [56] controller to allow
the administrator monitors the control plane through
web-based GUI and provides a history similar to logging
in network systems. Monitoring control and non-data
traffic is an open issue. Monitoring module should con-
sider that issue.

• Switch selection for polling statistics need to be care-
fully optimized taking two things in consideration;
flow-coverage and switch available resources. Polling
all network element with fast frequency is not a good
choice for monitoring even if in-band networks are used
since more load are added to switches. Sharing the con-
trol with data channel will reduce the performance of the
network if all switches are polled. Therefore, low rate
measurements from all network location can be used in
estimating the behavior of the network which could be
used to adjust flows polling intervals.

• Accessibility is a significant task for autonomic QoS
provisioning, since some functions such the analysis
may not reside on the same controller or the station.
To the benefit of already existing traffic analysis such
as those used with NetFlow in legacy networks. In the
SDN, it is a design principle to offer accessibility
through northbound APIs. However, standardization of
such interface needs more investigation.

B. ANALYSIS
The analysis function can obtain a series of time-stamped raw
measurements (i.e., flow or port counters) or a preprocessed
data such those in the form of QoS metrics or traffic matrices
from the monitoring function. Further analysis of such data
for the following:

1) DETECTION OF NETWORK QoS VIOLATION
Link congestion can lead to service degradation. The
approach used in [127] monitors link utilization and produces
a table of links utilization as an output of the monitoring
process. That table is used as an input to the analysis phase
to detects congested links. A simple threshold-based (above
70% ) detection is used. Traffic engineering is performed to
resolve that link contention by rerouting long-lived flows to
other non-congested links. The reader can refer to [134] for a
recent survey on congestion detection.

VOLUME 7, 2019 73405



A. BinSahaq et al.: Survey on Autonomic Provisioning and Management of QoS in SDN Networks

TABLE 5. QoS monitoring in SDN.

Moreover, massive bandwidth consumption needs to be
detected due to the criticality of network resources to the
QoS support. Elephant flows consume bandwidth and fill

switches buffers which are a problem for a short-life flows
(i.e., called mice flows) or delay sensitive ones as in VoIP
flows. Therefore, detection and redistribution of them along
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TABLE 6. Comparing features of the analysis functional component.

the network or taking the appropriate action defined by the
QoS policy. The authors in [135] focus on visualizing such
flows for the network operator. In [144], the authors put more
attention on the adaption of the configuration of detection
or decision thresholds. The authors in [145] used a learning

model to detect heavy hitters. Heavy hitter consumes a large
portion of network capacity that could be to service nature
or suspicious users. A predefined mark list by the network
administrator of known heavy hitter is provided to the model
in conjunction with flows statistics. Two threshold values,
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41 < 42, is used to compare flows rate with history values.
If flows rate is above42, it is considered as a heavy hitter and
added to the predefined list. If the rate between the threshold
values, it is considered suspicious and more focus put on
that flow. Feedback is reported to the monitoring unit to
increase the sampling interval or install more fine-granular
monitoring rules for that flow. Flows can be removed from
the list if their behavior becomes normal, in which negative
feedback is observed, and the flow is removed. Similarly
authors in [136]–[143] proposed schemes to detect and mit-
igate elephant flows. The reader can refer to [146] for more
information about elephant flow detection methods.

The authors in [132] proposed a predictive model for mon-
itoring SLA maintenance for cloud tenant applications. They
used historical data collected from the flows of the application
and use it as an input to a model that compute two values: the
first one is the mean throughput and the second is a scaled
score for application behavior. A forecast engine receives
these values as input. It periodically monitors the flows of the
application and uses the inputs from the model to compute
a metric value for volatility detection. If this value above a
certain threshold the rate of the application is limited.

Author in [156], [157] utilize ML in SLA management in
NFV and SDN. They proposed an SLA enforcement archi-
tecture. It consists of three parts, the data collector (from
virtual machines, functions, and switches), data processing
(i.e., preparation and feature extraction) and the smart engine
which, based on the collected and pre-processed data, can
predict violation in SLA. Prediction depends on a forecasting
module that takes the processed data and tries to predict
or expect future values. Then, the prediction module can
identify which SLO expected to be violated. Then, it issues
a warning message to the administration layer, and the SLA
enforcement module is notified to do proper management
action such as allocating more resources.

2) TRAFFIC PREDICTION
The authors in [160], [161] use LSTM-RNN (Long Short-
Term Memory Recurrent Neural Network) to predict future
traffic. At each point of time t , the predictor takes as an input
a fixed size sliding window of the last traffic matrices and
uses it to produce the traffic matrix at t + 1.
Similarly, the authors in [165] used Bayesian-based clas-

sifier for traffic prediction. Moreover, the authors in [168]
use a trace of network traffic for a long time interval (i.g.,
for one day), and divide into smaller lags or periods to form
the prediction data set. During each lag, at least one net-
work measurement is obtained. The measurement contains
the number of packets, bytes, and flows. This measurement
value(s) is matched with those values in the generated dataset.
A K-NN algorithm is applied to find the closest match values
(i.e., from the history data set, k = 1). Then, the value
of the next lag time is considered as the predicted value.
Their approach is similar to what been used in road traffic
prediction, in which the number of cars at next time interval
can be predicted from daily historical data of the traffic at that

point of time within the week. The authors in [170] propose
flow based Traffic Matrix predictor called FLAME. They
made two assumptions: flow arrivals rate is a Poisson pro-
cess, and flows rate (i.e., shot) is independent and identically
distributed. Based on Poisson Shot Noise process, and the
monitoring measurement, it estimates the traffic volume for
the next 10 seconds in future.

The authors in [169] propose a QoS management frame-
work in Data Center Networks, calledHorizon. In their work,
they used different link matrices. A link performance assess-
ment matrix is computed and updated periodically for all net-
work links. For each link, the assessment value computed as
theweighted sum of its latency, rate, and bandwidth. Based on
that matrix, they compute links transition probability matrix
which is used to build a multi-step Markov process transition
matrix. The Markov transition matrix is used to compute
another link popularity matrix. Link selection and popularity
matrices are used for path selection to avoid congested links.
Based on that, It considers the hotlink state when the path
is selected. Flows can span different paths to balance the
network load. Their proposed work is evaluated on a flat tree
topology within the POX controller and compared with the
ECMP protocol.

Moreover, authors in [150] proposed a network load bal-
ancing based on SDN and ANN. Based on collected QoS
information (i.e., bandwidth, utilization, loss ratio, latency)
about the network state. The controller sends that path(s)
load information to a load balancer. It uses the QoS data
and path hop count as features of each path and as an input
to a BPANN (Back Propagation Artificial Neural Network)
model. The balancer predicts the next least loaded path,
which used by the controller to transmit newly arriving data
flows.

3) PREDICTION OF QoS
A reactive action upon the detection of service quality degra-
dation is essential. However, for autonomic QoS support,
the network system needs to go beyond that. Prediction is a
proactive procedure the system follow before any problem
occurs [148]. For instance, the authors in [149] uses pre-
diction of network utilization for future reserve resources
to satisfy users or cope with high priority requests. The
authors in [159] investigated the usage of Neural Networks
techniques for building models that estimate the network
performance. The network is simplified as a black-box which
takes traffic matrix as an input and produces the average
end-to-end delay estimation as an output of that model. The
accuracy of different neural network models is tested against
various network characteristics (i.e., size, topology, routing,
traffic intensity).

In [162], performance indication data is collected from
the virtual network (statistics of port and queues), traffic
(e.g., delay, loss) and IT infrastructure (e.g., CPU, RAM) to
discover the correlation between KPI and QoS metrics. Then,
a linear regression ML algorithm (i.e., M5Rules) to quantify
which KPI has the most impact on QoS.
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The authors in [155], [158] estimated end-to-end service
metrics based on statistics collected from the network (i.e.,
port-based) and back-end clusters (i.e., the infrastructure of
video streaming service). It is expected that degradation on
the infrastructure will affect the end user. Based on that, and
by using input statistics from the infrastructure, the service
level metric (i.e., frame rate, response time) at the end user
could be estimated. This regression model for approximating
service level metric is solved using supervised learning by the
authors. From the server side, they collect statistic about CPU
utilization, RAM utilization, disk I/O and so on. Moreover,
from the network side, port statistics are collected such as
total sent/received bytes/packets per ports along the whole
path. These statistics are treated as a bag of features used
with two learning methods: regression tree and random forest
for the estimation process. Later, used features are reduced to
use only the network statistics for in the estimation process.
The accuracy of the achieved results was close to when full
features are used. Authors mention that service-level proper-
ties are encoded in the network-level statistics in which end-
to-end service metrics can be estimated from network-level
statistics.

4) PREDICTION OF QoE
The authors in [151], [152] proposed schemes to predict
MOS (i.e. Mean Opinion Square) value for a video streaming
service. They used Machine learning regression algorithm
to do that. Based on monitored parameters such as delay or
bandwidth and the estimatedMOS, the video parameters such
the frame rate can be dynamically changed by the controller
without interrupting the user. In [153], the authors optimize
the QoE based on five measured video quality that may affect
the user satisfaction such as bit-rate, stall number, switches
between levels (i.e., degradation in video quality). First, they
utilize machine learning to estimate the best next level (i.e.,
in DASH video streaming) based on the available network
resources, video content, and device resolution. Random for-
est is used as the estimation algorithm. The prediction phase
is performed when the controller detects a change in the
network that can affect the current or the selected level. Then,
during the second phase, a decision is made after comparing
the estimated level by the machine learning and the currently
used level. The decision algorithm tries to maintain QoE by
smoothing the degradation of video quality when the esti-
mated is lower than the current level. The authors in [154]
utilize four ML algorithm to predict MOS (Mean Opinion
Score) value namely; DT (Decision Tree), neural network, k-
NN, and random forest. This value usually used for estimat-
ing QoE for video streaming services and can indicate user
satisfaction level. The prediction is built based on values of
two parameters: VQM (i.e., measure the effect of video dis-
tortion) and SSIM (i.e., measure structural similarity). Based
on Pearson correlation coefficient (r) and Root Mean Square
Error (RMSE) as an evaluation metrics between the predicted
MOS values (i.e., using ML algorithms) and subjective MOS
value (i.e., collected from participant-based video quality

evaluation). Authors show that the Random Forest algorithm
was the best in predicting user perception. In [163] authors,
modeled the relation of SDN network, DASH streaming and
user perception or the MOS value as a game theory in which
they proposed a solution to minimize a cost function by
minimizing the VQM value and decrease levels variation.

The authors in [164] used ML to predict SSIM-based
video quality considering network condition into account.
Based on, the predicted SSIM index, the required video
quality level can be adapted. Correlation between network
condition and the SSIM index is performed. The appropri-
ate video codec is chosen to offer the minimum QoE users
need [164], [167], [171].

The authors in [167] propose a QoE agent that uses QoS
values of video flows to assess their impact on user QoE.
It uses a Fuzzy Logic-based quality prediction model that
maps QoS parameters (i.e., bandwidth, packet loss) into QoE
(i.e., PSNR) [166]. Then, the predicted QoE information is
sent as a feedback to the service provided using SIP proto-
col. It enables the provider to improve the service level in
which an adaption process can be performed.

