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ABSTRACT A highly efficient online compression of vehicle trajectories is important to the application
of the Internet-of-Vehicles (IoV) system. However, the high time–space complexity of existing vehicle
trajectory compression algorithms makes them unable to adapt effectively to actual IoV applications under
the condition of a resource-constrained mobile vehicle terminal, bandwidth cost, and latency. This paper
addresses these issues by proposing a trajectory compression algorithm using a combination of road width
(W ), vehicle driving direction (D), and swerve angle (A). The proposed WDA compression algorithm
determines whether the vehicle trajectory points are rectilinear within a permitted error range according
to W and D and then determines the trajectory points where a vehicle swerves significantly according to
A. The algorithm considers the constraints of road shape on vehicle trajectories according to whether the
trajectory forms an approximately straight line or a curve indicative of a swerving trajectory. It adopts
different compression methods for rectilinear and swerving vehicle trajectories, which allows for highly
efficient compression and high similarity between the compressed and original trajectories. In addition,
the algorithm preserves direction information regarding D. Testing employing a Microsoft GeoLife dataset
demonstrates that the proposed algorithm attains an average compression ratio of 4.03% for vehicle trajectory
data, and the average compression time is 1.15 m/each. Relative to the existing compression algorithms,
the proposed algorithm reduced compression time and storage space to adapt for the development of the
large-scale IoV applications.

INDEX TERMS IoV, online trajectory compression, width-direction-angle.

I. INTRODUCTION
The development of cellular broadband communication tech-
nology, such as 4G/5G, has enabled the networking of
automobiles as mobile terminals within the Internet of
Vehicles (IoV) systems to facilitate the expansion of intel-
ligent services [1]–[3]. According to the forecast report
issued jointly by the Global System for Mobile Communica-
tions (GSMA) and SBD Automotive, the global IoV market
can obtain a compound growth rate of approximately 25%,
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which is a potentially very large market. Moreover, predic-
tions indicate that the IoV market value will reach 358 billion
US dollars by the year 2020. However, the full state moni-
toring of automobiles, including real-time vehicle trajectory
data, is expected to become essential for providing fully intel-
ligent services that greatly enhance the safety and security
of users. In this regard, Intel’s CEO estimated that the total
number of status sensors in an automobile running continu-
ously will generate 4 TB of daily state monitoring data after
only five years. Therefore, the scale of monitoring data will
increase dramatically with an increasing number of online
vehicles, which will critically affect the available IoV system
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resources, such as the transmission network bandwidth, disk
storage capacity, and number of disk I/O operations. This
issue can be addressed effectively by implementing high
efficiency data compression technology to the tradeoff of the
computation, bandwidth cost, latency, and particularly for
real-time vehicle trajectory data.

Real-time automobile state monitoring data in IoV sys-
tems include multiple features, such as small fields and
short periods, and therefore involve severe space and time
sensitivities. However, classifying and processing these data
according to IoV features and application demands will
substantially reduce the requirements for network band-
width, disk I/O, and disk capacity, thereby greatly improving
real-time processing capability. As such, the time-variant
nature of vehicle trajectory data has performed research
regarding relevant high efficiency compression methods
one of the key components facilitating full automobile
state data management in IoV systems. Existing vehicle
trajectory compression methods are classified into three
types [4], [5]: line simplification, road network-based com-
pression, and semantic information-preserving compression.
However, these compression methods have many disadvan-
tages such as highly complicated time-space relationships,
relatively small compression ratios, loss of driving direction
information, and severe distortions in the compressed trajec-
tory data relative to the actual trajectories [6]–[8]. Moreover,
the application platforms of actual IoV systems, for example
ACTIA Smart-Cloud, have not fully considered IoV system
resources and the characteristic features of real-time automo-
bile statemonitoring data. Therefore, these systems have been
unable to adapt to the bottleneck conditions of large-scale IoV
data transmission and storage.

Accordingly, the present work considers IoV system
resources and real-time automobile state monitoring data
features to propose a trajectory data compression algorithm
using a combination of road width W , vehicle driving direc-
tion D, and swerve angle A (WDA). It adopts different
compression methods for rectilinear and swerving vehicle
trajectories. This allows for highly efficient compression and
high similarity between compressed and original trajecto-
ries. In addition, the algorithm preserves direction informa-
tion. Finally, it gives a method for a dynamic computing
compression period. The proposed algorithm optimizes the
vehicle terminal data processing logic and simultaneously
substantially improves the efficiency of data compression,
transmission, and storage.

