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ABSTRACT In this paper, the hybrid Kalman filter is designed for a class of special nonlinear systems where
the state equation is nonlinear and the measurement equation is linear. The stochastic nonlinearities, which
are described by statistical means, are considered in the system model to reflect the multiplicative stochastic
disturbances. The phenomenon of multiple missing measurements is depicted by a set of the Bernoulli
distributed random variables with known conditional probabilities and the missing rates of every sensor are
different. We need to compute the parameters to reduce the effects of the stochastic nonlinearities and the
phenomenon of multiple missing measurements. In addition then, based on the recursive projection formula
and the unscented transformation approach, a new hybrid Kalman filtering algorithm is proposed such
that, for the stochastic nonlinearities and multiple missing measurements, the filtering error is minimized.
By solving the recursive matrix equation, the filter gain matrices and the error covariance matrices can be
obtained and the proposed results can be easily verified by using the standard numerical software. We finally
provide a numerical example to show the performance of the proposed approach.

INDEX TERMS Nonlinear systems, stochastic nonlinearities, multiple missing measurements, minimum
mean square error, unscented transformation.

I. INTRODUCTION
Filtering is one of the most basic and important technology
in the field of communication network. In the process of
data transmission, the signals are often disturbed by noise or
some uncertain factors. By employing the filtering technol-
ogy, the useful data can be extracted from the complex sig-
nals. With the development of space technology, the Kalman
filtering theory, which was applied to make the optimal state
estimation for the nonstationary multiple input and multiple
output random systems model [1]–[6], was proposed in [7]
for the linear discrete stochastic systems by employing the
principle of minimum mean square error. However, based on
the traditional Kalman filtering algorithm, a large number
of state estimation problems for the nonlinear systems can’t
be addressed. As a new approach for nonlinear filtering,
unscented Kalman filter was constructed in [8] for nonlinear
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systems by using the unscented transformation approach. The
basic idea of unscented Kalman filtering algorithm is to make
use of unscented transformation approach to approximate the
mean and covariance in order to satisfy the minimum mean
square error principle. Thus, the unscented Kalman filtering
algorithm was also attracted wide attention [9]–[13].

It is well known that the linear systems or nonlinear sys-
tems are utilized commonly to characterize the target system
models. However, in many practice systems, the target system
models are described by a linear equation and a nonlinear
equation (linear state equation and nonlinear observation
equation or nonlinear state equation and linear observation
equation). In order to solving the estimation problem for this
kind of systems, the hybrid filters were proposed by apply-
ing the different filtering approaches [14]–[18]. To mention
just a few, in [19], a hybrid filter, which can effectively
increase the filtering capability, was proposed by using the
differential current control method and the hybrid filter was
mainly analyzed and validated in EAST power supply system.
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An unscented Kalman-particle hybrid filter was designed
in [20] for recursive Bayesian estimation of space objects,
where the hybrid filtering scheme provided accurate and
consistent estimates whenmeasurements were sparse without
incurring a large computational cost. Based on the quan-
tum filtering theory and the quantum extended Kalman filter
method, a filtering problem was investigated in [21] for a
class of quantum systems disturbed with a classical stochas-
tic process. In [22], by incorporating both event-based and
user-based neighborhood methods into matrix factorization,
a hybrid collaborative filtering model, namely, Matrix Fac-
torization with Event-User Neighborhood (MF-EUN) model,
was presented to solve the problem of social influence pre-
diction in event-based social networks. A robustH∞ cubature
Kalman filter (CKF)/KF hybrid filter (RHCHF)was proposed
in [18] to lower the computational burden and strengthen the
robustness.