ApplicationKPI/QoEmetric prediction using network data
in SDN is investigated in [171]. Load time KPI metric in
web-based mapping (e.g., similar to Google maps) appli-
cation is considered. The SDN controller receives history
time-stamped KPI metric values through JSON file, and the
network metrics (i.e., Delay, Bandwidth Capacity, Rx Load,
Tx Load and Packet Loss) is obtained from network statistics.
From those metrics (i.e., KPI and network metrics), a dataset
is constructed. Then, they developed a model that uses the
network metrics as an input feature while the KPI metric is
an output that is predicted by the machine learning algorithm.
This model can be used in future flow installation decision in
a way that improves the application performance. Different
machine learning algorithms can be used such as RNN, SVM,
or DT (Decision Tree). However, the experimental work
shows only a multiple linear regression is used to character-
ize and correlate the relationship between the network QoS
metrics and the application KPI metric (i.e., load time in this
case). They suggest using those sophisticated ML algorithms
in the future.

The authors in [133] proposed a video surveillance system
in which two modules are used. A classification module to
detect traffic type that traverses the SDN network and report
the criticality of such flows (i.e. multimedia or video traffic).
And an AI-based module that tells the controller what to do
to guarantee QoS for video transmitted flows. Such as the
required resources (i.e. bandwidth, prioritization, or routing)
to offer a satisfying service level for the users. Based on the
suggested action by that module, the controller can do the
required configuration. Similarly, the authors in [147] did.

In summary, we can make the following remarks:
• Many of the reviewed research approaches use simple
threshold-based analysis of the QoS performance. How-
ever, this is not helpful for self-adaption to network
changes and autonomic support. This function should
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take more space. Learning aspects should be applied
such as the use of machine learning techniques. Some
research effort exploits the ML in detection and most
of them in prediction for future trend in traffic or user
satisfaction. More attention should be applied to the
usage of online analysis which adds more challenge to
reduce the time of training when these techniques are
used.

• Moreover, we notice that most of the research uses static
policies or configuration. Modification only occurs
once, either due to the specific scenarios applied in
such research or it a design choice to avoid that. The
autonomic QoS provision should get benefits from expe-
rience in either human format converted to polices with-
out ignoring the time dimension from its application.
Alternatively, machine defines policies that are inferred
from analysis of the history information collected from
the network.

C. PLAN
The adaption of network behavior by the QoS manage-
ment is essential to cope with new QoS demands or ser-
vices quality enhancement requests (e.g., from the analysis
unit/function/module). Themanagementmay search for other
QoS-compliant routes or allocate more resources. In this
section, we discuss the two procedures used to serve QoS
demands in SDN.

1) QoS-AWARE ROUTING
In QoS provisioning, routing plays a significant role to guar-
antee the required QoS demand(s). It tries to find an alterna-
tive path(s) that satisfies QoS requirement for flows.

In the SDN architecture, the controller maintains an
abstract view of the network. Most of the SDN controllers
contain a module that provides forwarding rules installation
service. For instance, the Floodlight [52] controller imple-
ments a forwarding module, but it does not provide rout-
ing functionality. However, in the Beacon controller [50],
a routing module implements the Shortest Path(SP) routing
or what is called the Dijkstra’s algorithm [188]. That module
performs the computation of paths for all pairs. Due to the
central view and up to date state of the network, it is easier
to compute the shortest path within the SDN. The dynamic
changes of network state and flows arrival rate affects the
routes computation frequency. For instance, routes may be
computed once in a proactive mode (i.e., off-line routing or
planning) with the advance knowledge of all flows, and their
demands are fixed or merely changing. However, in online
routing, routes are computed whenever no path is found to
forward a flow’s packets. We consider this routing in this
survey.

In QoS management, the problem is more complicated
since the routing algorithm should satisfy the flows require-
ments. Otherwise, the service quality may start degrading if
the used routes are congested. Based on the QoS require-
ments, different routing problems can be defined:

a: SHORTEST PATH (SP)
In shortest path variant algorithms, a single QoS metric
is considered while optimizing path computation. In [190],
the proposed approach implements a modified version of the
shortest path algorithm in the ONOS controller. It selects the
least load shortest path to route QoS traffic. While in [189],
the authors use the shortest path for non-QoS traffic with the
hop count as the path cost. For the QoS traffic, the algorithm
computes the shortest path from a residual resources graph.
Links that do not satisfy the new bandwidth requirement are
removed from the original network graph. The outcome is the
shortest path that satisfies the bandwidth requirement.

In [191], the authors used an SDN-based approach that
intercepts RTSP/RTP streaming setup packets and exploits
them to setup QoS routes for their video flows. They used
the shortest path with link weights. Links that have higher
weight have a priority over others to be chosen in the QoS
route setup. The link weight depends on the utilization of that
link. They used statistics collected from OpenFlow enabled
switches to estimate the utilization of links. The network
state information helps in adapting the QoS routing. This
work depends mainly on the accuracy of statistics collected
from the forwarding nodes, which is a trade-off between
accuracy and extra overhead over the network that should be
maintained carefully by the monitoring module. Similarly,
in [205], the authors utilize a flow classifier to get 5-tuple
information about each incoming flow. The classifier gives
the source/destinations IPs, ports and the used protocol (i.e.,
RTSP). The routing module produces a set of available paths
and their costs. The cost of a link is computed as the sum
of received and sent bytes by the switch’s port. Based on
that cost, the shortest path is used. In [206], the link cost
metrics are computed based on received network state infor-
mation. Specifically, the port sent and received bytes at both
arc nodes. Then, data and loss rates of the link are used
with its configured capacity to compute the link cost value
dynamically. After that, the routing module computes the
shortest path that has the minimum cost. Authors assume
that users augment the routing framework with the highly
prioritized traffic (i.e., such as video streaming) information
(e.g., protocol type, port numbers) which helps to classify
flows.

The routing in [207] is a combination of the shortest path
and the shortest-widest path. It finds the widest path and
compares its bandwidth required by the flow. If it is less than
what is feasible for the flow, then it is chosen as the bandwidth
the flow will have. Otherwise, it uses the flow’s feasible
or required bandwidth. Based on the chosen bandwidth’s
value, a run of the shortest path is performed to find the path
which can offer that bandwidth demand. By doing that, they
attempt to save more rich paths for the future if the required
bandwidth is small and another path can serve it. In general,
the approach finds the shortest bandwidth feasible path. The
approached proposed in [208] uses bandwidth information
from the monitoring unit for each port. For a QoS flow,
it checks if there is an alternative path with better bandwidth
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than the shortest path. If such a path is found, use it for that
flow.

The work in [209] applied off-line and online routing.
Routes are computed (off-line) when the network is initial-
ized and recomputed when there is a change in the topology.
When a new QoS request arrives, the online routing takes
place. It first checks if an existing path (i.e., from off-line
computed paths) can satisfy the bandwidth demand. Then,
the feasible shortest path is chosen. If no off-line bandwidth
sufficient path exists, the shortest path is used to get a path
from the residual graph where links below the bandwidth
demand are filtered out. If such a path could not found,
the request is rejected.

In [211], the proposed approach monitors the link band-
width utilization. Upon detection of link congestion (i.e.,
utilization over a certain threshold), the routing module is
invoked to find alternative paths that satisfy flows bandwidth
requirements. The shortest path with available bandwidth is
chosen as the new route to resolve such a situation.

In [210], the authors proposed an algorithm to route lay-
ered SVC-based video streaming in SDN. They classify the
traffic into three classes; the base layer of the video as lossless
QoS, the enhancement layer as a lossy QoS and the other
traffic as a best effort class. The routing algorithmmay choose
different paths for the video layers. They used a modified ver-
sion of Dijkstra algorithm with a weighted metric composed
of the mean link loss and delay. Upon reception of a client
request for a video service, the controller finds a path toward
the video server and pick a ToS (Type of Service) value for
each video layer. Then, the server uses these values when
sending the video layers packets (i.e., tagged with agreed
ToS value). By doing that, the controller knows which layer
these packets belong to by just inspecting the one-byte ToS
value. This method helps in avoiding the usage of deep packet
inspection. However, ToS value may be changed by other
parties the packets traverse their networks.

The shortest path algorithm is used extensively in the lit-
erature. A well-designed QoS-aware cost function may add
to the fast and simplicity of path computation provided by
the shortest path algorithm. Especially, with the up-to-date
network information received from the monitoring unit as
discussed in Section IV-A.

b: (MULTI-)CONSTRAINED SHORTEST PATH (CSP AND
MCSP)
The shortest path gives an optimal path according to a spec-
ified cost metric (i.e., in QoS optimal path, the cost is a
QoS metric). However, and in many cases, other QoS metrics
may need to be considered and maintained within acceptable
bounds as it is specified in the SLA contract. Therefore,
another form of QoS routing problem is reported to find an
optimal path according to one QoS metric while controlling
another within required bounds.

In [212], the authors optimized the path selection for
videoconferencing flows based on its delay as the QoS
perused metric. They computed the cost metric as the

weighted sum of lost packets and delay. Their objective is to
adapt between the delay and the cost while computing paths
for those flows. In [213], the authors propose an architecture
to support QoS video flows in SDN. The authors differenti-
ated between two layers in the SVC encoded video. A base
layer that should receive a particular QoS in which packet
loss is forbidden and an enhancement layer that is classified
as the best effort traffic. The approach directs the base layer
traffic to non-congested routes due to its primary effect on the
video quality. The process is as follows: the streaming server
contacts the SDN controller with a QoS request message,
the SDN controller configure the path of the QoS traffic
according to the QoS agreed contract and return a QoS id for
the streaming server which starts streaming. Upon reception
of queues statistics or network error, the SDN detect that the
path is congested so it cannot handle QoS traffic. Therefore,
the rerouting algorithm works to find another path with the
appropriate capacity even if it is longer than the shortest path
(i.e., the best effort always uses the shortest path) but with a
delay or length that is tolerable by the streaming application
or less max value. After that, flow modification is sent to
nodes to configure the new path. The result in their work
shows that when a new UDP traffic is entered the network,
and by rerouting, the QoS traffic does not suffer much. The
model formulated by the authors consider packet loss as the
primary constraint for path selection in which a zero loss
should be achieved. In this approach may not be applicable
for another type of traffic such as VoIP which is tolerant
toward packets lost and sensitive for delay or jitter. Similarly,
in [214] authors divided the video stream into two layers:
a base layer served as QoS-traffic that should have higher
priority and an enhancement layer as a second-level QoS
traffic. The rest of the traffic type is served as the best effort
which always takes the shortest path (i.e., least hop-count).
However, they propose to choose alternative paths for QoS
traffic. They performed optimization on route selection and
formulated the QoS-aware routing as a constraint shortest
path problem (CSP). They showed that using that dynamic
routing for QoS traffic improved the overall video streaming
quality. The packet loss measurement is defined similarly
to [213] but with separation of the QoS traffic into two levels.
This work depends on the precise values returned from the
switches (i.e., the accuracy of information collected by the
monitoring function or module discussed in Section IV-A)
to estimate the packet loss and delay variation of each link
which is used to compute the cost metric that based on route
calculation is performed. Also, they solve the CSP problem
two times to find routes for 1-level and 2-level QoS traffic
respectively which may make it run slower.

