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ABSTRACT This paper discusses a problem that has plagued researchers for a long time regarding the
dynamic modeling of a multiple degree-of-freedom (multi-DOF) manipulator such that its manipulation
exhibits a higher computational efficiency and accuracy. Unknown friction, unknown gravitational torque,
an uncertain moment of inertia, and severe joint coupling are the primary disturbing factors in multi-DOF
manipulator modeling. In addition, joint flexible problems caused by the integration of harmonic drives
increase the modeling complexity. Hitherto, no effective method has been found to address these problems.
The virtual decomposition (VD)-based method exhibits the advantages of joint dynamics decoupling and
minor computation compared with the traditional Lagrangian formulation or Newton–Euler formulation.
In this study, an estimation method for the deformation-related torque of harmonic drives is established
based on a novel experimental model; subsequently, this method is utilized in the VD-based model for
the multi-DOF manipulator. Hence, the decoupling dynamic model for the manipulator considering joint
flexibility is established. The performance of this new method has been evaluated by a contrast simulation
with the Newton–Euler formulation, and the multi-DOFmanipulator control simulation and experiment have
been conducted with a VD-based model as a feedforward compensator to verify its performance in real-time
control. The results demonstrated the validity and efficiency of e proposed approach.

INDEX TERMS Virtual decomposition, multi-DOF manipulator, dynamic modeling, joint flexibility.

I. INTRODUCTION
To realize safe and effective contact tasks using a multiple
degree-of-freedom (multi-DOF) manipulator, the manipula-
tor should demonstrate compliant motion capability to avoid
undesired contact between it and objects [1]. A precise system
dynamic model is essential for controlling the manipulator
with compliant performance. When the number of joints is
less than six, traditional methods such as the Lagrangian
formulation [2], [3] and Newton–Euler formulation [4] can
be used to establish the dynamic model of the manipulator.
However, to improve the dexterity and enlarge the workspace
of the manipulator, the latter is typically equipped with six
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or more joints; additionally, the joints are typically flexi-
ble because they are embedded with harmonic drives owing
to their attractive properties such as high reduction ratio,
compact size, lightweightness, and coaxial assembly. Owing
to these characteristics of modern manipulators, traditional
methods are incapable of modeling them precisely.

Using flexible joints renders the manipulator modeling
even more complex, and many scholars have performed
numerous studies regarding this. In 1987, Spong [5] estab-
lished a dynamic model of a flexible joint. The joint was
regarded as a linear spring with stiffness factor K , and the
motor rotor was regarded as a whole body situated on a
rotation shaft. With the two assumptions above, he utilized a
four-order dynamic model to describe a flexible-joint robot.
Khorasani [6] considered the effects of damping and reducer
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harmonic of a flexible joint and proposed a single link
rigid-flexible coupling model based on the simplified flexible
joint model proposed by Spong. In 1995, Bridges and Daw-
son [7] presented a more accurate flexible joint robot model
that included the nonlinear factors of elasticity and friction.
Ailon et al. [8] considered motor dynamics and parame-
ter uncertainties to improve the previous dynamic model.
A recursive decentralized control scheme was presented by
Su et al. [9] to address the trajectory tracking problems of
flexible manipulators, and the interconnections between the
adjacent flexible links were calculated by recursive kinemat-
ics and dynamics. This scheme could achieve both trajectory
tracking and vibration suppression for the flexible manipula-
tor. Chaoui et al. [10] performed research on a flexible-joint
robot with load uncertainty and discussed its modelling
and control problems. Feedback linearization and sliding
mode control have been used by Ramírez-Neria et al. [11] to
improve the robust trajectory performance of a flexible-joint
manipulator when unmodeled dynamics occur.

The dynamic models for flexible joints above are primarily
based on the Lagrangian formulation, and the correspond-
ing control methods present inherent defects in computa-
tion [12], [13]. Zhu [14] reported that the computation of
the control algorithm based on the Lagrangian high-order
dynamic model was proportional to the fourth power of the
degree-of-freedom (DOF) of the robot. With the increase in
the DOF, the complexity of the dynamic model and the com-
putation cost will increase even faster; this problem severely
limits the instantaneity of these algorithms and reduces the
feasibility of the control system.