The remainder of this paper is structured as follows.
In Section II, we review existing related compression meth-
ods. We then present an overview of the WDA-based
direction preserving trajectory compression approach in
Section III. Next, we present the detailed compression algo-
rithm that includes two different trajectory compression
strategies in Section IV. The results of our experimental
study employing a Microsoft GeoLife dataset are reported
in Section V. Finally, Section VI concludes this article, and
presents some directions for future research.

II. RELATED WORKS
As discussed, existing compression algorithms for trajectory
data include line simplification, road network-based com-
pression, and semantic information compression. Most stan-
dard trajectory data compression algorithms are classified as
line segment simplification types. The basic principle of line
simplification compression is to replace actual trajectories
with straight line segments between two location points that
approximately represent the original trajectory between those
two points. Muckell et al. [9] presented a new approach
that inserts points from a trajectory into a priority queue,
and the priority of each point is set to an upper bound that
is based on the error introduced by the removal of that
point. This technique can be applied to strike a balance
between the compression ratio and the deviation between
the compressed trajectories and the original trajectories (i.e.,
the trajectory error). Liu et al. [7] and Deng et al. [10]
proposed an optimized trajectory streaming data compression
approach denoted as direction-preserving trajectory simplifi-
cation (DPTS+) to address the loss of trajectory directions
suffered by many compression algorithms. In addition to pre-
serving trajectory directions during compression, the method
introduced a new data structure denoted as a bound quad-
rant system that effectively reduced the compression time
of online DPTS+. This study further explored time saving
efficiencies by evaluating the feasibility of adopting contem-
porary general-purpose computing on a graphics processing
unit. Nibali and Trajic [11] extended the delta compression
approach to facilitate balancing between the compression
ratio and the trajectory error. Liu et al. [12] proposed the
amnesic bounded quadrant system (ABQS) online frame-
work for adapting to resource-constrained environments by
automatically adjusting the compression process to available
storage resources and then compressing trajectories using
trajectory error tolerances established according to the ages
of the trajectories. Ke et al. [13] proposed a trajectory com-
pression algorithm with interval bounds that guaranteed an
error bounded compression result to achieve a better tradeoff
between a high compression rate and a short operational
time. However, as discussed, line simplification compression
can suffer from serious disadvantages. In IoV applications,
high vehicle speed or relatively low sampling frequency can
result in the loss of key location point information. As a
result, semantic deviations or severe distortions in the actual
trajectories can occur, such as in the case of compressed
vehicle trajectories crossing walls or lakes.

The increased prevalence of accurate data reflecting the
structure of road networks has facilitated the development
of trajectory compression algorithms based on road network
structure. This method abstracts road networks into a directed
graph, or digraph, and then maps a sequence of trajec-
tory points onto the corresponding sequence in the digraph.
Zhou et al. [14] proposed a framework for processing tra-
jectory data, where the framework included three modules:
a data distribution module, a data transformation module,
and a compression-aware I/O module. The data distribution
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module accounted for data locality, load balancing, and scala-
bility, while the data transformation module applied a parallel
strategy for facilitating an easily implemented parallelization.
Simultaneously, it remained monotonic and improved com-
pression performance significantly. In addition, the I/O per-
formance improved by providing effective decision support in
the application of trajectory data compression. Han et al. [15]
compressed GPS trajectory data using urban road network
information, and decomposed trajectories into spatial paths
and temporal sequences. Lossless compression was applied
to the spatial paths while lossy but error-bounded com-
pression was applied to the temporal sequences in paral-
lel processes. Trajectory compression algorithms based on
road network structure generally provide a good compression
ratio. However, the actual trajectories can be subjected to
rather large distortions when a vehicle overtakes another
vehicle, changes lanes, or temporarily swerves during transit.
As such, obtaining compressed data in this manner that effec-
tively reflects actual trajectory conditions can be challeng-
ing. In addition, the process of abstracting the road network
structure into a digraph requires considerable computational
capacity. Therefore, the application of these algorithms to
resource-constrained mobile vehicle terminals is generally
not possible.