The authors in [215] divide the SVC encoded streaming
video into two layers, loss-less QoS flow for the base layer,
and lossy-QoS for the enhancement layer. The rest of network
traffic is considered as the best effort which follows the short-
est path. They used the loss as the quality of service metric
due to the sensitivity of SVC base layer to it. Therefore,
loss-less traffic is routed first compared with enhancement
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FIGURE 12. LARAC Algorithm; s, t are the source and destination, c is the
optimized cost function, d is the delay metric, 4delay is the delay
constraint value, pc is the shortest path with c as cost, pd is the path
with d as the cost, λ is the Lagrangian multiplier that yield the new
cost cλ [217].

and best effort. They attempted to minimize the weighted
sum of the route length for base layer traffic and its packet
loss rate. In this work, the authors evaluated an approach like
the work in [213] where the enhancement layer is considered
the best effort traffic. Then, they modified the problem to
consider enhancement as QoS traffic with a possibility of
packet drop. They showed that the second modification of the
problem improved the video quality which is expected since
extra frames can be received at the receiver side better than
when they considered them as best of effort traffic.

In [216] authors define two types of traffic, a QoS traffic,
and the best effort. They primarily used the shortest path for
both traffic. However, when congestion is detected, and the
requirement for QoS flow cannot be satisfied, a routing opti-
mization algorithm starts working to find a path that satisfies
the QoS metric requirement. They use the delay variation
as the metric. They modeled the problem as Constrained
Shortest Path and used LARAC (Lagrange Relaxation based
Aggregated Cost) [217] algorithm to solve it similar to what
is in Fig. 12. The algorithm tries to minimize the cost function
while keeping path’s delay below a maximum constraint
value. The cost function calculated as a weighted sum of link
delay variation and packet loss. Their work uses QoS routing
only when congestion has already happenedwhichmay affect
flows that have a short lifetime.

In [218], the authors classify the traffic as multimedia and
data traffic. Multimedia traffic always routed toward QoS
guaranteed routes. The other data traffic follows the default,
shortest path computed by the SDN controller. They used
the LARAC algorithm for computing the routes for multi-
media flows dynamically, in which congestion and delay are
used as the routing decision metric. They constrained the

routing problem with predefined delays. The problem with
the shortest path is it does not consider the state of the network
and always uses the least-hops path to the destination even
if the network nodes are congested. It will eventually lead
packets drops and many retransmitted by end entities in reli-
able communications (e.g., TCP). Like previous works, their
work depends heavily on statistics collected from forwarders
to calculate links cost. Also, they consider a predefined 70%
utilization threshold of the link capacity. They consider the
link is congested if its utilization is above that value. Links
with less than 70% utilization their congestion measurement
is zero, which link delay as the main factor for the routing
decision. By doing that, almost congested links can be chosen
if the statistics packets got dropped or update interval is long.
Another concern is that they put the values of the delay in the
cost calculation equals to 1 (i.e., they said it is because the
current OpenFlow switch implementations do not have any
support for collecting delay related statistics) which make the
algorithm works based on hop count when the links are not
congested as its used by the shortest path algorithm.

In [219] authors propose an SDN architecture support QoS
applications requirements. The architecture contains four
modules: Resource monitoring, Route calculation, resource
reservation, and call admission control. They define two traf-
fic classes, a priority traffic which require bandwidth guar-
antee (e.g., video traffic) and best effort traffic that represent
the majority of Internet traffic. They used a modified Dijkstra
routing algorithm that finds the shortest path that has suffi-
cient bandwidth for the QoS flow. By using bandwidth as the
constraint, their goal was to minimize the delay QoS metric
as it is the most critical for multimedia applications. To avoid
degradation of best effort traffic, they used weight metric for
links that compute howmuch-utilized link is. They attempted
to avoid those highly utilized link by routing best effort
traffic on links less utilized or have more bandwidth. By this,
they avoid congestion before it happens (the threshold used
was 80% link utilization). The reservation module used
Of-Config protocol to configure interface queues. The call
admission control units are supposed to reject QoS request
that cannot be satisfied and feedback users with that, however,
the authors admitted that they did not implement this module
yet and northbound API are not used and delay it for future
work. Also authors in [225] model the routing as delay con-
strained least cost problem. They solved it by using kLAM
approximation.

In [195] authors targeted video steaming over SDN. They
divide the video stream into two layers, 1-level QoS is the
base layer which has high priority and intolerant to packet
loss or delay variation. Moreover, another 2-level QoS which
is the enhancement layer. The third type of traffic is the best
effort which is the majority. The authors propose a reroute
approach for the base layer traffic (1-level QoS). The routing
module computes a feasible path if this path satisfies the delay
variation constraint and has a bandwidth that is enough to add
the 1-level traffic to it, then the 1-level (base layer) is flow is
rerouted using this selected path. Otherwise, if the bandwidth
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is not enough, the enhancement layer is rerouted, and the
base layer stays using the shortest path. However, if the delay
variation constraint is not satisfied, none of the base or the
enhancement layer is rerouted.

Previously, only one metric besides the cost is considered.
A flow may require more than one QoS metrics to be within
specific values or constraints which makes the path computa-
tion process more complicated and time-consuming. In [192]
authors built their work based on the work in VSDN [193].
They added reliability as an extra constraint besides those pre-
viously used (i.e., bandwidth, delay, and jitter) in VSDN for
video traffic path computation. Therefore, links are labeled
with these four metrics and reliability has high priority in
path selection. They argue that they modeled the problem
as Multiple Constrained Shortest Path (MCSP) and used
A*Prune [226] algorithm for solving it. They showed that
VSDN could support a low number of satisfied requests when
a high-reliability value is requested compared to RVSDN.
They did not show in their work mathematical computation
of the cost metrics, or the optimization process. However, this
work is interesting in which it adds reliability as a constraint
for path selection.

In [227], the authors define a deterministic network model
to estimate the maximum delay of the network and the delays
of link’s queues are estimated. For admitting any new flow on
a specific path, they compare with the network parameters.
For each flow, a service class reveals its QoS requirements
(i.e. max delay, rate). For instance, to admit the addition of
a new flow to an existing path, the maximum delay required
by its class is compared with the current path delay. Thus,
for other demands such the rate parameter or burst value
for instance. The problem is modeled as Multi-Constrained
Shortest Path and solved as a mixed integer program.

The authors in [228] proposed a way to maximize the
aggregated QoE for all uses and services flows. They used
session configuration information received from a SIP server
to inform the controller of those sessions will be established.
The most interesting, they estimate the MOS value of each
of the traffic types (i.e., audio, video, data) using the loss
QoS. However, they used end-to-end loss and the delay QoS
to compute the MOS value for audio traffic. They used
queuing model (M/M/1/K) to compute the average delay and
loss probability for each node. Their work shows significant
performance (i.e., cumulated MOS) over the shortest path
when the number of flow requests is increased. Theymodeled
the routing as Multi-Constrained Shortest Path problem, and
they used Integer linear programming implemented by IBM
Optimization Language to solve it.

c: MULTI-CONSTRAINED PATH (MCP)
In many cases, it is not necessary to find the shortest path, but
the chosen path should cope the certain constraints to fulfill
QoS requirements.

In [229] a flow scheduling module is responsible for sat-
isfying flows QoS demand. They assume that each flow
has QoS requirements represented as a vector of delay, loss

rate, and bandwidth values. That module uses a QoS-ware
routing to find the best fit path that satisfies those metrics.
The problem routing is a modeled a multi-constrained path
problem. They proposed an algorithm to find the best QoS
path by using a simulated annealing technique. The algorithm
starts by finding the shortest path. A cost value is computed
as the sum of weighted satisfaction ratios of each required
demands. It adjusts the weight value by the miss rate of that
QoS demand. It means higher weight for demands that less
satisfied in the past. It tries to balance the satisfaction of those
demands when choosing future routes. The algorithm con-
tinues to find a neighbor path(s) for T = 16 iterations (i.e.,
the stop threshold). The candidate neighbor path replaces the
shortest path if its cost is smaller or the simulated annealing
probability of the costs difference is high. It makes the chosen
path does not always stick with the least cost local path
(i.e., they use probability to avoid local optima). Simulated
annealing depends on the design of the probability function
and the number of iteration used to abort the search process.

In [230], the authors consider critical flows’ routing in
real-time systems. Such flows have tight delay requirements
in which packets received after a deadline is useless. Critical
flows are prioritized based on their sensitivity to the delay
requirements. For such path assignments, each flow demands
two QoS metrics, delay, and bandwidth. They formulate the
routing problem as Multi-Constrain Path (MCP) in which
the path of a critical flow should cope with delay and band-
width demands or constraints. To find a solution, they used
relaxation in which one of the two constraints is relaxed at a
time to find a heuristic solution. For instance, the proposed
algorithm relaxes the bandwidth constraint and to find a path
that complies with the delay constraint and vice versa. If both
attempts could not find a solution, the MCP has no solution
and the algorithm return no solution is found.

d: MULTI-PATH ROUTING
Previously, flows follow a single path. The routing module
cannot benefit from existing paths to spread the flow’s pack-
ets. In [196], non-video flows are routed using conventional
method (i.e. shortest path). They used multiple description
video coding (i.e., two descriptions) and split the video stream
into multiple sub-streams, then apply multiple path routing
on them. The routing algorithm finds two paths for the two
video descriptions that belong to the same video flow. The
used metric is the video distortion in which the routing algo-
rithm tries to minimize it. To solve the routing problem after
formulating it, they used a sub-gradient-based algorithm to
solve the multi-path problem.

The authors in [238] proposed schemes to offer guaranteed
network resources for cloud users. They mainly focus on the
implementation of their approach to be in the OpenVSwitch
by exploiting multi-path support. They define a QoS metric
consist of the sum of the ratios, the minimum values required
by the user over the real measured ones. They belong to
three metrics that are defined in the SLA which are the band-
width, the delay, and the number of hops (i.e., path length).
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Therefore, whenever any of these values do not meet what
defined in the SLA, an alternative path is chosen for the
QoS-flow. They define two types of flow, QoS-flow, and
best effort. Even if the authors used OpenFlow compliant
switches, their approach was not clear about the role of
the SDN controller. Also, this highly dynamic change of
the route due to nonacceptance of one of the three metrics
they consider will cause high fluctuation of the QoS traf-
fic between different flows. Moreover, they do not consider
queue occupation in their metric which may lead to loss of
packets.

In [197], the authors implemented two techniques to pro-
vide QoS in SDN: differentiated service (DiffServ) and
multi-path routing. For the DiffServ, they classify the appli-
cation’s traffic based on source IP address into three traffic
classes; high bandwidth-demanding video traffic, low-delay
interactive audio/video traffic, and the best effort traffic. The
routing model chooses an optimal path for new flows from a
database of up to date optimal computed QoS paths. Then
to achieve bandwidth and QoS of parameters, DiffServ is
programmed on the OF switched. Each output interface has
multiple queues that packets are enqueue based on the traffic
class it belongs. The QoS of these queues (such as Max or
min rate) is used to guarantee the QoS requirement such as
bandwidth by using these queues. Authors compared their
work by another two approaches that implement only single
path routing and with/out DiffServ. The proposed approach
showed better Response time and throughput compared to
single path routing.