In recent years, along with the accelerated development of
network technology and the spread of computer application,
the network phenomena are taken into account in various
systems [24]–[27]. Due to the long distance data transmission
and unreliability of the communication network, the stochas-
tic disturbances, which are described by the stochastic nonlin-
earities, may exist in the systems and the sensor measurement
of the system may experience the unexpected missing mea-
surements (packet dropout) in the transmission process [28]–
[33]. Hence, it is necessary to address the problem of the
stochastic nonlinearities and the missing measurements to
improve the control performance for the practical systems.
More concretely, in [34], a time-varying filter was con-
structed for a class of nonlinear stochastic systems in the pres-
ence of event-triggered transmissions and multiple missing
measurements with uncertain missing probabilities, where an
upper bound of the filtering error covariance was obtained
and then minimized by properly designing the filter gain.
In [35], the distributed H∞-consensus filtering problem was
solved for a class of discrete time-varying systems subject to
stochastic nonlinearities and multiple missing measurements
by applying the consensus on information approach. By using
the unscented transformation approach, in [36], a modi-
fied unscented Kalman filtering scheme was proposed for
a class of nonlinear systems with stochastic nonlinearities
and multiple fading measurements and the sufficient con-
ditions were obtained to ensure stochastic stability of the
modified unscented Kalman filter. The problem of a secure
filtering was investigated in [37] for a class of uncertain
stochastic non-linear systems and the sufficient conditions
were derived to provide the filtering systems ϕ-level security
by applied the techniques of stochastic analysis. In [38],
the nonlinear filtering problem was addressed for a class
of nonlinear discrete time stochastic systems with miss-
ing measurements by applying the extended and unscented
Kalman filtering approach, respectively and it showed that the
unscented Kalman filter is more effective than the extended
Kalman filter. However, to the best of authors’ knowledge,
these researches do not pay much attention to the problem

of the hybrid Kalman filtering algorithm for hybrid discrete
stochastic systems subject to stochastic nonlinearities and the
phenomenon of multiple missing measurements.

Based on the above discussions, in our paper, the purpose is
to solve the estimation problem for a class of special nonlin-
ear systems subject to stochastic nonlinearities and multiple
missing measurements. In the system model, the stochas-
tic nonlinearities, which are described by statistical means,
are considered to reflect the multiplicative stochastic distur-
bances. The measurement output may experience the missing
measurements due to the unreliable communication transmis-
sions. The phenomenon of multiple missing measurements is
depicted by a set of Bernoulli distributed random variables
with known conditional probabilities and the missing rates
of every sensor are different. Based on the recursive pro-
jection formula and the unscented transformation approach,
the new hybrid Kalman filtering algorithm is proposed which
can address the effects of stochastic nonlinearities and mul-
tiple missing measurements in a unified framework. Here,
we make first attempt to design the hybrid filter for systems
with stochastic nonlinearities and multiple missing measure-
ments and establish a new recursive algorithm to obtain the
optimal hybrid filter. Hence, we need to compute parameters
to reduce the impact of stochastic nonlinearities and multiple
missing measurements. Then, we can recursively compute
the filter gain matrices and the error covariance matrices
by using the new algorithm and Matlab software. Finally,
we finally provide a numerical example to show the perfor-
mance of the proposed approach. The contribution of this
paper: 1). The system model is considered a class of special
nonlinear systems where the state equation is nonlinear and
the measurement equation is linear. 2). We make first attempt
to propose the hybrid Kalman filter for systems subject to
stochastic nonlinearities and multiple missing measurements.
3). A new recursive algorithm is established to obtain the
hybrid Kalman filter which is suitable for online applications.
Notation: The symbols used in the paper are standard.

Rn denotes the n-dimensional Euclidean space. AT repre-
sents the transpose of a matrix A. E{x} is the expectation
of the random variable x. The identity matrix and the zero
matrix are expressed by I and 0 with appropriate dimen-
sions, respectively. diag {X1,X2, · · · ,XN } stands for a diag-
onal matrix with elements X1,X2, · · · ,XN in the diagonal.
If the dimensions of thematrices are not definitely stated, they
are considered to be well-matched for algebraic operations.

II. PROBLEM FORMULATION
We consider the following system model with stochastic
nonlinearity function and multiple missing measurements:

xk+1 = fk (xk )+ g(xk , ηk )+ ωk , (1)

zk = 4kCkxk + Dkνk , (2)

where k is the sampling instant, xk ∈ Rn is the state vector,
zk ∈ Rm is the measured output of the sensor. fk (·) :
Rn
→ Rn is known nonlinear function. Ck and Dk are

known matrices with appropriate dimensions. ωk ∈ Rn and
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νk ∈ Rm are uncorrelated zero-mean Gaussian white noises
with covariances Qk ≥ 0 and Rk > 0, respectively. The
stochastic nonlinearity function g(xk , ηk ) : Rn

→ Rn sat-
isfies g(0, ηk ) = 0 and is assumed to have the following
properties:

E {g(xk , ηk )|xk} = 0,

Cov
(
g(xk , ηk ), g(xj, ηj)

)
= 0, k 6= j,

Cov (g(xk , ηk ), g(xk , ηk )) =
r∑
i=1

5ixTk 0ixk , k = j, (3)

where r is a known positive integer, 5i and 0i (i =
1, 2, · · · , r) are known matrices with appropriate dimen-
sions.