The degree to which compressed longitude and latitude
trajectory data are discretized tends to be very high, and
the semantic information it contains is typically unclear.
However, some compression algorithms that preserve seman-
tic information have emerged in recent years. For example,
a compression algorithm has been proposed that combines
extensive semantic interest data, such as points of interest,
road segments, events, road grades, directions, and speeds,
to describe trajectory information [16]. While these types of
algorithms can preserve rather abundant semantic informa-
tion in a compressed state, the original longitude and latitude
location point data are lost entirely, which negatively affects
the query ability of location-based service (LBS) applica-
tions [17]. In addition, the generation of semantic information
requires an excessive amount of time, such that the real-time
performance of these algorithms is not sufficient for applica-
tion to IoV intensive streaming data compression.

The above discussion amply demonstrates the two prin-
ciple defects of existing trajectory compression algorithms.
First, virtually no efficient means are available for reducing
the compression time and compression ratio under the condi-
tion of a resource-constrainedmobile vehicle terminal. In par-
ticular, for IoV applications involving high vehicle speeds and
relatively low sampling frequencies, trajectory compression
methods with short compression times, a small compression
ratio, and low resource consumption are urgently needed.
Second, key location points are often lost in the compressed
trajectories, which reduces the scope and reliability of the
semantic information contained therein. This paper addresses
these issues using the proposed WDA-based trajectory com-
pression algorithm.

III. OVERVIEW OF THE WDA-BASED TRAJECTORY
COMPRESSION ALGORITHM
A. THE CORE IDEA OF THE WDA ALGORITHM
The effective storage of vehicle trajectory data requires that
the volume of trajectory data be reduced by compression to
the greatest extent possible, while maintaining an acceptably
short compression time and retaining a sufficient amount of
the original trajectory information to ensure that the com-
pressed data provides adequate accuracy, reliability and tra-
jectory semantics. In particular, data reflecting the driving
directions of vehicles and significant points of interest (POI)
(e.g., turning around) should be retained. Moreover, an effec-
tive compression algorithm should be independent of road
network structure and historical trajectory information to
ensure convenient and flexible integration with various appli-
cation systems. To support these requirements, the proposed
WDA compression algorithm determines whether vehicle
trajectory location points are rectilinear within a permitted
error range according to the principle variables W and D,
and then determines the trajectory data points where a vehi-
cle swerves significantly according to the third principle
variable A. Here, W can be set dynamically according to
specific road classification standards. As such, the proposed
algorithm considers the constraints of road shape on vehi-
cle trajectories according to whether the trajectory forms an
approximately straight line or a curve indicative of a swerving
trajectory. In addition, the algorithm preserves information
regardingD. Finally, theWDA compression algorithm adopts
different compression methods for rectilinear and swerving
vehicle trajectories. This allows for highly efficient compres-
sion and high similarity between compressed and original
trajectories.

B. WDA-BASED TRAJECTORY COMPRESSION ALGORITHM
Algorithm 1 presents the core functions of the WDA

compression algorithm in the form of pseudocode. Here,
the algorithm receives the original sampled trajectory data
point sequence p1, p2, . . . , pn, where the i-th data point con-
tains coordinate values xi and yi reflecting the longitude
and latitude of the vehicle, respectively, as well as its cor-
responding sampling time stamp ti, i.e., pi = (xi, yi, ti).
The output of the algorithm is a sequence linked list of
storage units Uk (pj, pn) containing the information of two
trajectory data points. The two vehicle trajectory location
points that are first collected, i.e., (p0, p1), are used to con-
struct the first storage unit U0 and straight driving line
(DriveLine). Beginning with p2, the distance from each point
to the straight driving line (PiLineDistance) and the swerve
angle (SwerveAngle) between the current driving direction
line (CurrentDriveDirectionLine) and the straight driving
line are calculated. Then, the algorithm determines whether
the current vehicle is driving in an approximately straight
line or in swerving state according to PiLineDistance and
SwerveAngle.
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Algorithm 1High-Level Pseudocode for theWDACompres-
sion Algorithm
Input: Original sampled trajectory data points

(p0, p1, . . . , pn)
Output: Storage unit (U0,U1,U2, . . .) representation of the

compressed trajectory data points
1: Funciton Compress (p0, p1, . . . , pn) begin
2: LineDriveRegionWidth←−W;
3: DriveLine←− CalculateDLine(p0, p1);
4: For i←− 2 to n do
5: CurrentDriveDirectionLine←−