Hence, Zhu [14] proposed a novel theory based on vir-
tual decomposition control (VDC) to solve the modeling
and control problems of a multi-DOF robotic system. The
primary concept of this method is to regard each joint
or link of the manipulator as an independent subsystem.
Each subsystem is connected with the contiguous subsys-
tem through the ‘‘force’’ element composed of force and
torque and the ‘‘velocity’’ element composed of the lin-
ear velocity and angular velocity, and the dynamic interac-
tions between the subsystems is described using the virtual
power flow. Compared with the dynamic model based on the
Lagrangian formulation, the computation of this method is
proportional only to the number of subsystems (DOFs); there-
fore, the computational efficiency is improved significantly.
However, as a novel method to realize the dynamic modeling
of a multi-DOF manipulator, the research on virtual decom-
position (VD) is relatively scarce. In [15], Zhu and Schut-
ter provided a new method to realize hybrid force/position
control based on the VDC theory. Zhu et al. [16], [17] and
Koivumäki and Mattila [18] introduced VDC into the control
systems of modular robots, flexible-joint-based robots, and
hydraulic-driving robots. Huang et al. [19] achieved adap-
tive impedance control and collision detection based on a
VDC-based dynamic model and control theory; simulation
and experimental results have proven the effectiveness of this
method.

The VD-based dynamic modeling method uses the dynam-
ics of subsystems to conduct the dynamic modeling of the
entire robotic system, thereby the computational complexity
of the system decreases significantly, only proportional to the
number of subsystems; and the other advantage of employing
the VD-based approach is that the alteration of one subsys-
tem only affects the respective subsystem model equations,
while keeping the model equations of the rest of the system
unchanged.

The VD-based dynamic modeling method can be applied
to robotic control; however, the effect of joint friction and
flexibility caused by the reducer in the robot joint has rarely
been addressed.

The primary contributions of this study are as follows:
1) A kinematic and dynamic model for a multi-DOF manip-
ulator based on the VD-based modeling method is estab-
lished. 2) The effect of friction and joint flexibility in the
robot joint has been considered, the corresponding model has
been established, and the entire decoupling dynamic model
for the manipulator has been completed. 3) Simulation and
experiment have been conducted to verify the effectiveness
of the proposed modeling method in terms of accuracy and
real-time capability.

The remainder of this paper is organized as follows:
In Section II, the characteristics of flexible joints of a
multi-DOFmanipulator have been analyzed, and a VD-based
dynamic model for them has been established. In Section III,
the VD-based kinematic model and dynamic model for a
six-DOF manipulator are described. A contrast simulation
with the Newton–Euler formulation, and control simulation
and experiment of a multi-DOFmanipulator that demonstrate
the validity and performance of the proposed method are
presented in Section IV. Finally, conclusions are presented in
Section V.

II. ANALYSIS AND VD-BASED MODELING FOR A
HARMONIC DRIVE-BASED JOINT
Adequate torque output is a prerequisite for a manipulator to
execute robotic operation, and the manipulator joint is typi-
cally integrated with a high load/mass ratio reducer to achieve
impressive torque output capability. The high load/mass ratio
reducers include a RV reducer with small flexibility and a har-
monic drive with large flexibility. The introduction of these
reducers renders the manipulator joint flexible, as shown
in Fig. 1. This must be considered in designing the controller
to eliminate the chattering effect caused by joint flexibility.
Kiang et al. [20] and Rahimi et al. [21] reviewed the short-
comings of joint flexibility in terms of accurate position con-
trol, and the existing research findings were primarily based
on a simplified dynamic model of the manipulator to design
the control system. Regarding a multi-DOF manipulator with
flexibility in a real scenario, these controllers typically do not
demonstrate satisfactory performance.

This study focuses on decomposing a real manipulator into
several subsystems virtually, including link subsystems and
flexible joint subsystems; this technique is superior to the
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FIGURE 1. Joint flexibility caused by a reducer with high load/mass ratio.

traditional Newton-Euler formulation and Lagrangian formu-
lation in terms of accuracy and efficiency.

A. DEFORMATION-RELATED TORQUE ESTIMATION
METHOD FOR HARMONIC DRIVE
The structure of a conventional manipulator joint can be
divided into four parts: joint base, motor rotor, reducer, and
output link. The reducer is the primary factor of joint flex-
ibility, and the reducer in this research is a harmonic drive
(Harmonic Drive LLC 2012); the schematic illustration of
the test joint is shown in Fig. 2. The position relationship
among the wave generator, flexspline, and circular spline in
the harmonic drive can be expressed as [22]

θw = (`+ 1)θc − `θf , (1)

where ` is the reduction ratio; and θw, θc, and θf are the posi-
tions of the wave generator, circular spline, and flexspline,
respectively.

FIGURE 2. Schematic diagram of the test joint.

FIGURE 3. Schematic illustration of the test joint showing harmonic drive
compliance components.