Here, we choose the stochastic nonlinearity function
g(xk , ηk ) as follows:

g(xk , ηk ) =


a1
a2
...

an

(b1sign(x1,k )x1,kη1,k
+ b2sign(x2,k )x2,kη2,k + · · ·

+ bnsign(xn,k )xn,kηn,k
)

Then, we have the following matrices 5i and 0i,

5i =


a1
a2
...

an



a1
a2
...

an


T

=


a21 a1a2 · · · a1an
a2a1 a22 · · · a2an
...

...
. . .

...

ana1 ana2 · · · a2n



0i =


b21 0 0 0
0 b22 0 0
0 0 b23 0
0 0 0 b24


The diagonal matrix 4k = diag{α1,k , α2,k , . . . , αm,k}

is introduced to describe the phenomena of multiple miss-
ing measurements, where αi,k (i = 1, 2, . . . ,m) obeys
the Bernoulli distribution and has the following statistical
properties:

Prob
{
αi,k = 1

}
= E

{
αi,k

}
= αi,

Prob
{
αi,k = 0

}
= 1− E

{
αi,k

}
= 1− αi,

where αi(i = 1, 2, . . . ,m) ∈ [0, 1] are known positive
scalars, and we assume that 4k and other noise signals are
mutually independent.
Remark 1: In model (2), the phenomena of multiple miss-

ing measurements, which are described by the diagonal
matrix 4k , are taken into account. The random variables αi
(i = 1, 2, . . . ,m) in the matrix 4k are the missing rate of the

i-th sensor. If αi = 1, it represents that the i-th sensor receives
the data successfully at time instant k . If αi = 0, it stands for
that the i-th sensor receives the noises of the time instant k ,
i.e., the sensor occurs the phenomenon of missing data.

The purpose of this paper is, based on the observation
sequence {z1, z2, · · · , zk}, to construct the hybrid Kalman
filter for nonlinear discrete stochastic systems (1)-(2) by
employing the minimum mean square error principle and
unscented transformation approach.

III. MAIN RESULTS
In this section, we aim to design a new hybrid Kalman filter to
solve the estimation problem for system subject to stochastic
nonlinearity function and multiple missing measurements.
To begin with, based on the reference [7], the following
lemmas are introduced.
Lemma 1: Based on the linear space Zj =

(
z1, z2, · · · , zj

)
,

which is generated by the observation sequence, the optimal
estimator of the state xk in the sense of the MMSE principle
is of the following form:

x̂k|j = E
{
xk |Zj

}
= E {xk} + Cov

(
xk ,Zj

)
×
(
Var

(
Zj
))−1 (Zj − E

{
Zj
})
. (4)

Lemma 2: Based on the linear space Zj =
(
z1, z2, · · · , zj

)
,

if xk and yk are random vectors,Ak andBk are knownmatrices
with appropriate dimensions, the following linear relation-
ship holds:

E
{
(Akxk + Bkyk) |Zj

}
= AkE

{
xk |Zj

}
+ BkE

{
yk |Zj

}
= Ax̂k|j + Bŷk|j. (5)

Lemma 3: If the linear space is expressed as Zj =(
Zj−1, zj

)
, then the estimating x̂k|j of the state xk can be

described as follows:

x̂k|j = E
{
xk |Zj

}
= E

{
xk |Zj−1

}
+ E

{
x̃k|j−1|z̃j|j−1

}
= x̂k|j−1

+E
{
x̃k|j−1z̃Tj|j−1

} (
E
{
z̃j|j−1z̃Tj|j−1

})−1
z̃j|j−1, (6)

where

x̃k|j−1 = xk − E
{
xk |Zj−1

}
,

z̃j|j−1 = zj − E
{
zj|Zj−1

}
.

Then, by employing the above lemmas, the following def-
initions and calculation formulas of the parameters are given
for the sake of facilitating the subsequent developments.
Definition 1: Define the one-step prediction error x̃k+1|k=

xk+1 − x̂k+1|k , where x̂k+1|k is the one-step prediction and
the error covariance matrix of one-step prediction Pk+1|k =
E
{
x̃k+1|k x̃Tk+1|k

}
. Similarly, define the state estimation error

x̃k+1|k+1 = xk+1 − x̂k+1|k+1, where x̂k+1|k+1 is the state
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estimation and the error covariance matrix of state estimation
Pk+1|k+1 = E

{
x̃k+1|k+1x̃Tk+1|k+1

}
.