An application-aware multi-path flow routing for SDN
(AMPS) is proposed in [198]. Authors utilize ML-based
flow characterization with application prioritization to do
the path-flow assignment. An ML-based classifier (i.e.,
C4.5 Decision Tree) is used to classify flows instead of using
DPI. The controller uses the first 50 packets to extract flow
features. Then, based on the produced flow class, the con-
troller uses Yen-K-Shortest Path [199] algorithm to find K
feasible paths. Based on the path cost, and the application
requirements (i.e., bandwidth and delay), a path is chosen.
High priority flows statistic is collected to assess if the QoS
requirements are met. Otherwise, the path computation pro-
cess is fired up. In AMPS, a flow with the same source and
destination could be routed using different paths, since the
application priority with classification plays a significant role
in path computation.

e: AI-BASED ROUTING OPTIMIZATION
In [200], a QoS-aware adaptive routing (QAR) is proposed
based on Reinforcement Learning (RL). RL is an ML-based
technique that uses information from the system to re-adapt
its behavior. An RL-based agent receives the state of the
system, and a reward/punishment based on its actions. It tries
to increase the long-term reward/revenue by exploiting its
previous actions while exploring new ones. Authors designed
a QoS-aware reward function as a tunable composite of
QoS-based metric (i.e., link and queue delays, link loss,

bandwidth) functions. According to, a value close to one
is preferable while the harmful effect of an action (i.e.,
on other switches operation) gives negative values decreases
the reward value. A quality function keeps assessing the
expected rewards received from actions within the current
state. For a decision to be taken (i.e., chose next hop), themost
quality returning action is chosen. The algorithm keeps updat-
ing its quality knowledge-base (i.e., state-action → reward
table-like) using past chosen actions. This approach tries
to find a feasible path according to the flow QoS require-
ments. Deep Reinforcement Learning (DRL) is investigated
for routing optimization in the SDN-based network by the
authors in [201]. A trained DRL-based agent is used to pro-
vide a one-step routing configuration. Moreover, DRL is used
in [202] to regenerate link weights based on network state
(i.e., Traffic Matrices or load). Thus, based on the trained
DRL-based agent, the computed paths optimize the network
delay.

In [160] a neural network-based routing is proposed, called
NeuRoute. NeuRoute uses Deep Feed Forward Neural Net-
work (DFFNN) to learn and match demands with routes.
It collects outputs or path decisions history from an already
running heuristic-based routing algorithm (i.e., for learning),
combines them with the network state and the predicted traf-
fic matrix (i.e., as in [161]) as an input to train its neural rout-
ing network. The time it takes to collect samples or to train
the neural network is a performance decision. The designer
should make that decision. The network state consists of all
links costs and their available capacities at time t . Once the
trained model is ready, it can be used to route new arriving
flows. Therefore, based on the traffic matrix and the network
state as an input to the model, it can produce an exact route
as an output.

A genetic-based routing algorithm for enhancing video
streaming in SDN networks (i.e., called GA-SDN) is pro-
posed in [203]. Video flows and the level of network links
utilization (i.e., uses ports stat) are inspected periodically.
Whenever link congestion (i.e., threshold-based) is likely to
happen, GA-SDN tries to find a better path for video flows.
GA-SDN reassembles the network graph of the path as a
chromosome. The path cost equals to the fitness function
of the chromosome. The fitness function takes one of two
values: zero if not feasible, or 1/path(cost), which means
increasing the path cost will decrease the fitness value.
The proposed approach shows better PSNR and throughput
performance values compared with the Bellman-Ford [204]
routing algorithm.

The authors in [231] introduced a QoE-centric routing.
They assess the effect of network condition (i.e., delay and
loss rate) in the QoE values. QoE requirements are passed
to the controller, i.e., northbound API. According to those
demands, they formulate the routing as a multi-constrained
problem. They used an Ant-Colony meta-heuristic algorithm
to find a solution. The algorithm tries to maximize the
flow(s) QoE value (e.g., MOS) and accommodating flows
constraints.
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The authors in [232] surveyed QoS-aware routing algo-
rithms could be used in SDN. Specifically, the delay
constrained protocols. They tested their performance using
different criteria such as the topology size, the delay con-
straint. They found that LARAC had the best performance.
However, they did not consider the multiple path problem
or algorithms that do not optimize the cost metric such as
Multi-Constrained Path (MCP). In our case, most of the rout-
ing is based on the shortest path algorithm. They differ in the
way they treat the traffic and which optimization QoSmetrics
they chose to make the routing decision. Moreover, many
authors argue that these metrics depend on the application on
which routing algorithm will serve which is not the case in
real life networks where diverse application coexists.

Table 7 shows a summary of reviewed routing works been
done in SDN for QoS provisioning. We did not show the
shortest path problems due to space limitation.

2) RESOURCE ALLOCATION
It is necessary to manage network resources in a way
that maximizes its utilization. Competition between services
on those limited resources complicates such tasks. SDN
shows potential to resolve such issue with its dynamic pro-
grammability which allows network owner adapts to new
requirements efficiently. In this Section, we discuss various
approaches in the literature to cope with the resource alloca-
tion problem.

a: RESOURCES RE-CONFIGURATION
The work in [219] utilized weighted metric to compute the
utilization of end-to-end paths (ingress-egress) and use this
metric for calculating routes for QoS traffic. The exciting part
is that when the bandwidth requirement for the QoS cannot be
achieved, a resource evacuation is performed. The approach
starts gradually removing the best effort flows from that path
to allocate extra bandwidth for the QoS flow(s). It starts
with a single best effort flow, if it was not enough multiple
flows are rerouted. For resource allocation, the controller
configures outgoing ports along the chosen path to handle
the QoS flow requirements (e.g., max or min rates). The con-
troller uses OF-Config protocol [75] for this task since it is
beyond the scope of the OpenFlow protocol. Authors assume
the existence of northbound APIs for users QoS requests,
however, the QoS flows are predefined within a file that is
checked by the controller dynamically.

The authors in [245] propose a traffic management using
SDN. The controller monitors the behavior of currently flow-
ing traffic. When it detects a degradation of the network
performance or new demands is received, it first recon-
figures network devices to reflect a ratio-based bandwidth
allocation. If the available bandwidth cannot meet the new
requirements, a low priority flows are evacuated to another
path(s) and use their share for high priority flows. However,
the authors did not clarify how they configure the bandwidth
parameters since it is not supported by OpenFlow yet.

Similarly, the work in [239] uses link utilization as a cost
metric for path selection for QoS flows. Whenever a routing

decision cannot meet QoS requirement, queuing techniques
are used to enforce prioritization of the QoS flow to meet its
requirements. They reserve bandwidth on queues along the
path the QoS flow will use. Authors ignore the overhead of
monitoring the status of link utilization when they are polling
statistic from the network element. This issue is vital since
the accuracy of the network affects routing decisions and it is
a trade-off between overhead and the accuracy (i.e., actually
they did not show how statistics is polled).

In [240], the authors proposed an approach for network
resource allocation based on different requirements of mul-
tiple services or applications. Their design consists of four
modules: a traffic classification at the edge of the network
(i.e., DPI-based software for getting flow information and
send it to the controller), a queuing module, status collection
(i.e., utilization of queues), and path calculation. After the
controller knows which service group a flow belongs to (i.e.,
based on the information received from the DPI classifier),
the queuing module configures queues within the network
switches to support specific requirements for each service
(i.e., bandwidth and delay are the QoS metrics). Therefore,
the controller maps each flow to the queue(s) that will sat-
isfy its requirement depending on the service type that flow
belongs. For path calculation, they modeled that problem
as constrained shortest path (CSP) and used the LARAC
algorithm to solve it. They optimize the path for each group
of services based on their most important QoS metric (i.e.,
VoIP sensitive to delay). Classification at the network edge is
like what is used in today networks. However, usage of deep
packet inspection may consume more resources at the edge
switch. Moreover, instead of tagging the packets, they send
the information to the controller.

In [216], the authors leverage SDN to support resources
allocation for cloud users. They utilized QoS route optimiza-
tion combined with queuing to ensure resource allocation for
high priority users. They divided the flows into QoS, and
best of effort flows using ToS field in the IP header. Both
flow types can share the same path(s) when the network is
not congested. They poll statistic from network switched to
monitor the network state. Optimized LARAC-based routing
is used to compute a path for QoS flows based on their
requirements. Where there is no feasible path found, they do
queues manipulation through the OVSDB [262] protocol to
enforce the resource allocation. Authors ignored the commu-
nication overhead between the controller and switches while
statistics is collected or when rerouting is needed.

The authors in [241] propose SDN-based real-time
dynamic traffic shaping and bandwidth allocation for clients
in home networks. When a client requests a video streaming,
controller intercepts the DASH video streaming communi-
cation to get meta-data such as the video length and the
bit-rate. Then, a QoE optimizer module tries to find the
optimal allocation of bandwidth between clients to maximize
the bit-rate each receive and equitably share the bandwidth
between client as it is specified by network policy (i.e., they
use equal bandwidth). Based on that, a traffic shaping module
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TABLE 7. QoS routing in SDN.
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enforces the output of the optimizer into rules installed by the
controller at the home network gateway.

In [242], the authors used OpenFlow meter table for multi-
media bandwidth assurance. They used themeter table entries
to do metering for flows, while traffic is classified based on
the incoming ports and the IP destinations. If link’s conges-
tion is detected a rerouting is performed to relieve that link.
The controller periodically collects statistic from the SDN
switches. They predict a bandwidth value for each flow and
compare it with the corresponding real-time bit-rate reported
from the SDN switch. If the predicted value less than the real
value, a multiplicative increase is performed, else an additive
decrease is performed to release part of the reserved band-
width. It looks likes the congestion avoidance mechanism
used by TCP (AIMD) but reversed. Links âĂŸcongestion can
be detected from collected statistics. Authors used a rerouting
algorithm that distributes low priority flows traffic along
others link. The number of the packet forwarded to each of
the new routes depends on the amount of available bandwidth
that link has. They used OpenFlow group table to perform
this multi-pathing. This work depends mainly on two things,
the detection of congestion in the network which depends
heavily on statistic collection which means higher accuracy
requires a higher rate of statistic packets either pushed or
polled from switches which may add extra overhead. The
other thing is the prediction equation used for bandwidth
reservation. From the results, they showed that they predict
the peak traffic, but between peaks, degradation is slowwhich
waste resources reserved for multimedia traffic.

The authors in [243] derived a model for evaluating the
performance of SDN architecture. They also proposed the
usage of two queues; one has a high priority for packets
from the SDN controller, and another low priority queue for
other packets. The purpose of the high priority queue is to
reduce the delay when flow miss-match happen for pack-
ets. They provide higher priority for those packets coming
from the SDN controller. Their purpose was to maximize
the fairness between packets with little scarification of per-
formance (packet loss). They evaluated their approach using
mathematical model and simulations. The results show lower
delay for packets that suffer from flow miss match better
than the traditional FIFO scheduling. This work is like what
existing in current traditional network elements by providing
high priority for important packets such as VoIP. Therefore,
the authors did not change much but used this feature to help
early flow’s packets that suffer delay when a decision from
the controller is required.

The authors in [244] propose a queue migration scheme.
They used a model for predicting the delay of queues. If the
queue delay is high and expected to violate the deadline
constraint, packets are migrated to different queues.

b: NETWORK VIRTUALIZATION
Another way to provide and assure resources allocation for
users is by dividing the physical network into virtual slices or
networks. Isolated from each other with resources guarantees.

A virtualization layer resides between the control plane and
the data planes. FlowVisor [253] is one of the earliest works
that does network virtualization by creating a virtual layer on
top of physical network devices. Separated slices or virtual
circuits can be created using FlowVisor where each can be
thought of as a set of flows that share common features.
FlowVisor is built based on OpenFlow SDN architecture and
works as a proxy between the control plane and data plane.
For instance, source and destinationMAC or IP addresses can
be used to define a slice with specific QoS requirements such
as maximum delay or jitter. These features called flow spaces
and FlowVisor ensures isolation between them. However,
it does not allow sharing of port bandwidth between multiple
flows (i.e., the port for one slice ). Also, it does not support
manipulation of packets. Other proxy-based virtualization
works are proposed later on to overcome some of the lim-
itation in FlowVisor as it is the case in OpenVirteX [254]
which built based on FlowVisor to tackle the address virtu-
alization problem. DFVisor [255], [256] attempts to enhance
the flow setup time since flow setup process is intercepted by
the hypervisor to make each controller think it controls the
network. AutoSlice [257] proposes schemes to automate the
virtual slice deployment and solve the single point of failure
in a single proxy based virtualization by distributing that task
which makes it scalable for a large number of users.