Fig. 3 illustrates the compliance behavior of the harmonic
driveswhen the flexspline andwave generator compliance are
considered. In Fig. 3, τf denotes the flexspline torque at the
load side, τw denotes the torque of the wave generator center
part, and τc denotes the circular spline torque. The angles

θw and θc are measured by the link-side encoder and the
motor-side encoder, respectively. Kw and Kf denote the local
elastic coefficient for the wave generator and flexspline,
respectively. τft is the harmonic drive lumped friction torque.
The flexspline in the harmonic drive is a naturally

deformable device; therefore, torsional deformations are
demonstrated when a joint torque is applied. To describe this
deformation-related torque, the following torque estimate is
utilized; additional information regarding this method can be
found in our previous work [23].

τf =
tan(1θf cf Kf 0)

cf
, (2)

with

1θf = 1θ −
sgn(τw)
cw`Kw0

(1− e−cw|τw|)− θerr , (3)

where 1θ is the total torsional deformation; θerr is the kine-
matic error; Kw0, Kf 0, cw, and cf are constants determined
experimentally.

B. VD-BASED KINEMATICS AND DYNAMICS FOR
HARMONIC-DRIVE-BASED JOINT
According to the conclusions regarding flexible joints in
Section II.A, deformation-related torques exist between the
motor output and link output. Additionally, friction and
other factors will cause disturbances in completing the entire
manipulator modeling; thus, we should further conduct a
virtual decomposition to the flexible joint by setting two
cutting points that are in the joint base and joint output link.
The motor stator of the joint is fixed with the joint base as
part of the base, and the motor rotor is connected with the
joint output link through the harmonic drive.

The flexible joint structure diagram based on virtual
decomposition is shown in Fig. 4, in which {T} is the coor-
dinate system fixed on the output link, {D} is the coordinate
system fixed on the motor rotor, and {B} is the coordinate
system fixed on the joint base.

FIGURE 4. Flexible joint structure diagram based on virtual
decomposition.

The harmonic drive can be divided into two parts: one
part is connected with the joint output link, and the other is
connected with themotor rotor. The entire joint can be viewed
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as three parts: joint base, motor rotor, and joint output link.
We define ` ≥ 1 as the reduction ratio of the harmonic drive,
q as the joint position, and `κ as the motor rotor position.
Subsequently, the velocity relationship between the motor
rotor and joint output link can be expressed as

DV = zτ `κ̇ + BUT
D
BV , (4)

TV = zτ q̇+ BUT
T
BV , (5)

where zτ = [0, 0, 0, 0, 0, 1]T ∈ R6, and U is a generalized
force/torque transformation matrix that will be described in
the next section.

The dynamics of the joint base, motor rotor, and joint
output link can be expressed as

BF∗ = MB
BV̇ + CB(Bω)BV + GB, (6)

DF∗ = MD
DV̇ + CD(Dω)DV + GD, (7)

TF∗ = MT
TV̇ + CT(Tω)TV + GT, (8)

respectively, where the detailed expressions ofMB,CB,GB,

MD,CD,GD,MT,CT, andGT are shown inAppendixwith
the appropriate frame substitutions.

We define the following symbols: TFq ∈ R6 represents
the force/torque vector from the joint base to the joint output
link expressed in {T}; DFκ ∈ R6 represents the force/torque
vector from the joint base to themotor rotor expressed in {D};
TF ∈ R6 represents the force/torque vector from the motor
output to the adjacent link expressed in {T}, which acts on
the driving cutting point; FF ∈ R6 represents the force/torque
vector from the adjacent link to the joint output link expressed
in {F}, which acts on the driven cutting point. −ξ (q, q̇) ∈ R
is a friction torque applied to the joint output link from the
joint base; −ξ (κ, κ̇) ∈ R is a friction torque applied to the
motor rotor from the joint base; τt ∈ R is the effective input
torque of the drive; τ ∈ R is the motor control torque except
the deformation-related torque defined in (2) and (3).

FIGURE 5. Internal force diagram of a flexible joint.

Fig. 5 shows the internal force diagram of the flexible joint.
Combined with the definition of the force symbols, we can
obtain

TF∗ = −TF+ TFq, (9)
DF∗ = DFκ , (10)
BF∗ = BF− BUT

TFq − BUD
DFκ , (11)

where zTτ
TFq = `τt − ξ (q, q̇), zTτ

DFκ = τ − τt − ξ (κ, κ̇).