Lemma 4: Let the state covariance asXk+1=E
{
xk+1xTk+1

}
.

Then, by using the derivation method in the reference [39],
we have the following equation:

Xk+1 = Pxk|kxk|k + fk
(
x̂k|k

)
fk
(
x̂k|k

)T
+

r∑
i=1

5itr (Xk0i)+ Qk , (7)

where

E {fk (xk )|Zk} , fk
(
x̂k|k

)
Pxk|kxk|k = E

{ (
fk (xk)− fk

(
x̂k|k

))
×
(
fk (xk)− fk

(
x̂k|k

))T }
. (8)

Proof: By using the equation (1) and (3), Xk+1 can be
computed as follows:

Xk+1

= E
{
xk+1xTk+1

}
= E

{
(fk (xk )+ g(xk , ηk )+ ωk)

× (fk (xk )+ g(xk , ηk )+ ωk)T
}

= E
{
fk (xk )fk (xk )T

}
+ E

{
fk (xk )g(xk , ηk )T

}
+E

{
fk (xk )ωTk

}
+ E

{
g(xk , ηk )fk (xk )T

}
+E

{
g(xk , ηk )g(xk , ηk )T

}
+ E

{
g(xk , ηk )ωTk

}
+E

{
ωk fk (xk )T

}
+ E

{
ωkg(xk , ηk )T

}
+ E

{
ωkω

T
k

}
= E

{(
fk (xk)− fk

(
x̂k|k

)) (
fk (xk)− fk

(
x̂k|k

))T}
+ fk

(
x̂k|k

)
fk
(
x̂k|k

)T
+

r∑
i=1

5itr (Xk0i)+ Qk

= Pxk|kxk|k + fk
(
x̂k|k

)
fk
(
x̂k|k

)T
+

r∑
i=1

5itr (Xk0i)+ Qk , (9)

where

E {fk (xk )|Zk} , fk
(
x̂k|k

)
Pxk|kxk|k = E

{ (
fk (xk)− fk

(
x̂k|k

))
×
(
fk (xk)− fk

(
x̂k|k

))T }
. (10)

It follows from (9) and (10) that (7) and (8) hold. Then,
the proof of this lemma is complete.

Lemma 5: The one-step prediction x̂k+1|k and the error
covariance matrix of one-step prediction Pk+1|k obey the
following equations:

x̂k+1|k = fk
(
x̂k|k

)
, (11)

Pk+1|k = Pxk|kxk|k +
r∑
i=1

5itr (Xk0i)+ Qk , (12)

where the parameter Pxk|kxk|k is calculated by the equation (8).
Proof:Based on the method in the reference [7], x̂k+1|k can

be calculated as follows:

x̂k+1|k = E {xk+1|Zk}
= E {(fk (xk )+ g(xk , ηk )+ ωk) |Zk}
= E {fk (xk )|Zk}
= fk

(
x̂k|k

)
. (13)

Then, we have

x̃k+1|k = xk+1 − x̂k+1
= fk (xk )− fk

(
x̂k|k

)
+ g(xk , ηk )+ ωk . (14)

From Definition 1, one has

Pk+1|k

= E
{
x̃k+1|k x̃Tk+1|k

}
= E

{ (
fk (xk )− fk

(
x̂k|k

)
+ g(xk , ηk )+ ωk

)
×
(
fk (xk )− fk

(
x̂k|k

)
+ g(xk , ηk )+ ωk

)T }
= E

{(
fk (xk )− fk

(
x̂k|k

)) (
fk (xk )− fk

(
x̂k|k

))T}
+E

{(
fk (xk )− fk

(
x̂k|k

))
g(xk , ηk )T

}
+E

{(
fk (xk )− fk

(
x̂k|k

))
ωTk

}
+E

{
g(xk , ηk )

(
fk (xk )− fk

(
x̂k|k

))T}
+E

{
g(xk , ηk )g(xk , ηk )T

}
+E

{
g(xk , ηk )ωTk

}
+E

{
ωk
(
fk (xk )− fk

(
x̂k|k

))T}
+E

{
ωkg(xk , ηk )T

}
+ E

{
ωkω

T
k

}
= E

{(
fk (xk )− fk

(
x̂k|k

)) (
fk (xk )− fk

(
x̂k|k

))T}
+

r∑
i=1

5itr (Xk0i)+ Qk

= Pxk|kxk|k +
r∑
i=1

5itr (Xk0i)+ Qk , (15)

where the parameter Pxk|kxk|k is calculated by the equation (8).
Then, the equation (12) is true.
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Lemma 6: [40] Let T =
[
tij
]
p×p

be a real matrix and S =

diag
{
s1, s2, · · · , sp

}
be a diagonal random matrix. Then

E
{
STST

}
=


E
{
s21
}

E {s1s2} · · · E
{
s1sp

}
E {s2s1} E

{
s22
}

· · · E
{
s2sp

}
...