Similar to proxy-based virtualization, the work in [258]
proposed a fine-grained bandwidth allocation manager
(FGBAM) that is consist of two module; web-based front-
end for bandwidth allocation policy specifications, store it
at the back-end manager. FGBAM enforce those policies by
acting as a proxy between the controller and network switches
by intercepting OpenFlow messages. It allows port band-
width among flows which is not the case in FlowVisor. Also,
FGBAM can work with different network operating systems
along with different SDN deployments since it uses OVSDB
protocol [262] to manage bandwidth at network switches
instead of OpenFlow.

Based on FlowVisor slicing, the authors in [259] designed
a traffic shunt system.FlowVisor is used to divide the physical
network to different virtual logical network or slices. The
VLAN tag is used to identify network slices inwhich different
traffic sources are steered to that slices. A bandwidth alloca-
tion module is used to allocate bandwidth on network slices
as needed. By doing that, bandwidth starving application or
traffic can be diverted to network slices with fixed bandwidth.
Also, the authors in [260] present a hierarchical link sharing
and bandwidth reservation in SDN-based virtual networks.
They use FlowVisor to create multi-level virtual networks in
which a virtual link can span multiple physical links.

For resource allocation within the network using virtual
circuits, the authors in [247] proposed a QoS provisioning
architecture. It uses two variant of virtual circuits (VC) cre-
ation within the SDN network. The first one is fine-grained
in which the QoS profile is applied for each VC even if many
circuits share the same physical path. Another coarse-grained
is investigated, in which multiple VCs share the same QoS
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profile. Within the QoS profile, service classes (e.g., ToS)
is used to differentiate between virtual circuits. Creation and
manipulation of QoS profile are done through the OVSDB
protocol and realized through priority-based queuing and rate
limiters to meet the QoS requirement for each flow(s).

In [263], the authors did network slicing and provisioning
for these slices to meet application requirements the con-
troller reserve resources for customers based on high-level
slices specification defined by the administrator for cus-
tomers or services. The slices can be applied on aggregated or
granular flows. They proposed schemes to solve the problem
of meeting high-level requirements with low-level configura-
tions. They configure rate limiter at network edge (i.e., band-
width usage policies) and priority queues at network nodes
(i.e., for bandwidth and delay reservation). This procedure is
similarly done in current network architecture, but manually.
They leverage SDN controller to automate these tasks. They
still do manual configuration of the application flows clas-
sification. Therefore, a dynamic detection (e.g., application
profiling) will improve this work and reduce errors.

The authors in [261] proposed a management framework
that joint off-line network virtualization and QoS aware rout-
ing. First, the physical network is sliced into different subnets
to isolate different tenants. For each tenant, a subgraph is
defined in which it contains all vertices in the original graph
G. Resources are isolated, and the QoS is guaranteed for each
tenant or client. When new flow(s) arrive, a routing algorithm
handle the flow allocation that uses client properties to realize
their QoS requirements. When routing fails in accommodat-
ing QoS requirements, feedback is issued to the off-line stage
to enable better network slicing.

c: OPTIMIZATION
The authors in [264]formulated the online virtual links
resource allocation as an Integer Linear Problem. In which
requests for virtual links arrive sequentially to the system
with specific requirements such as delay and bandwidth.
The objective of the system is to distribute the network
traffic with appropriate network resources utilization taken
into consideration. This behavior can be applied to resource
allocation requirements for flows in which single or multiple
flowsmay produce single or multiple virtual link request with
those QoS requirements. The output of the algorithm is a
route(s) and set of flow table rules that should be installed
on the physical nodes or switches to support the creation
of virtual link(s). They argue that the distribution of virtual
links creation among network node increase the admission
rate because nodes and links are reasonably utilized.

Similarly, the work in [265] formulated the problem of
virtual link creation on top of physical network as a
Multi-objective Integer Programming (MIP). However, each
virtual link request is associated with a QoS class that is
defined within the QoS profile (i.e., specific attributes with
absolute values). They applied three general link sharing
policies when creating a virtual link over the physical link.
Full sharing policy allows the physical link to be shared with

as many virtual link requests with no constraint on the QoS
class that request belongs to unless the max link capacity is
reached. The second policy is called full split in which each
the QoS class can have a maximum share of the physical
link. It is for the equitable utilization of the physical resource
between different QoS class. In this policy, different QoS
class can share the physical link. The last one called the
Russian Dolls Model in which the physical link is shared
in a hierarchal way between the different QoS classes. This
policy support priority between classes in bandwidth sharing
which like ToS definition with lower values means higher
priority. This division of QoS class and its constraints on
creating virtual links can be considered such as allocating
specific virtual links for certain types of traffic to satisfy
its requirement. It is necessary due to the burst nature or
unpredicted behavior traffic of those services or applications.

The authors in [248] modified the NUM (Network Utility
Maximization) framework to support multi-class services.
The objective of the NUM framework is to maximize the
sum of the network flows utilities within the limitation of
links capacities. They used two different utility functions for
both elastic and inelastic flows. Each flow’s utility function
has a priority parameter to reflect the QoS class for that
flow. For a new flow, and after routing path is computed,
the controller uses a sub-gradient projection algorithm to
estimate or allocate the rate of that flow. The only considered
constraint here is the link capacity. For scalability purpose,
the authors assume usage of multiple controllers. They used
Opnet to evaluate their work.
The authors in [249], [250] leverage traffic prediction for

QoS-aware resource reallocation. They proposed ways to
minimize the packet loss ratio while maintaining the delay
and the bandwidth under control. They model the problem
as Binary Linear Programming and propose two schemes to
solve it. An exact optimal solution (QRTP) which solve the
problem using CVX toolbox in Matlab. However, to reduce
the optimization time, the made two relaxations on the
original solution. The relaxed scheme is called RQRTP.
First, an aggregation of flows is performed. Instead of
granular-based flow optimization, they join flows that share
the same source, destination and have a total bandwidth less
than a certain threshold (i.e., forwarding table compression).
Then, an upper bound for the objective function is computed
to minimize the total link utilization. The approach computes
the link utilization as the sum of the flows traversing that
link. The resource reallocation process is ignited only when
congestion is detected/predicted, or the time for the periodic
resources optimization is reached.

d: SCHEDULING/ADMISSION CONTROL
The authors in [251], [252] introduced a different approach
for resource allocation targeting fairness. They exploited the
principles of virtual memory management in computer and
applied it on SDN platform. For each control application,
they maintain a set of state information or tables within the
control plane. Each control application contains three tables
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contains information about its created flows. The first table
contains information about flows that need to be scheduled
and written to switch’s flow table named as Virtual For-
warding Page (VFP). The second one keeps statistics about
those flows belongs to a particular application named as
Flow Performance Table (FPT). FPT is used later to compare
achieved bandwidth reservation for that application. The third
table called Flow Status Table (FST), and used to keep the
status of flows that are currently or lately active within the
network. A binary value (e.g., 0 or 1) is assigned to each
flow within that table based on their activity within a specific
period. This value is used to determine if the flow is recently
used or not. The overall application throughput or the total
allocated bandwidth is computed based on the collected flow
statistic table (FPT) and the activity of those flows belonging
to that application (i.e., FST table). New application’s flow
is scheduled if the max throughput for that application is not
reached yet. The flow is inserted into the flow table within
the switch if the table is not full. Otherwise, the status table,
FST, is checked for those flows that are not used recently
to evacuate and replace with the newly arrived flow. In this
work, the SDN controller needs to keep track of much infor-
mation about each flow and each application. Moreover, they
just used bandwidth as a resource requirement. However,
if multiple application requirements are considered such as
delay or jitter, the scheduling may differ.

e: RESOURCE SHARING (AUCTION/PRICING)
The authors in [266] exploited FlowVisor and virtual net-
work slicing to present an auction-based resource alloca-
tion. Authors assumed exitance of multiple controllers with
no interaction between them. Each controller managed and
control a slice or a virtual topology defined by FlowVisor.
Therefore, flows belonging to a specific controller’ user(s)
follows a certain set of virtual links. The problem they address
is that controller may need extra resources to support incom-
ing or existing flows of its users. FlowVisor performs the
role of auctioneer, and interesting controllers behave like
bidders. Due to its knowledge of the status of the network
and existing network slices, FlowVisor behave as a proxy for
all controllers in which it receives bids from each one and
release shared resources to an interested controller. However,
each controller will pay the cost to get those resources and the
FlowVisormakes the auction decision. Authors here assumed
the existence of multiple controllers, and even it may be not
always applicable. However, this approach can be used to
allocate resource for users sharing the network resource. Each
user wants extra resources must pay the extra cost, and it may
get those resources from a similar user that has underutilized
private/reserved resources.

In summary, we can make the following remarks:

• In routing, the cost function plays a major role in finding
a route that statistics the QoS requirement

• Beside that, accurate routing is affected by the accu-
racy of the maintained network state. Therefore,

a well-engineered monitoring function will have func-
tional consequences on other modules such in routing.

• Multi-domain routing is another issue, especially when
consideringQoS provisioning. In [220], the authors gen-
eralized their local domain LARAC-based QoS routing
to address the distributed multi-domain problem. The
path between two domain border nodes is modeled as
a virtual link. Therefore, the link cost and delay are
computed according to two methods: 1- the cost of the
virtual link is the total cost of the path between border
nodes, and so on about it is the delay (delay of the path).
2- find k feasible paths, by solving CSP multiple times,
and then compute the average cost and delay of them,
and assign it to the virtual link.

• Another thing needs to be considered, is that most of
the works focus on a specific application and optimize
routing. The authors in [233]–[235] generalized the opti-
mization and provide an API for solving constrained
programming problems. They proposed a platform for
facilitating optimization for the user, by making inter-
face base on constraint programming. The user speci-
fies the constraints, and the solution, if found, provided
by the framework through another program called the
solver. The point here is such work can be used simulta-
neously for different applications to accommodate vari-
ous requirements.

• Usage of AI or more specifically ML techniques can
help to achievemore fast routing especially if themodels
are well trained. However, few efforts were performed
compared to mathematical optimization model. Even it
has a long training time, it can give fast result if the right
model is produced.

• OpenFlow has limitation in for configuring resources,
and controller depend on other switch-specific config-
uration protocols such as OVSDB. OF-Config protocol
introduces to alleviate this problem.

• Network slicing for resource provisioning is suffering
from the isolation problem. Same resource cannot be
shared with more than one entity as it is the case in
FlowVisor.

• Application of ML techniques in resource usage opti-
mization is not considered. Learning models taking the
time dimension with utilization history usage can help in
optimizing resource usage in conjunction with predicted
traffic models.

• Resource sharing between entities need more attention,
specially when allocated resources is less utilized by the
tenants.