C. FEEDFORWARD MODEL FOR HARMONIC
DRIVE-BASED JOINT
The feedforward model for the harmonic drive-based joint
comprises three steps, as will be described as follows:

1) REQUIRED VELOCITIES
The terminology of ‘‘required velocity’’ is an important con-
cept in the VD approach. A required velocity is different
from a desired velocity that typically serves as the reference
trajectory of a velocity with respect to time. In the joint space,
the required joint velocities are designed as

q̇r = q̇d +3(qd − q) (12)

to realize the exponential convergence of the system, where
q̇d is the desired joint velocity vector, and 3 ∈ Rn×n is a
diagonal positive definite symmetric matrix. It is noteworthy
that the required velocities in each body system can be cal-
culated based on the required joint velocities and coordinate
transformation shown in (4) and (5).

The required linear velocities and angular velocities of the
flexible joint after virtual decomposition can be expressed as

DV r = zτ `κ̇r + BUT
D
BV r , (13)

TV r = zτ q̇r +
BUT

T
BV r , (14)

where q̇r and κ̇r represent the required joint velocities and
motor rotor velocities, respectively.

2) REQUIRED NET FORCE/TORQUE VECTORS
The required net force/torque vectors on joint base, motor
rotor and joint output link can be calculated as follows

TF∗r =
TF∗ + KT(TV r −

TV ), (15)
DF∗r =

DF∗ + KD(DV r −
DV ), (16)

BF∗r =
BF∗ + KB(BV r −

BV ), (17)

where KB ∈ R6×6, KD ∈ R6×6 and KT ∈ R6×6 are all
positive definite gain matrices.

3) REQUIRED FORCE/TORQUE VECTOR TRANSFORMATIONS
The force/torque vectors on the joint base, motor rotor, and
joint output link by constraints can be expressed as

TF∗r = −
TFr + TFqr , (18)

DF∗r =
DFκr , (19)

BF∗r =
BFr − BUT

TFqr − BUD
DFκr . (20)

The force/torque vectors above can be further expressed as

zTτ
TFqr = `

[
τt − kvq(q̇r − q̇)

]
− ξ (q, q̇), (21)

zTτ
DFκr = τ − τt − kvκ (κ̇r − κ̇)− ξ (κ, κ̇), (22)

where kvq > 0 and kvκ > 0 are two gain matrices.
According to (18)–(22), the harmonic-drive-based joint

control law can be rewritten as follows:
TFqr = TF∗r +

TFr , (23)
DFκr = DF∗r , (24)
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BFr = BF∗r +
BUT

TFqr + BUD
DFκr , (25)

τt =
1
`

(
zTτ

TFqr + ξ (q, q̇)
)
+ kvq(q̇r − q̇), (26)

τ = τt + kvκ (κ̇r − κ̇)+ ξ (κ, κ̇)+ zTτ
DFκr . (27)

Thus, with the deformation-related torque τf defined in (2)
and (3), the entire motor control torque τm is

τm = τ + τf . (28)

III. VD-BASED MODEL FOR MULTI-DOF MANIPULATOR
The research on VD-based models for flexible joints with
friction and other factors can be conducted according to the
results of Sections I and II. A VD-based link model still needs
to be constructed to complete the entire dynamic model for a
multi-DOF manipulator. The six-DOF manipulator is virtu-
ally decomposed into 12 subsystems, with each containing a
single link or a single joint, by placing 11 cutting points into
the system. The force/torque transformations between these
subsystems are provided.

A. DESCRIPTION OF THE 6-DOF MANIPULATOR
The description of the six-DOF manipulator is shown
in Fig. 6; it has six revolute joints and six links, additional
information regarding this manipulator can be found in [23].
And it should be noted that the VD-based modeling method
is not limited to revolute joints, it is also applicable to
prismatic joints and spherical joints. The distance between
joint1 and joint2 is l1, the rotation axes among joint2, joint3,
and joint5 are parallel, and the distances among these axes
are l2 and l3 in sequence. Additionally, l4 represents the
distance between joint5 and the end-effector. The coordinate
systems of the manipulator are shown in the right subfigure of
Fig. 6. To establish the VD-based model for the manipulator,
we virtually decomposed it into six revolute joints and six
links. Frame {Bi}, i = 1,. . . ,6, is fixed with the ith joint and
its z axis coincides with the rotation axis of the joint; frame
{Ti}, i = 2,. . . ,6, is fixed with the end of the (i-1)th link and
its z axis coincides with the rotation axis of the ith joint; and
{I} is the world frame.