...
. . .

...

E
{
sps1

}
E
{
sps2

}
· · · E

{
s2p
}
 ◦ T

where ◦ is the Hadamard product.
Now, based on the observation sequence {z1, z2, · · · , zk},

we are ready to design the optimal hybrid Kalman filter
for nonlinear discrete stochastic systems (1)-(2) by employ-
ing the projection theory and the unscented transformation
approach.
Theorem 1: The recursive hybrid Kalman filter for system

(1)-(2) is given as follows:

x̂k+1|k+1 = x̂k+1|k + Kk+1z̃k+1|k , (16)

z̃k+1|k = zk+1 −4Ck+1, (17)

Kk+1 = Pk+1|kCT
k+14Q

−1
z̃k+1|k

, (18)

Qz̃k+1|k = 4Ck+1Pk+1|kC
T
k+14+H + Rk+1,

(19)

Pk+1|k+1 = Pk+1|k − Kk+14Ck+1PTk+1|k , (20)

where

H = 4(I −4) ◦ Ck+1Xk+1CT
k+1, (21)

z̃k+1|k is the innovation sequence and Kk+1 is the filter
gain matrix to be determined. The parameters x̂k+1|k and
Pk+1|k are computed by Lemma 5. H can be calculated by
Lemma 6.
Proof:Based on the linear space Zk+1={z1, z2, · · · , zk+1},

which is generated by the observation sequence, the optimal
estimator x̂k+1|k+1 in the sense of the minimum mean square
error principle is the following form by using the method in
the reference [7]:

x̂k+1|k+1 = E {xk+1|Zk+1}
= E {xk+1|Zk} + E

{
x̃k+1|k |z̃k+1|k

}
= x̂k+1|k + E

{
x̃k+1|k z̃Tk+1|k

}
×

(
E
{
z̃k+1|k z̃Tk+1|k

})−1
z̃k+1|k , (22)

where x̃k+1|k is calculated by Definition 1 and z̃k+1|k is
derived as follows:

z̃k+1|k = zk+1 − ẑk+1|k
= zk+1 −4Ck+1x̂k+1|k
= 4kCk+1xk+1 −4Ck+1x̂k+1|k + νk+1
= (4k −4)Ck+1xk+1
+4Ck+1

(
xk+1 − x̂k+1|k

)
+ νk+1

= (4k−4)Ck+1xk+1+4Ck+1x̃k+1|k+νk+1. (23)

Note that E {4k −4} = 0 and νk+1 is uncorrelated with
other terms. Then, we have

Qz̃k+1|k

= E
{
z̃k+1|k z̃Tk+1|k

}
= E

{ (
(4k −4)Ck+1xk+1 +4Ck+1x̃k+1|k + νk+1

)
×
(
(4k −4)Ck+1xk+1 +4Ck+1x̃k+1|k + νk+1

)T }
= E

{
(4k −4)Ck+1xk+1 ((4k −4)Ck+1xk+1)T

}
+E

{
(4k −4)Ck+1xk+1

(
4Ck+1x̃k+1|k

)T}
+E

{
(4k −4)Ck+1xk+1νTk+1

}
+E

{
4Ck+1x̃k+1|k ((4k −4)Ck+1xk+1)T

}
+E

{
4Ck+1x̃k+1|k

(
4Ck+1x̃k+1|k

)T}
+E

{
4Ck+1x̃k+1|kνTk+1

}
+E

{
νk+1 ((4k −4)Ck+1xk+1)T

}
+E

{
νk+1

(
4Ck+1x̃k+1|k

)T}
+ E

{
νk+1ν

T
k+1

}
= E

{
(4k −4)Ck+1xk+1xTk+1C

T
k+1 (4k −4)