D. EXECUTE
The execute function is responsible for reflecting a change
requirement into the network behavior. Since SDN controller
do (re)configuration of the network in behave of upper appli-
cation. This process needs to be performed carefully due to
its direct effect on the network state, and the whole SDN
idea. SDN controller controls the network by sending flow
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modification command to OpenFlow compatible switches
(i.e., OpenFlow agents reside on those switches) to install
flow rules within forwarding tables [267]. Based on those
rules, any policy (i.e., hypothetically) could be applied to the
network either for security, QoS policies and so on. From the
data plane point of view, it expects two types of plans from
the controller to cope with changes in QoS requirements.
The first one is a request(s) to modify one or more entries
in the flow, group or meter tables. New flow rules may be
added/deleted to reflect the addition/deletion of flow to/from
a specific path. The second type is a request to add/remove
resources to specific existing flows.

The consistency of network configuration is a significant
issue in the design of SDN-based autonomic networking.
Manipulation of flow rules changes the network behavior.
Therefore, it is necessary to verify those rules and their con-
sistency of what already implemented by previously installed
rules. Moreover, the timing of those update may affect the
ongoing traffic and the overall network performance. There-
fore, scheduling of such updates should be performed care-
fully. Accordingly, the essential question of when and where
rules to be installed need an answer.

1) RULES SCHEDULING
The effect of flow rules insertion may not be limited to
the violation of implemented policies. The authors in [269]
showed that the sequence these rules are inserted can affect
the network performance. They suggested a scheduling algo-
rithm that runs at the SDN controller which firstly assesses
the effect new will be inserted rule on current network
and if it can cause congestion for network links. This
problem may become obvious when a rerouting decision
is taken by the routing module without considering the
effect of flow migration or the sequence of flow entries
changes.

An update to the network could be a flow rules modi-
fication or deletion due to a change in policies or require-
ment of traffic engineering application. Which will changes
packet processing behavior within the network. The authors
in [270], [271] build their work based on the observation of
the existence of interdependency within network updates.
Such updates may contain sub-updates that are independent
in which they can be installed in parallel within the net-
work. Sub-updates are independent, for instance, when they
are targeting different switches or network slices. Therefore,
the authors build a scheduler called ESPRES that runs as a
layer between the controller and switches. It receives a stream
of updates to schedule their installation without overloading
network switches.

Instead of pro-actively install many rules within switches
(i.e. flow table size is a big issue due to memory limita-
tion) or reactively consume network resource by gradually
inserting flow rules, the authors in [272] proposed a hybrid
way, in which they divided flow rules installation process into
path and node based. Path-based rules early installed on edge
switched then gradually along other network switches.

Control-Data plane consistency is outside the scope of this
work. However, for its importance, especially when multiple
controllers deployed in a single network [273], we mentioned
some of the effort put in that area. The reader can find in
[274] a recently published survey focused on update consis-
tency in SDN.

2) QUEUE MANAGEMENT EXTENSION
OpenFlow is mainly designed to control the network behav-
ior with a simple manipulation of the flow entries (i.e.,
add/modify/delete). Even the subsequent versions of Open-
Flow add more features such as the ability to direct a flow(s)
to a specific queue(s) or metering those flows (i.e., as dis-
cussed in SectionIII-B). However, it cannot configure the
network resources (e.g., ports or queues on the switch). The
ONF group delegates the port/queue configuration to another
protocol called OF-Config [75].

Therefore, some effort was performed to fill that gap in
the literature. For instance, in [275], the authors tried to apply
traditional QoS techniques; traffic shaping and to SDN-based
networks. They developed a QoS module within the Flood-
light controller to do that. Thatmodule performs flow classifi-
cation, processing and policy application to OpenvSwitches.
Flows are directed to previously configured queues by using
the OpenFlow enqueue action. They manually configured
the queues by utilizing existing OpenvSwitch management
protocol, the OVSDB [262]. This due to the limitation of
OpenFlow and the OF-Config protocol was still under devel-
opment. Similarly, the authors in [277] developed a QoS
module in the Floodlight controller. It uses OVSDB com-
mands to (re)configure queues bandwidth reservations along
the path nodes between the applications and their replicas
in the cloud. It helps in high availability guarantee of such
applications to their user.

The authors in [276] developed a Floodlight module called
QueuePusher. That module enables the controller to per-
form queue management in OpenFlow enabled switches.
It translates queue management messages into OpenVSwitch
compatible commands through the OVSDB protocols. The
module offers certain operations such as CREATE, READ,
UPDATE, or DELETE (CRUD) to manage. QueuePusher is
presented as an extension to the Floodlight protocol since
does not support OVSDB. Moreover, it provides a RESTul
API for this module to be instantiated from top layer appli-
cation or other entities within the controller. We need to
mention here that the IETF group standardizes the OVSDB
protocol. QueuePusher is also used to configure queues for
flows QoS support in [278].

Similarly, authors in [279] built an SDN plug-in or an API
to configureOpenFlow switches queues based on theOVSDB
protocol. Similar toQueuePusher, it will help in dynamically
configuring QoS requirement such as the max-min rates,
burst size and priority of the queues on these devices. Authors
just did what the OF-Config protocol should do, by trans-
lating management commands into internal OpenvSwitch
management command. The exciting part of their work is
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FIGURE 13. Illustrative diagram for FlowQoS scheme as reported in [281].

providing an API for top layer management application to
configure the low layer data plane.

The authors in [280] tried to benefit from existing traffic
management, or packet scheduling techniques exist in Linux.
Such as the HTB for traffic shaping, RED to avoid congestion
and SFQ for fair classless scheduling. They aimed to perform
such queuing in OpenFlow switches since in OpenFlow 1.0
(i.e., the supported stable version by that time) assumes FIFO
and rate-limiting as the only QoS support. Therefore, they
added a QoS module in the OpenFlow data-path to provide
OpenFlow QoS messages that abstract the queue configura-
tion (i.e., the traffic shaping, packet scheduling). That module
issue commands to install any of these scheduling algorithms
to port queues by utilizing the underlying Linux kernel. It uses
the TC Linux tool for schedulers installation.

The authors in [246] extend both OpenFlow and switch
hardware by implementing a NetFPGA-based OpenFlow
switch. It allows the SDN controller to configure quota val-
ues specified for each queue that uses Deficit-Round-Robin
(DRR) scheduler. The value of quota specifies the amount of
bandwidth that the queue receives.

The authors in [281] use SDN-based home or broadband
traffic (i.e., user’s HTTP based video traffic) management.
There developed two modules, a traffic classifier, and rate
shaper. They used DNS information to classify web appli-
cations such as HTTP(s) or any built upon it, and another
classifier that depends on deep packet inspector to classify
non-HTTP traffic. They used two internal virtual switches
within the home router to provide rate control for differ-
ent flows. Virtual links between those switches perform the
traffic shaping. Therefore, after a flow is classified, a rule is

created by the controller to direct this flow to one of these
virtual links that correspond to an application group such as
video, gaming or web as depicted in Fig. 13. The traffic shap-
ing applied user-defined rates on these links. They monitor
these links and reconfigure the rate assignment to maximize
the utilization of the link capacity. This approach requires
two virtual switches within the manage gateway which is
a pressure on the device resources. Similarly, authors [282]
used SDN-based home routers configuration to provide traf-
fic prioritization or allocation of bandwidth. The controller
uses information send from end hosts to tell which applica-
tions (i.e., Netflix or Skype) are running by the users right
now (i.e., classification). Then, the controller computes and
optimally share the bandwidth between these applications
based on a predefined utility function for each application.
The proposed approach delegates the traffic classification
task to agents installed on the user’s host devices. Similar to
the FlowQoS [281], they used two internal virtual switches
with virtual links in between to apply rate control.

In summary, we can make the following remarks:

• Due to limitation of OpenFlow specification, some
research efforts were exerted to provide interface that
translate from application-level into switch-level config-
uration.

• Policy conflict and consistency between the data-control
planes is a major issue. Many applications could pro-
gram the network. Therefore, a central view and auto-
mated control of all policies need to be implemented.

E. KNOWLEDGE
We previously discussed the main four functions in the auto-
nomic MAPE-K QoS management. The remaining one is the
Knowledge which we discuss in this section. We review the
storage of all type information either received or produced by
the QoS approaches. The network state information, config-
uration or policies controlling the operation of the system are
stored in knowledge source.

Most of the existing SDN controllers hold and main-
tains information about the network such as existing devices
or network topology. For instance, in the Floodlight con-
troller, a devicemanager modulemaintains information about
discovered devices or host (e.g., from PacketIn messages).
Link discovery module uses LLDP packets to discover links
between switches, and such information is used to build
and maintain the network topology by the topology service
module. For information sharing between modules, an in-
memory storage source is used in Floodlight. Modules can
manipulate (i.e., create/modify/delete) such information and
kept updated when changes occur.

Most of the previously researches in the monitor function
(i.e. Section IV-A) store collected measurements locally. For
instance in [283] uses a persistent repository to store infre-
quently network information such as the network topology,
exiting paths. They store monitoring requirement received
from the upper application in tables that will be processed
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by the monitoring unit. A collected statistic such as link
utilization is stored in hash-tables. The authors in [107] use
database module to store the flow counters collected by the
monitoring module. History of such measurements is used
in their approach to predict future flow(s) rate. Similarly,
in [109] raw measurements are stored and maintained by
a data store module. Approaches in [86], [185] uses local
database to store up-to-date statistics and topology informa-
tion. The approach in [123] keeps statistics information in
its database. In every 100ms it produces a snapshot database
for other application. Such database contains information
about, topology, statistics, flows classification (i.e., five tuple
information), flows paths and their estimated bandwidth.
In [284] MongoDB [285] is used as database service. It is
used they store information received from the controller
messages such as the FlowMod, FeatureReply (i.e. switches
information). Also topology information captured from the
LLDP packets. All together with collected statistics are used
to visualize the current state network. Differently, the authors
in [131] store history of control messages sent and received
between the controller and network switches for logging
similar purposes. In their used storage or database entries
a per-switch (i.e. using DPID of the switch as identifier) is
created. A GUI is created to access and visualize such data to
the network operator.

The authors in [286] used MySQL DBMS to store net-
work, application and user information. Such as the topology
information, sent/received packets, QoE parameters received
from the user side (i.e., after watching the video), QoE
threshold, bandwidth usage. Then, QoE value computed and
compared with specified thresholds. If low QoE is detected,
the controller tries to improve the QoE by finding better
paths. Moreover, user bandwidth is monitored in which if it
exceeded purchase bandwidth, admin is notified.

The authors in [287] proposed a recommendation frame-
work to mitigate detected elephant flows in IXP(Internet
Exchange Point). It uses a set of predefined templates IXP
operator. Each template contains a procedure to handle the
detected elephant flows. For instance, a template could be
to find the best alternative paths for the current detected
flows. The operator have the choice which templates to
be activated based on their needs. The active template is
applied on all lastly detect elephant flows. Based on the
operator requirement, the recommendation generates rec-
ommendations after applying a specific template either on
all or subset of the detected flows. Recommendation takes
the of flow table rules modifications. The operator validate
such recommended rules and either approve to be applied
or request a change. The operator can modify template
through template manger. He/she can also more templates
to be used in the future for other objective. This approach
can be used to provide autonomic mitigation of elephant
flow. Experience of engineers can be converted to such
templates to handle different situations autonomically. How-
ever, in their approach, the operator interfere the automated
process.