B. VD-BASED KINEMATICS AND DYNAMICS FOR THE
MANIPULATOR
The manipulator in Fig. 6 is composed of six joints. The
relationship of the joint angular velocities in the joint space is

B1V = zq̇1, (29)
TiV = Bi−1UT

Ti
Bi−1V , (30)

BiV = zq̇i + TiUT
Bi

TiV = zq̇i + Bi−1UT
Bi

Bi−1V , (31)

where i = 2,3,4,5, z = [0, 0, 0, 0, 0, 1]T ∈ R6, q̇i represents
the angular velocity of the ith joint, and TUB is the generalized
force/torque transformation matrix from {B} to {T} of the
following form:

TUB =

[ TRB 0
(TPB×)TRB

TRB

]
∈ R6×6, (32)

FIGURE 6. Description of the 6-DOF manipulator.

where TRB and TPB are the rotation transformation matrix
and translation transformation matrix from {B} to {T},
respectively.

The generalized coordinate transformation matrix of the
manipulator is defined as

TTB =
[ TRB

TPB
0 1

]
, (33)

and according to Fig. 6, the transformation matrices for the
manipulator can be obtained as

ITB1 =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

 , T2TB2=


c2 −s2 0 0
0 0 −1 0
s2 c2 0 0
0 0 0 1

 ,
(34)

T3TB3 =


c3 −s3 0 0
s3 c3 0 0
0 0 1 0
0 0 0 1

 , T4TB4=


0 0 1 0
−c4 s4 0 0
−s4 −c4 0 0
0 0 0 1

 ,
(35)

T5TB5 =


c5 −s5 0 0
0 0 −1 0
s5 c5 0 0
0 0 0 1

 , T6TB6=


c6 −s6 0 0
0 0 1 0
−s6 −c6 0 0
0 0 0 1

,
(36)

where si = sin(qi), ci = cos(qi), i = 1, . . . , 6.
The transformation matrices from {Ti} to {Bi−1}, i =

2,. . . ,6, denoted as B1TT2 ,
B2TT3 ,

B3TT4 ,
B4TT5 ,

B5TT6 , can
be obtained easily because these matrices are all translation
transformation matrices.

The first step in establishing the kinematic model for the
manipulator based on the VD approach is to build the velocity
mapping matrix from the Cartesian space to joint space, that
is, the Jacobian matrix in the Lagrangian formulation or
Newton–Euler formulation. Many methods can be used to
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obtain the Jacobian matrix of a manipulator. In this study,
we obtain it by the vector product method.

We define the frame associated with the end-effector as
{O}, and the Cartesian velocity is denoted as V = OV .
The relationship between OV and the joint velocity q̇ =
[q̇1, · · · , q̇6] ∈ R6 is controlled by Jacobian matrix Jq as
follows:

OV = Jqq̇, (37)

with

Jq =
[
B1UT

Oz
B2UT

Oz
B3UT

Oz
B4UT

Oz
B5UT

Oz
B6UT

Oz
]T
∈ R6×6. (38)

The relationship between joint space velocity and workspace
velocity can be expressed as

Va = JaV, (39)

whereJa = J−1q , andVa = q̇ ∈ R6 is the joint space velocity.
The next step is to build the mapping matrix from the

joint space velocity Va to the generalized velocity Vb. The
generalized velocityVb consists of all the linear velocities and
angular velocities, which is expressed as

Vb =
[
OVT, B1VT, · · · , BkVT, · · · , B6VT

]T
∈ R42. (40)

The relationship among V , Vb, and Va is expressed as

Vb = JbV = JbaJaV = JbaVa, (41)

where

Jba =


Jq

z 0 · · · 0
B1UT

B2
z z · · · 0

... · · ·
. . .

...
B1UT

B6
z B2UT

B6
z · · · z



 ∈ R72×6,

and Jb = JbaJa.
The entire generalized velocity vector Ve of the manipula-

tor system is defined as

Ve=
[
OVT, q̇T, B1VT, · · · , BkVT, · · · , B6VT

]T
∈R48, (42)

and the mapping from V to Ve can be obtained as

Ve = JeV, (43)

where Je ∈ R48×6 is an extended Jacobian matrix.
The definitions above are highly important for building the

forward dynamics of a multi-DOF manipulator, and is essen-
tial in establishing the control plant in robot simulations [24].

The force resultant equations for the six links can be cal-
culated as

B6F∗ = B6F− Fe, (44)
TiF = TiUBi

BiF, i = 6, · · · , 1, (45)
BiF∗ = BiF− BiUTi+1

Ti+1F, i = 5, · · · , 1, (46)

whereFe is the external contact force exerted at the end of the
manipulator, and BiF∗ is the independent link force for the ith

link with the following form:

BiF∗=MBi
Bi V̇+CBi (

Biω)BiV+GBi , i=1, · · · , 6, (47)

where the detailed expressions ofMBi ,CBi ,GBi are shown in
Appendix with the appropriate frame substitutions, and BiV
is the velocity and angular velocity of each link expressed in
its own system.