T
}

+4Ck+1E
{
x̃k+1|k x̃Tk+1|k

}
CT
k+14

T

+E
{
νk+1ν

T
k+1

}
= 4Ck+1Pk+1|kCT

k+14+H + Rk+1, (24)

where

H = E
{
(4k−4)Ck+1xk+1× xTk+1C

T
k+1 (4k−4)

T
}
. (25)

By applying Lemma 6, the parameter H can be calculated
by formula (26), as shown at the top of the next page.
Therefore, the equations (17), (19) and (21) can be obtained
by (23)-(26).
By using the equations (14), (23) and E {4k −4} = 0,

E {νk+1} = 0, it can be easily deduced that

E
{
x̃k+1|k z̃Tk+1|k

}
= E

{
x̃k+1|k

(
(4k −4)Ck+1xk+1

+4Ck+1x̃k+1|k + νk+1
)T}

= E
{
x̃k+1|kxTk+1C

T
k+1 (4k −4)

T
}

+E
{
x̃k+1|k x̃Tk+1|k

}
CT
k+14

T

+E
{
x̃k+1|kνTk+1

}
= Pk+1|kCT

k+14
T . (27)
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H = E
{
(4k+1 −4)Ck+1xk+1xTk+1C

T
k+1(4k+1 −4)T

}

=


E
{(
α1,k+1 − α1

)2}
· · · E

{(
α1,k+1 − α1

) (
λm,k+1 − αm

)}
...

. . .
...

E
{ (
αm,k+1 − αm

) (
α1,k+1 − α1

) }
· · · E

{ (
αm,k+1 − αm

)2 }
 ◦ Ck+1E {xk+1xTk+1}CT

k+1

= diag
{
α1(1− α1), α2(1− α2), · · · , αm(1− αm)

}
◦ Ck+1X(k+1,k+1)CT

k+1

=

(
diag {α1, α2, · · · , αm} diag {1− α1, 1− α2, · · · , 1− αm}

)
◦ Ck+1X(k+1,k+1)CT

k+1

= 4(I −4) ◦ Ck+1X(k+1,k+1)CT
k+1. (26)

We define the gain matrix Kk+1 as follows:

Kk+1 = E
{
x̃k+1|k z̃Tk+1|k

} (
E
{
z̃k+1|k z̃Tk+1|k

})−1
. (28)

From the equations (24) and (27), we know

Kk+1 = Pk+1|kCT
k+14Q

−1
z̃k+1|k

, (29)

where Qz̃k+1|k = E
{
z̃k+1|k z̃Tk+1|k

}
. Substituting the equa-

tion (28) into (22) yields (16).
Subsequently, the following derivations are given to obtain

Pk+1|k+1. By Definition 1 and the equation (16), it has

x̃k+1|k+1 = xk+1 − x̂k+1|k+1

= xk+1 − x̂k+1|k − Kk+1z̃k+1|k

= x̃k+1|k − Kk+1z̃k+1|k . (30)

Then, we have

Pk+1|k+1 = E
{
x̃k+1|k+1x̃Tk+1|k+1

}
= E

{ (
x̃k+1|k − Kk+1z̃k+1|k

)
×
(
x̃k+1|k − Kk+1z̃k+1|k

)T }
= E

{
x̃k+1|k x̃Tk+1|k

}
−E

{
x̃k+1|k z̃Tk+1|k

}
KT
k+1

−Kk+1E
{
z̃k+1|k x̃Tk+1|k

}
+Kk+1E

{
z̃k+1|k z̃Tk+1|k

}
KT
k+1

= Pk+1|k − Kk+1
(
E
{
x̃k+1|k z̃Tk+1|k

})T
= Pk+1|k − αKk+14Ck+1PTk+1|k . (31)

Hence, the equation (20) is true. The proof of this theorem is
now complete.
According to Theorem 1, a new recursive algorithm can

be established to obtain the optimal hybrid Kalman filter for
the addressed discrete stochastic systems subject to stochastic

nonlinearity function and multiple missing measurements.
The following algorithm shows how to design the hybrid
Kalman filter in Theorem 1.
Algorithm The steps of the design of the hybrid Kalman

filter are shown as follows:
Step 1: Choose the sigma points.
We choose 2n+ 1 points as a sigma points set, i.e.

χ0
k|k = x̂k|k , s = 0,

χ sk|k = x̂k|k +
(√
(n+ κ)Pk|k

)
s
, s = 1, · · · , n,

χ sk|k = x̂k|k −
(√
(n+ κ)Pk|k

)
s−n

, s = n+ 1, · · · , 2n,

where κ is the scaling factor and
(√
(n+ κ)Pk|k

)
s is either

the s-th row or the s-th column of the matrix square root of
(n+ κ)Pk|k .