The authors in [147], [288] propose a policy-based man-
agement system. They assume that SLOs is already defined
and verified from the SLA, for instance by the network
operator. The system then stores the QoS SLO policies in
an internal database or repository. Their proposed approach
tries to reflect such policies into network policies. When a
policy violation is detected, the policy enforcement module
takes one of two actions: either rerouting the best of effort
traffic and give high priority to QoS traffic. The other action
is limiting the rate (i.e., meter band that drops best effort
packets) of the best effort traffic that share the same path with
the QoS traffic.

Similarly, the authors in [156], [157] define SLA and
SLO repositories. They are maintained and edited by the
operator to reflect new changes or requirements. Moreover,
they designed a smart SLA enforcement engine, in which,
an SLA/SLO violation are predicted. A forecasting unit tries
to predict the future traffic. Then, an ANN based SLO vio-
lation prediction is performed. Therefore, such situation can
be handled before it occurs which the role of the enforce-
ment anent in the smart engine. Actions can be issued to the
network such as increasing the resources for certain users or
application.

A network management engine is developed in [268],
called GolfEngine. Fig. 14 shows the design of the
GolfEngine system. It consists of three layers: User interface,
Database, and RuntimeManager. The RuntimeManager uses
stored policies to control top layer application behavior. The
system uses MySQL as the DBMS to store variant type
of information: 1-Application policies: policies that control
the application behavior to define its profile such as the
polling policies (i.e., for statistic collection), analysis policies
(i.e., threshold-based comparison with what the in polling
policy), and an action policy (i.e., defines how the application
can perform actions such as drop/deny). 2- Network Flows
Information: stores statistics polled by the controller updated
periodically. 3-User Information: logs the user behavior on
the system. Policy-based application control is similar to what
autonomic networking is pursuing. Policies are defined by the
system operator to make them self-controlled.

In summary, we can make the following remarks:
• Policy-based management that involves SLA enforce-
ment and smart violation prediction engines that get
benefit of existing machine learning techniques is a
major improvement toward the autonomic behavior of
the network or more specifically the QoS management
in our case. However, few works that implement such
features. Moreover, policy-based control of otherMAPE
function is limited in the literature. Most assume spe-
cific scenario to just improve QoS/QoE performance
without considering the automation of suchmanagement
tasks.

• In most of the cases, policies are operator defined. There
is a limitation of machine produces policies that can
use history information to infer new policies that may
improve the system performance. Especially consider
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FIGURE 14. GolFEngine architectural model as reported in [268].

the time dimension to improve the daily action and plans
for network operation.

V. QoS REQUIREMENTS SPECIFICATION
In this section, we review research efforts in which authors
identified user QoS requirements for the SDN controller
which translated into network configuration. Negotiation of
the requested services between end users, service provider
and the network operator take many forms, and as a result,
they should agree on an SLA. For users or business owners,
it essential to guarantee the quality of the requested service.
However, due to the dynamic changes of users and business
needs, renegotiating terms of services is a time-consuming
task. Therefore SLA may be applied for an extended period.

Another issue is the reconfiguration complexity of network
elements in the current network architecture to adjust QoS
policies for a short time interval and roll it back to normal
state after services time. Which reflect the major need for
transferring to SDN networks. Through northbound inter-

faces, network application can specify networks requirement
to the controller to create flows rules. Whenever there are
no more needs, the SDN controller can delete and install
new rules to roll back the network to its previous state. For
instance, a user wants to perform a conference call to another
one or attend an online course. The user applicationwill nego-
tiate service and network communication parameters between
end users before starting the flow of the service (e.g., audio or
video). The network SDN controller should understand that
to converts these parameters into flows’ rules within network
elements. Therefore, there is a high demand for automating
this task, especially for short period flows.

In [236], the authors used SDN for resource manage-
ment within the network. They evaluate the performance of
YouTube video streaming using pre-buffered play time as the
QoE metric. A higher value of this metric means low stall
time for the video stream which a good indicator of customer
satisfaction about the ongoing service. Authors propose to
allow the streaming application to contact the SDN controller
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through north-bound API to tell about the type of informa-
tion its flow contains. It allows the controller to put a high
priority of such flows over other existing flows. As expected,
the minimum threshold they put for adequate pre-buffering
time for video streaming is reached due to the high priority
YouTube stream flows receives over other TCP flows. This
work is a case study of allowing the application to help the
network providing good QoS. However, this work depends
meanly on trust by the SDN controller of the information
provided by the user’s application (i.e., they assume to use
application signature). Also, there is no competition between
multiple flows of the same data type or other critical flows
or different users. Another issue is that there should be a
clear identification of granular flows and providing a standard
north-bound API with a clear definition of the information to
be exchanged between the two entities.

Similarly, the authors in [237] used SDN to provide net-
work resources management with the benefit of application
information. They used YouTube video streaming as the case
study and the buffer playtime as the application information
that fed to the SDN controller. When the buffer play time of
flow is below a certain threshold, resources are reserved for
that flow; otherwise, flows use the same amount of resources.
This work like the previous one in the way they involve
application awareness in the network configuration. They
also used a minimal access network to test their approach
which needs more investigation in large scale with many
competing applications.

The authors in [289] proposed an SDN-based architecture
for service negotiation. The architecture uses, besides the
controller, a QoS module to match the QoS requirements or
the ability between the end users. After negotiation, an opti-
mized QoS profile is produced for the expected flow. This
module called QoS Matching and Optimization Function
(QMOF). It uses the SIP protocol for signaling, and then
a path optimization is requested from the control layer for
this flow through the Path Assignment Function (PAF) which
reside on the controller. After that, a path is configured along
the network elements, and the flow is started after returning
an OK signal to the QMOFmodule after configuring the flow
entries. Then the SIP signaling is completed between the two
entities and the flow start. This form of service negotiation
will not consider the state of the network in traditional archi-
tecture, since only end entities are involved, however, usage
of SDN controller allows the network to produce a profile of
the service for the end users for getting the best service QoS
without congesting the network.

SLA application between entities consists of two parts.
The first is the specification of service or network parameters
that are important for the quality of the service to be within
predefined ranges. The second is the monitoring of these
parameters (e.g., maybe a third party to ensure no viola-
tion) and may adjust them to satisfy the customer. In [290]
authors proposed PolicyCop, an architecture for automatic
QoS enforcement on SDN. The architecture consists of two
modules that reside above the control layer. The first com-

ponent is specialized for detecting any violation of current
policies (i.e., monitoring the traffic and policy database).
If a violation is detected, action request either to the man-
ager to handle manually or to automotive policy adaption
or enforcement module which is the heart of QoS automa-
tion PolicyCop that represent the second component. Policy
adaption component is containing a set of policy adaption
actions. There is an action for each policy violation (e.g.,
a violation in latency metric or throughout). This adaption
or enforcement of policies reflected in resource provisioning
requests to the control plane. These two modules communi-
cate with the underlying control layer using the northbound
API. The PolicyCop exploited some existing modules within
the control plane; namely: admission control (accept or reject
resource provisioning), a routing module, device tracker,
Statistics Collector and Rule database. From the SLA point
of view, the specification of SLA is represented by the current
policy database and the monitoring of these specifications
or objective are done by the PolicyCop which may enforce
action in the network exploiting the programmability of the
SDN. The detection of violation of the QoS SLAmay require
a long time in traditional network especially of reconfiguring
the network to adapt of policies, however, this task can be
automated with the appropriate API with the SDN controller
to allocate required resources. It would be more valuable
to this work if there were an automatic translation of SLA
objective or specification into policies since authors assume
the existence of policies within a predefined database. It may
not be applicable, but dynamic changes to the SLA should be
reflected automatically to network element upon the agree-
ment on these changes or if the customer pays for these extra
enhancements. This work is an example of QoS provisioning
based on policies that autonomically adapt to changes and
configure itself when SLA violation is detected.

Customer QoS requirements may be specified as SLA, and
changes are always expected. SLA is high level (QoS user
requirement) policies that should be translated into low level
(system policy) network policies by network administrators.
Refinement of higher polices is an exhaustive task in the
tradition which may require many changes to network con-
figurations. The main issue is the proper translation of those
high-level policies toward the low-level rules that satisfy all
these SLA requirements (to satisfy business level goals).
Therefore, the SDN controller should identify all require-
ments and resources needed to satisfy these SLA refine-
ments, and monitor if these enforced low-level rules meet the
requirement of the high-level policy all in an automatic way.
The authors in [291] proposed a three stages procedure in
SDN for SLA refinement. The first stage is manually done by
the administrator to identify parameters or objectives (SLOs)
From the SLA. Each service is pinned to a QoS class (e.g.,
QoS class such as platinum treatment of VoIP flows) that
are stored in an LDAP repository. This repository contains
requirements for each QoS class (e.g., delay, bandwidth)
and their corresponding values (e.g., 200ms,128kbps). Also,
it contains a list of commonly known protocols and there
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known ports that are stored by the administrator. In the sec-
ond stage, the administrator associates protocol those stored
in the LDAP repository with each service to differentiate
its flows (e.g., VoIP service that its protocol will receive
platinum QoS). In the third stage, the SDN controller loads
these rules stored in the LDAP repository associated with
those QoS class and protocols and store them into policy
dictionary. For each network flow, the controller performs
an analysis to implement low-level rules and enforce them
on the network elements to apply QoS requirements for that
applications or services (e.g., VoIP service). Authors depend
mainly on manual work done by the administrator to do the
translation from SLA to application requirements that later
enforces as low-level rules in network elements that satisfy
those requirements. This procedure needs to be automated to
support autonomic QoS on SDN.

In autonomic QoS, users’ QoS requirements are translated
automatically into low-level network policy if they have the
right of that and the network can handle it (e.g., the user pays
extra money for extra Video quality or it been agreed before
in SLA document). Users usually do not know about net-
works parameters. Therefore authors in [292] implemented
a northbound API in the SDN controller to allow developers
of video streaming application to enforce QoS requirements
such as bandwidth, delay and so on. They are motivated by
the importance of reducing the decoupling of rule-based code
injection to do network configuration from the application
code. They compared there work with existing modules for
configuring or pushing QoS in Floodlight SDN controller
that is configured manually. They argue that better bandwidth
achieved when using their API by video streaming applica-
tion develops instead of existing command-based tools for
QoS configuration.

Similarly, the authors in [293], [294] proposed an
SDN-based architecture to support the need or Real-Time
Online Interactive Applications (ROIA) users such as gaming
applications. Such applications depend on the input from
users to determine the next state of the application or the
service and then reply to users with the changes or updates of
the application states. Therefore, the satisfaction of users in
these services depends on the responsiveness in which loss
and delay of action (i.e., transferred through packets) is a
significant concern. Reservation of resources to guarantee the
quality of service is not practical due to the static nature or
inability to scale to large of users flows as it is the case in
RSVP. Therefore, these user or application’ needs should be
specified dynamically to the network. Authors used the SDN
due to its dynamic configuration through northbound API
to accommodate these needs. Authors implemented an SDN
module (within their proposed architrave) that is responsible
for the communication between the SDN controller and the
ROIA process that resides in the application server. Users are
connected to this process and keep communicating with it
during the session time. The application requirement such
as response time is transmitted as QoS policy for either
one or aggregated flows between the ROIA process and

ROIA client(s) toward the SDN controller through the north
API. The SDN controller uses statistics about these flows.
The required QoS by the application is translated into QoS
network metrics which the application or the user does not
understand such as the jitter or throughput and so on. Even
this work does not specify agreed SLA or user interactions,
however, they implement an architecture in which an applica-
tion specifies its requirements to the SDN network which is
translated into a change of the network configuration which
was inapplicable in a traditional network.