In (47), the angular velocities for the manipulator links can
be obtained using (29) – (36), which are

B1ω =

 0
0
q̇1

 , B2ω =

 q̇1s2q̇1c2
q̇2

 , B3ω =

 q̇1s23q̇1c23
ϑ1

 ,
B4ω =

−ϑ1s4 − q̇1c23c4q̇1c23s4 − ϑ1c4
ϑ2

 ,
B5ω =

 ϑ2s5 − ϑ3c5
ϑ2c5 − ϑ3s5

q̇5 + ϑ1c4 − q̇1c23s4

 ,
B6ω =

−(ϑ3c5 − ϑ2s5)c6 − (q̇5 + ϑ1c4 − q̇1c23s4)s6
(ϑ3c5 − ϑ2s5)s6 − (q̇5 + ϑ1c4 − q̇1c23s4)c6

q̇6 + ϑ3s5 + ϑ2c5

 ,
where si= sin(qi), ci= cos(qi), sij= sin(qi+qj), cij= cos(qi+
qj), i = 1, . . . , 6, j = 1, . . . , 6, and ϑ1 = q̇2 + q̇3, ϑ2 =
q̇4 + q̇1s23, ϑ3 = (q̇2 + q̇3)s4 + q̇1c23c4.
According to the generalized coordinate transformation

matrices and (32), the force/torque transformation matrices
between any two coordinate systems can be calculated.

C. FEEDFORWARD MODEL FOR THE MANIPULATOR
The manipulator described in Fig. 6 contains six joints. The
desired and required joint position vectors are defined as
qd =

[
q1d , · · · , q6d

]T
∈ R6 and q̇r = q̇d + 3(qd − q),

respectively, where 3 ∈ R6×6 is a diagonal positive definite
symmetric matrix.

1) REQUIRED VELOCITIES
The required linear velocities and angular velocities for the
links in their body frames can be expressed as

B1V r = zq̇1r , (48)
BiV r = zq̇ir + Bi−1UT

Bi
Bi−1V r . (49)

2) REQUIRED NET FORCE/TORQUE VECTORS
The required net force/torque vectors for the links can be
calculated as follows:

BiF∗r =
BiF∗ + KBi (

BiV r −
BiV ), i = 1, · · · , 6, (50)

where KBi ∈ R6×6 is a positive definite gain matrix.
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3) REQUIRED FORCE/TORQUE VECTOR TRANSFORMATIONS
The force/torque vectors for the links by constraints can be
expressed as

B6Fr = B6F∗r + Fe, (51)
TiFr = TiUBi

BiFr , i = 6, · · · , 1, (52)
BiFr = BiF∗r +

BiUTi+1
Ti+1Fr , i = 5, · · · , 1. (53)

IV. SIMULATION AND EXPERIMENT
The VD-based modeling method uses the dynamics of the
subsystems (rigid links and flexible joints) to build the entire
dynamic model for the multi-DOF manipulator, thus improv-
ing the computational efficiency while maintaining accuracy.
To illustrate the validity of the proposed method, simulations
have been conducted.

A. CONTRAST SIMULATION WITH NEWTON–EULER
FORMULATION
The Newton–Euler formulation is a widespread method for
analyzing the dynamics of robotic manipulators [25]. In this
section, we compare the results of the VD-based method with
the Newton–Euler formulation to demonstrate the superiority
of the proposed method in addressing the dynamics of a
complex manipulator.

The plant we used in our simulation was a six-DOFmanip-
ulator, as shown in Fig. 6, equipped with a harmonic drive
in each joint. The parameters of the manipulator are shown
in Table 1. The lengths of the links of the manipulator were
set as l1 = 0.3 m, l2 = 0.3 m, l3 = 0.303 m, and l4 = 0.5 m.
The reduction ratio of the harmonic drive in the simulation
was ` = 100, and the parameters for deformation-related
torque were obtained according to [26]. The friction torque
applied to the joint output link from the joint base is defined
as

ξ (q, q̇) =
[
fc + (fs − fc)e−|q̇/vs|

2
]
sgn(q̇)+ fvq̇, (54)

where fc, fs, fv are the Coulomb, static, and viscous friction
coefficients, respectively. The parameter vs is the Stribeck
parameter. The friction torque applied to the motor rotor from
the joint base is simplified as

ξ (κ, κ̇) = fcκ , (55)

where fcκ is the Coulomb coefficient. The friction setting
above is feasible because the link-side friction andmotor-side
friction can be interchanged; in practice, the joint friction is

TABLE 1. Parameters of the manipulator.

typically identified as one item, that is, the motor-side friction
ξ (κ, κ̇) is omitted. The simulation joint friction coefficients,
as shown in Table 2, are generated primarily based on [27].
For simplification, the motion of the motor rotor is assumed
to be a pure rotation along the joint axis, that is,

zTτ
DF∗ = Imκ̈, (56)

where Im represents the moment of inertia of the rotor multi-
plied by the reduction ratio `, and we set Im = 0.00114 kg m2

for all the six motors.