Compute the transformed values of the sigma points by
using the nonlinear functions fk (xk ).

χ sk+1|k = fk
(
χ sk|k

)
, s = 0, 1, · · · , 2n, (32)

Step 2: Compute the value of parameters.
The one-step prediction x̂k+1|k can be calculated by recom-

bining the weighted sigma points as follows:

x̂k+1|k =
2n∑
s=0

W sχ sk+1|k , (33)

according to weights

W s
=


κ

n+ κ
, s = 0,

1
2(n+ κ)

, s = 1, 2, · · · , 2n.
(34)

The parameters Pxk|kxk|k is obtained as follows:

Pxk|kxk|k

= E
{(
fk (xk )− fk

(
x̂k|k

)) (
fk (xk )− fk

(
x̂k|k

))T}
=

2n∑
s=0

W s
(
χ sk+1|k − x̂k+1|k

) (
χ sk+1|k − x̂k+1|k

)T
. (35)
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Then, the state covariance Xk+1 and the error covariance
matrix Pk+1|k satisfy the following equations:

Xk+1 =
2n∑
s=0

W s
(
χ sk+1|k − x̂k+1|k

) (
χ sk+1|k − x̂k+1|k

)T
+

2n∑
s=0

W sχ sk+1|k

(
χ sk+1|k

)T
+

r∑
i=1

5itr (Xk0i)+ Qk , (36)

Pk+1|k =
2n∑
s=0

W s
(
χ sk+1|k − x̂k+1|k

) (
χ sk+1|k − x̂k+1|k

)T
+

r∑
i=1

5itr (Xk0i)+ Qk . (37)

Step 3: Compute the value of estimation.
1). Substituting the equation (36) into (21), we can

obtain H .
2). Computing Qz̃k+1|k by substituting the equations (21)

and (37) into (19).
3). Substituting (10), (11) and (14) into (9), we have Kk+1.
4). The optimal estimation x̂k+1|k+1 can be computed by

substituting the equations (17), (18) and (33) into (16).
5). Substituting the equations (18) and (37) into (20),

the error covariance matrix of state estimation Pk+1|k+1 can
be obtained.
Remark 2: It is worth noting that, inTheorem 1, the recur-

sive optimal hybrid Kalman-type filter is designed for the
addressed nonlinear discrete stochastic systems with stochas-
tic nonlinearity function and multiple missing measurements.
In our paper, we consider a class of special nonlinear systems
where the state equation is nonlinear and the measurement
equation is linear. In order to improve the accuracy of filtering
algorithm, we not only employ the unscented transformation
approach, but also use the linear filteringmethod to computed
the parameters. For example, the innovation sequence z̃k+1|k
is calculated by using the projective theorem (the linear fil-
tering method); the one-step prediction x̂k+1|k is computed by
utilizing the unscented transformation approach. In addition,
some parameters are computed by combining the linear fil-
tering method with the unscented transformation approach,
such as Xk+1, Pxk|kxk|k and Pk+1. Owing to the long distance
transmission and unreliability of the communication network,
the stochastic nonlinearity function and the phenomenon of
multiple missing measurements exist commonly. Therefore,
in this paper, we consider the nonlinear discrete stochastic
systems subject to stochastic nonlinearity function and mul-
tiple missing measurements. Here, we need to compute the

parameters
r∑
i=1
5itr (Xk0i) and H to reduce the impact of

stochastic nonlinearity function and multiple missing mea-
surements. In the following, an illustrative example will be
provided to show the feasibility of the proposed filtering
scheme.

IV. AN ILLUSTRATIVE EXAMPLE
In this section, we provide a numerical example to show the
performance of the proposed approach.
Consider the following nonlinear discrete stochastic

systems:

xk+1 =

 x1,k+1x2,k+1
x3,k+1



=


−2 sin(x2,k )+ cos(x3,k )
1.5 cos(x2,k )+ sin(x1,k )

x2,k
1+ x23,k

+ g(xk , ηk )+ ωk ,
zk = 4kCkxk + Dkνk ,

where ωk and νk are uncorrelated Gaussian white noises with
covariances Qk = 0.4I3, Rk = 0.1I1.
We choose the stochastic nonlinear function g(xk , ηk ) as

follows:

g(xk , ηk ) =

 0.3
0.2
0.1

(0.3sign(x1,k )x1,kη1,k
+ 0.2sign(x2,k )x2,kη2,k
+ 0.1sign(x3,k )x3,kη3,k

)
where xi,k (i = 1, 2, 3) denotes the i-th element of the
system state, and ηi,k are zero mean, uncorrelated Gaussian
white noises with unity covariances. It is easy to known
that the stochastic nonlinear function satisfies the following
equations:

E {g(xk , ηk )|xk} = 0,

and

5i =

 0.3
0.2
0.1

 0.3
0.2
0.1

T

=

 0.09 0.06 0.03
0.06 0.04 0.02
0.03 0.02 0.01

 ,
0i =

 0.09 0 0
0 0.04 0
0 0 0.01

 .
Let

Ck =
[
1.5 −1 0.5

]
,

Dk =
[
1 1 1

]
,

x0 =
[
−0.5 1 1

]T
,

x̂0|0 =
[
0.5 2 4

]T
,

P0|0 = I3,

4 = αI3 = 0.9I3,

and ei,k denote the error for the estimation of xi,k , i.e., ei,k =
xi,k − x̂i,k|k , where i = 1, 2, 3.
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FIGURE 1. The error e1,k .

FIGURE 2. The error e2,k .

FIGURE 3. The error e3,k .

According to Theorem 1, the optimal hybrid Kalman filter
can be constructed for a class of hybrid systems with stochas-
tic nonlinearities and multiple missing measurements by
applying the recursive projection formula and the unscented
transformation approach. Based on the given hybrid Kalman
filtering algorithm and Matlab software, the filter gain matri-
ces Kk+1 and the error covariance matrices Pk+1|k+1 at every
time step can be recursively computed. The results are shown
in Figs. 1-6. Fig. 1 and Fig. 3 plot the filtering errors ei,k
(i = 1, 2, 3). From the simulations, we can see that the range
of error fluctuation in our paper is relatively small compared
with the error of UKF and EKF. The actual system states xi,k

FIGURE 4. The trajectories of x1,k and x̂1,k|k .

FIGURE 5. The trajectories of x2,k and x̂2,k|k .

FIGURE 6. The trajectories of x3,k and x̂3,k|k .

and their estimates x̂i,k|k (i = 1, 2, 3) are plotted in Fig. 4
and Fig. 6. It is easily seen that, due to making a lot of efforts
to reduce the effects from stochastic nonlinearities and multi-
ple missing measurements, the proposed filter can estimate
the system state effectively and the recursive algorithm is
feasible.

In our paper, we compare the filter estimation performance
with the different rates of missing measurements (i.e., α =
0.9, 0.6, 0.3). The corresponding simulation results are given
in Figs. 7-9. Based on the simulation results, we can con-
clude that the estimation performance of the filter becomes
worse along with the missing rate decreases. Hence, the
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FIGURE 7. The trajectories of x1,k and x̂1,k|k .

FIGURE 8. The trajectories of x2,k and x̂2,k|k .

FIGURE 9. The trajectories of x3,k and x̂3,k|k .

different rates of missing measurements have a great impact
on the accuracy of the filtering algorithm. Compared with
unscented Kalman filtering, the filtering algorithm which
proposed by us can estimate the system statesmore accurately
and effectively. The reason is that we combine the linear
recursive projection formula with the unscented transforma-
tion approach to compute the parameters of filter and the

variables
r∑
i=1
5itr (Xk0i) and H are calculated to reduce

the impact of stochastic nonlinearity function and multiple
missing measurements on the performance of the filter which

can improve the accuracy of the hybrid unscented Kalman
filtering algorithm.

V. CONCLUSION
The state estimation problem been investigated for a class of
special nonlinear systems where the state equation is nonlin-
ear and the measurement equation is linear. The stochastic
nonlinearities are considered in the system model to reflect
the multiplicative stochastic disturbances. Due to taking the
phenomenon of multiple missing measurements into account,
we need to compute parameters to reduce the effects of
stochastic nonlinearities and multiple missing measurements.
Then, based on the recursive projection formula and the
unscented transformation approach, we make first attempt
to propose the hybrid Kalman filter for systems subject to
stochastic nonlinearities and multiple missing measurements
which can estimate the system state effectively. Also, a recur-
sive algorithm has been given to design the hybrid filter and
a simulation example has been given to show the feasibility
and usefulness of the proposed approach.
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