Users are not aware of these network QoS parameters;
however, their satisfaction is a significant issue of business
success. Quality of Experience is terminology that discusses
the QoS from the user’ satisfaction point of view. Which
means guarantees of the QoS parameters may not satisfy the
user. Therefore, this what is called user-centric QoS rather
than network-centric which a significant challenge to ser-
vice providers. The other challenge is how to map QoE into
network-centric QoS parameters and to in how to dynami-
cally specify these configurations based on QoE needs. The
authors in [295] target these challenges in the field of IPMul-
timedia Subsystem (IMP) while designing an architecture for
IPTV service. They use users rating of the services to recon-
figure QoS network parameters. A QoE engine at the client
side tries to learn about end user by using different profiles
(actionmovie, talk show) within the ongoing time session and
the user rating of the quality of the service. A prediction of
the user’s level of satisfaction is mapped into QoS network
parameters base on these collected data (users rating) and the
category of the service. They used linear regression to map
between QoE into QoS parameters which been reflected into
changes on the network rules that are enforced through the
OpenFlow protocol. In that paper, the authors tried to convert
the user’s satisfaction level or what is called QoE into QoS
parameters to improve the service. There is no translation or
monitoring of SLA parameters within this work. However,
it works for service providers that their goal is user happiness.

Similarly, the authors in [296] tried to give a score for
QoE in which lower score means terrible services at the user
side. The used an agent that monitors the service on the user
side (e.g., IPTV networks or Video services such as Netflix)
by recording network parameters such bandwidth, jitter and
delay from the received packets on the user side. Then it
pushes these data to the service provider side where the QoE
score is computed where actions are taken on the SDN con-
troller to improve the QoS parameters for that user(s) flows.
It is more related to the user’s satisfaction without direct
interaction between the user, but its application is aware of
the network. The authors provide only design without testing
their proposed architecture. In [193], the authors propose a
video streaming based on SDN (VSDN). The architecture
allows the QoS application to request resources from the
controller. It is a reservation based proposal by which a
sender can request QoS for a specific video specification
through QoS API to allow the controller to reserve the
resources.
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VI. DISCUSSION AND FUTURE DIRECTIONS
In this work, we review and survey exiting literature in the
field of autonomic QoS support. We discuss and study work
related to the MAPE-K model which is a well-known IBM
model to describe Autonomic Systems. In the paper, we adopt
MAPE-Kmode as a referencemodel for its simplicity, clarity,
modularity in describing how QoS autonomic provisioning
and management should work. Key notes are given wherever
appropriate. In this section, we summarize and discuss open
research problems for the scientific community to address in
order to improve the autonomic QoS management in SDN.

A. IMPROVING/OPTIMIZING QOS/QOE MONITORING
In measurements collection, there is always a trade-off
between accuracy and collection costs (i.e., communication
or TCAM memory). Such cost increases with the network
size and traffic volume. Therefore, the optimization of the
measurement process is an essential issue that needs more
investigation. For instance, efficient adaptive measurement or
sampling could help since timing is a significant factor in the
accuracy and cost game. Adaption according to network state
and emerging events and learning from network behavior
history would help in producing optimized polling schemes.
Moreover, an optimized polling scheme could consider the
information source dimension besides timing. An optimized
switch selection schemes should cover all traffic flows and
reduces statistics messages exchanged between the control
and data plane taking into account switches limited resources.

Another essential aspect that may affect measurements
accuracy is traffic related to control and management, i.e.
non-payload or non-data traffic. Network management pack-
ets for link discovery, DHCP and many others that get pro-
cessed by switches. Such management packers are counted
in some statistics, especially link related ones. The authors
in [96], [97] pointed out that problem and tried to estimate
it and remove that noise from data traffic measurements.
Moreover, control messages need to be monitored besides
the data traffic, either to obtain the volume of that traffic or
to improve the network visibility to operators. Monitoring
control and non-data traffic is still an open issue where it
merely discussed by researchers for the monitoring module
in SDN.

Introduction of models that can support the measurement
process in which with the low sampling rate, the big pic-
ture of network state can be drawn still an open problem.
For instance, authors in [175], derive a queue delay model
from network parameters such as queue buffer size, queue
bandwidth, number of flows, link propagation delay. Then,
an estimated average queue delay is obtained from that model
and used to control the end-to-end flows delay, and similarly,
authors in [297] did. The most notable part is that such
models can use maintained and measured network parame-
ters by the controller and monitoring model can depend on.
Especially in cases where statistics collection is costly, or net-
work changes are infrequent. Moreover, most of such models

do not consider user-centric QoS parameters that should be
reflected in network-centric QoS or vice versa.

Beside network state information, application-awareness
and customer profiling is another aspect that can improve
QoS/QoE management in SDN networks. It requires the net-
work to get information such as resource requirements from
service providers or customer sides. Moreover, inspecting
information such as session start and end time or service
requirements from service providers which requires standard-
ization of such APIs. Moreover, QoE at the user side is still
an open research issue.

B. MACHINE LEARNING INCORPORATION IN QoS
MANAGEMENT
Self-adaption to network changes and the autonomic sup-
port of QoS in SDN require intelligent behavior from the
network. A simple threshold-based analysis is not helpful to
improve QoS performance. More attention should be applied
to usage of online analysis and Machine Learning. Few of
the reviewed research works employ someML techniques for
the prediction of future trends in network traffic or QoS/QoE
parameters. Analysis and Plan functions resemble the brain
and muscles of the autonomic QoS management and ML
can add more intelligence in their functionality. For instance,
patterns of service degradation can be detected using such
techniques if well-trained models are used in conjunction
with collected switches statistics [155].

ML has the advantage of fast decision making without
the need for sophisticated network models since it can treat
the whole network as a black box. For example, ML tech-
niques can be used to build more intelligent QoS routing.
Moreover, ML can help in optimizing resource utilization
and customer resource assignment decisions. Learning from
customers behavior can help the network adapt its resource
according to customers and services requirements. Also, its
learning ability from actions taken by the network operator
to resolve issues help in exploiting human experience in the
form of machine defined policies that can resolve the same
or similar future problem autonomically. However, ML has
training issues that require large datasets that span long time
intervals and which techniques should be uses needs more
investigation in the field of QoS support.

C. AUTONOMIC POLICY-BASED QoS MANAGEMENT
Policy-based management that involves SLA enforcement
into network policies and smart violation detection/prediction
engines that get benefit of existing machine learning tech-
niques is a major issue towards improving the autonomic
behavior of the network or more specifically the QoS man-
agement in our case. However, few works that implement
such features. Moreover, policy-based control of other func-
tions (i.e. Monitor, Analysis, Plan, Execute) is limited in the
literature. Most of the reviewed works assume a specific sce-
nario (e.g. Monitor) just to improve QoS/QoE performance
for a certain application without considering the application
of autonomy features or the automation of such management
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tasks. Furthermore, in most of the cases, policies are oper-
ator defined without participation of machine inferred poli-
cies that can be defined from mining users/network history
information that may improve the system performance and
refine those policies. Especially considering the time dimen-
sion to improve the daily actions and plans for network
operation by exploiting expert knowledge to define action
profiles or templates to automate the management tasks.
Authors of GolfEngine [268] try to define and implement a
well-structured system that uses policy-based management
of the Monitor, Analysis functions along with policies that
control actions taken by the system. The system also offers
policy conflict detection which is a major advantage since
consistency between the data and control planes is a major
issue since many applications could program the network.
Therefore, a central view and automated control of all policies
need to be implemented. The literature lack existence of
similar systems that autonomically manage QoS for SDN
network which require more efforts.

D. AUTONOMIC MULTI-DOMAIN END-TO-END QoS
PROVISIONING
Most of discussed assume single domain QoS provisioning
which is not the case in real Internet. User packets travel from
one domain to another which usually controlled by differ-
ent entities (e.g., various and may competitive ISPs) – each
with its own QoS, billing policies. Therefore, multi-domain
routing is another issue, especially when considering end-
to-end QoS provisioning. In [220], the authors generalized
their local domain LARAC-based QoS routing to address
the distributed multi-domain problem. The path between two
domain border nodes is modeled as a virtual link. There-
fore, the link cost and delay are computed according to a
network of virtual paths and border nodes. However, this
can get more complicated that this since packets are treated
based on policies implement between neighbor domains or
ASes. Usually, a long-term SLAs are agreed among those
entities to forward traffic along borders, and a change to
such SLA requires more time to negotiate and comply, and
implementation of such changes. With the introduction of
SDN with its agility, flexibility, and programmability and the
benefit of autonomic management of each domain to achieve
the end-to-end QoS guarantees in conjunction with SDIXPs
[62], [63] in between ASes [60], controlled by the SDN
controller that can automatically reflect policies changes
instead of the manual configuration used with BGP [59] that
can cause errors [64] or as authors in [61] did when they
implemented BGP as an SDN application, called SDN-IP.
However, this requires great deal of information exchange
between those evolved entities, either service provider, ISPs
which makes it more challenging process since each entity
may become more conservative toward sharing their internal
configuration or state information directly or through global
brokers as the case in FlowBorker [298]. Network resources
can be shared since there is an expected benefit on return.
Authors in [278] provide a cascade billing model to share

the revenue of QoS guaranteed between the infrastructure
provider and the service or content providers. These providers
will be more incentivized to share their networks, especially
between those ASes that do not collaborate or there is no
agreement between them to carry data. This will also pose
another challenge in monitoring and enforcing end-to-end
QoS guarantees among all involved entities.

E. DISTRIBUTED/MULTIPLE CONTROL FOR QoS
GUARANTEES
Few works discuss multiple controller support for QoS guar-
antees, and when they did, they use it for other purposes such
as multi-domain routing as in [220], [221], or coordination
network monitoring as in [90], [91]. OpenFlow 1.4 specifi-
cation adds a new feature in which a controller can monitor
changes on a subset of the flow table entries in case multiple
controllers manage the network. Redundancy of control can
help in reducing the load on the controller and for availability
purposes. Fast, scalable QoS requests processing without ser-
vice interruption is the aim of autonomic QoS provisioning.
However, it brings the policy or SLA implementation consis-
tency challenge in both control and data plane between differ-
ent network users either for QoS support or any other applied
network policies.Moreover, a shared knowledge source in the
autonomic system should be consistent between those con-
trollers images, and it may be affected by the flat/hierarchal
or the slave-master relation between those controllers and the
amount of information exchanged in between. Therefore, it is
still an open issue and requires further investigation.

VII. CONCLUSION
In this article, we have reviewed the current state of literature
on SDN to support end-to-end QoS guarantees, considering
an SDN-managed network as an autonomic system that can
provide and facilitate QoS functionalities. We classified the
reviewed work using autonomic MAPE-K reference model.
We discussed each function as stand alone, and focused on
existing work relevant to satisfying the autonomy require-
ment. From our review and analysis in this article, there are
many research areas in which autonomic-based QoS provi-
sioning can be further enhanced. For example, SDN-based
networkmonitoring was studied in the literature with nomea-
surement for path or link delays. Also, little or no work was
performedwith respect to QoS routing. For example, LARAC
algorithm is known to be a very efficient algorithm and is
widely used for QoS routing. It is also possible to leverage
ML techniques to build more intelligent QoS routing, as well
as muchmore powerful analysis functions for autonomicQoS
provisioning. The literature still lacks serious work on apply-
ing the autonomy features such as the self-management or
policy-based QoS management with no human involvement.
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