TABLE 2. Joint friction coefficients in the simulation.

The desired joint trajectories for the six joints are given
by [28]

qn(t)=qdn

[
t
T
−

1
2π

sin(
2π t
T

)
]
, 0 ≤ t ≤ T , 1 ≤ n ≤ 6,

(57)

where T is the simulation time. The final positions for all the
joints are qd1 = 90◦, qd2 = 60◦, qd3 = 60◦, qd4 = 90◦,
qd5 = 60◦, qd6 = 90◦, and T = 10 s. Fig. 7 shows the
joint torques calculated by the Newton–Euler formulation
and VD-based method when the desired joint trajectories,
as shown in (54), are provided, and Fig. 8 shows the joint
torque differences between the twomethods. Table 3 contains
the RMS values of these joint torque differences.

TABLE 3. RMS values of the joint torque differences.

As shown in Figs. 7 and 8, the simulation results with
the VD-based method and Newton–Euler formulation are
almost the same, with no more than 0.035 Nm differences,
thus verifying the effectiveness of our proposed method.
Table 3 shows that the maximum RMS values of the joint
torque differences occurs at joint2, which is 22.7 Nmm,
because joint2 holds the maximum load.

B. SIMULATION OF A MULTI-DOF MANIPULATOR USING
VD-BASED FEEDFORWARD COMPENSATION
In this section, we utilize the VD-based dynamic model as
a feedforward compensator to control the multi-DOF manip-
ulator. A proportional-derivative controller is adopted as the
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FIGURE 7. Joint torques obtained with the Newton–Euler formulation
and VD-based method. (a) Joint1 torque, (b) Joint2 torque, (c) Joint3
torque, (d) Joint4 torque, (e) Joint5 torque, (f) Joint6 torque.

FIGURE 8. Joint torque differences.

FIGURE 9. VD-based feedforward compensator for multi-DOF
manipulator control.

feedback controller for the control system [29], [30], which
is expressed as

τ e = Kv ˙̃q+ Kpq̃, (58)

where Kv,Kp ∈ R6×6 are the symmetric positive definite
matrices chosen by the designer, and q̃ = qd−q ∈ R6 denotes
the position error.

Fig. 9 depicts the VD-based feedforward compensator
and the proportional-derivative controller used to control the
manipulator. A multi-DOF manipulator system is typically

FIGURE 10. Control and feedforward torques of the manipulator.
(a) Joint1 torque, (b) Joint2 torque, (c) Joint3 torque, (d) Joint4 torque,
(e) Joint5 torque, (f) Joint6 torque.

TABLE 4. RMS values of the position tracking errors and torque
compensation errors.

highly nonlinear and coupled, and the traditional Lagrangian
formulation and Newton–Euler method cannot calculate the
satisfactory real-time feedforward torque owing to the large
computational burden. The VD-based feedforward compen-
sator should calculate the required dynamics as closely as
possible to cancel out or minimize the effect of the robot
dynamics.

The desired joint trajectories in this simulation are given
in (56), and are the same as those in the previous simulation.
Fig. 10 shows the control torque τ and feedforward torque τm
of the manipulator; Fig. 11 shows the joint position tracking
errors and torque compensation errors of the manipulator.
Table 4 contains the RMS values of the position tracking
errors and torque compensation errors.

Fig. 10 shows that the compensation torque is the same as
the control torque of the manipulator, implying that the pro-
posed VD-based method can effectively calculate the robot
dynamics in real time. As shown in Fig. 11(a), the joint
position tracking errors are less than 0.4◦, indicating that
the proposed control system can effectively track the desired
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FIGURE 11. Joint position tracking errors and torque compensation
errors. (a) Position tracking errors, (b) Compensation errors.

FIGURE 12. Pictures of the moving process of the manipulator. (a) shows
the start position of the manipulator, (b) shows an intermediate position
of the manipulator during the moving process, and (c) shows the final
position of the manipulator.

trajectory. The results in Fig. 11(b) indicate that all the torque
compensation errors approach zero, thus proving the accu-
racy of the VD-based modeling method. Table 4 shows that
the maximum RMS values of the position tracking errors
and torque compensation errors are no more than 0.14◦ and
0.5 Nm, respectively, thereby demonstrating the accuracy of
the proposed modeling method in multi-DOF manipulator
real-time control.

C. EXPERIMENT OF A MULTI-DOF MANIPULATOR USING
VD-BASED FEEDFORWARD COMPENSATION
In this section, the proposed model has been tested as
a feedforward compensator to control a real multi-DOF
manipulator, the feedback controller is the same as used in
Section IV.B. The test manipulator is shown in Fig. 6, and the
physical parameters regarding the manipulator can be found
in our previous work [23].

Only two joints have been employed in the experiment,
which are joint1 and joint2, and their desired trajectories are
set in the same form as (57) with qd1 = 60◦, qd2 = 30◦,
and T = 30 s. The moving process of the manipulator is
illustrated by the sequential pictures in Fig. 12.

Fig. 13 shows the desired and actual joint positions, and
their position tracking errors. Fig. 14 shows the control torque
τ and feedforward torque τm of the manipulator, and the
relevant torque compensation errors. Table 5 contains the
RMS values of the position tracking errors and torque com-
pensation errors.

FIGURE 13. Joint positions and their tracking errors of the manipulator.
(a) Joint positions, (b) Position tracking errors.

FIGURE 14. Joint torques and their compensation errors of the
manipulator. (a) Joint torques, (b) Compensation errors.

TABLE 5. RMS values of the position tracking errors and torque
compensation errors.

As shown in Fig. 13, the proposed control method can
effectively track the desired joint trajectories with maximum
tracking errors nomore than 0.2◦. Fig. 14(a) shows that, in the
experiment, the compensation torques based on the proposed
feedforward model can effectively estimate the robot dynam-
ics in real time, while Fig. 14(b) indicates that there still exist
some compensation errors, which are mainly caused by two
factors, one is the parameter estimation errors and the other
is the unmodeled dynamics. Table 5 shows that the maxi-
mum RMS values of the position tracking errors and torque
compensation errors are no more than 0.05◦ and 0.3 Nm,
respectively, thereby experimentally proving the accuracy of
the proposed modeling method in real-time control of real
multi-DOF manipulator.

V. CONCLUSION
A VD-based dynamic modeling method for a multi-DOF
manipulator with flexible joints was developed in this study.
The proposed method, the simulation results, and the exper-
imental results were presented. The primary conclusions are
summarized as follows:

(1) A deformation-related torque estimation method for a
harmonic drive was applied to compute the torque caused by
joint flexibility.

(2) A VD-based modeling method was presented to cal-
culate the dynamics of a multi-DOF manipulator considering
joint friction. The effect of this new method was evaluated
by a contrast simulation with the Newton–Euler formulation,
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and multi-DOF manipulator control simulation and exper-
iment were conducted with a VD-based model as a feed-
forward compensator to verify its performance in real-time
control.

(3) The contrast simulation results indicated that the accu-
racies of the VD-based method and Newton–Euler formu-
lation were almost the same, with maximum differences
between the RMS values of joint torques less than 30 Nmm.
The control simulation and experimental results indicated the
excellent performance of the proposed VD-based feedfor-
ward compensator for the real-time control, and that it could
effectively estimate the dynamics of a multi-DOF manipu-
lator with the maximum simulation RMS values of position
tracking errors and torque compensation errors of less than
0.14◦ and 0.46 Nm, respectively, and with the maximum
experimental RMSvalues of them less than 0.05◦ and 0.3Nm,
respectively.

Future work should realize robotic parameter adaptation,
as the current study assumed that all the parameters were
known. Additionally, this method should be improved by
adding novel methods to estimate the unmodeled dynamics
of the manipulator in terms of accuracy.

APPENDIX
The rigid body dynamics in {B} can be expressed as

BF∗ = MB
BV̇ + CB(Bω)BV + GB, (59)

with

MB =

[
mBE3 −mB(Br×)

mB(Br×) IB − mB(Br×)2

]
, (60)

CB(Bω) =
[

mB(Bω×)
mB(Br×)(Bω×)

−mB(Bω×)(Br×)
(Bω×)IB+IB(Bω×)−mB(Br×)(Bω×)(Br×)

]
,

(61)

GB =

[
mB

BRIg
mB(Br×)BRIg

]
, (62)

where E3 is a 3 × 3 identity matrix, mB represents the
mass of the rigid body; IB represents the inertia matrix of
the rigid body expressed in {B}; ωB and rB represent the
angular velocity and position of the center of mass of the body
in {B}, respectively; g represents the gravitational vector;
additionally, (q×) with a 3 × 1 matrix is expressed as

(q×) =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 , (63)

where q = [q1, q2, q3]T.
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