CalculateCDLine(pi − 1, pi);
6: PiLineDistance←−

CalculatePLineDisatance(Pi,DriveLine);
7: SwerveAngle←− Calculate SwerveAngle

(CurrentDriveDirectionLine,DriveLine);
8: If (PiLineDistance < W/2) and

(SwerveAngle < 90◦) then
9: UpdateStorageUnit(Uj, pi);
10: EndIf
11: Else
12: Uj(pi, pi−1)←− CreateStorageUnit(pi−1, pi);
13: DriveLine←− CalculateDLine(pi−1, pi);
14: return Storageunits(U0,U1,U2, . . .);
15: EndElse
16: EndFor

IV. WDA-BASED TRAJECTORY COMPRESSION
STRATEGIES
The compression strategies applied by the WDA compres-
sion algorithm for rectilinear and swerving trajectories are
discussed in the following subsections.

A. DATA COMPRESSION STRATEGY FOR RECTILINEAR
TRAJECTORIES
Due to the constraints associated with location accuracy and
road shape, the real-time location data sequence of a vehicle
moving a distance 1L over a relatively short period 1t on
an approximately straight road can be regarded as a straight
line. In this sense, vehicles typically move along an approxi-
mately straight line most of the time. Furthermore, the stored
location information for driving along a straight road need
only include the coordinate values and the corresponding
times of the two end points of 1L. Therefore, the key issue
for effectively realizing the compression of spatial trajec-
tory information is to approximate actual driving trajecto-
ries (including any minor nonrectilinear transits such as the
overtaking of other vehicles and lane changing) as straight
lines. Therefore, an algorithm for determining a vehicle’s
straight driving line and location information compression
is proposed based on [18]–[22]. It determines whether the
vehicles are running in the same line based on the maximum
road width (W ) and vehicle driving direction (D) and can
preserve the information of the driving direction.

FIGURE 1. Compressed location information storage for approximately
rectilinear vehicle trajectories.

FIGURE 2. Relationship between the central driving line, straight line
vehicle driving area, and location data points.1

After collecting trajectory location information, the first
storage unit shown on the left side of Fig. 1 is constructed by
storing the information of the first trajectory data point as the
initial location and starting time, and storing the information
of the second trajectory data point as the final location and
finish time. The coordinate values of these two data points
are employed to generate a single straight driving line that
includes driving direction D. As shown in Fig. 2, this process
begins with the first location data point and passes through
the second location data point. This straight line along D is
taken as the central line, and the area formed by the central
line and width rangeW is denoted as the straight line vehicle
driving area. The trajectory data in this straight line vehicle
driving area is defined as follows.

The slope k of the straight line passing from Location 1 to
Location 2 is

k =
y2 − y1
x2 − x1

(1)

The intercept b is

b = y2 − k ∗ x2 (2)

The resulting linear equation of the straight trajectory is

kx − y+ b = 0 (3)

When a third point at Location 3 is obtained, the distance l
from Location 3 to the central driving line is

l =
|kx1 − y1 + b|
√
k2 + 1

(4)

If l is less thanW/2, the data point at Location 3 lies within
the straight line vehicle driving area.

1The two-dotted lines in the figure are the road edges, the central dotted
line is the central driving line formed by location points 1 and 2, and the solid
vertical lines are the edges of the straight line vehicle driving area. Here, W
(W = 18 m) is the width between road edges, which can be set dynamically
according to specific road classification standards. when Location 3 deviates
from the initial central driving line formed by Locations 1 and 2 by a distance
l < W/2.
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According to the above straight line vehicle driving area
definition, a vehicle is assumed to travel along a straight line
while all uploaded location information resides in this area.
As such, this straight line representation accommodates any
minor nonrectilinear transits. In addition, this representation
allows for the end location and finish time information to be
replaced by the current location and time information. There-
fore, the amount of memory space required does not increase
while a vehicle is determined to be driving in a straight line
because the information of only two location points and their
corresponding times are recorded. This process is illustrated
by Location 3 in Fig. 2. Here, l is less than W/2, and the
two straight lines between Locations 1 and 2 and Locations
2 and 3 can be regarded as a single straight line. Therefore,
the information at the end location and finish time of the first
location information storage unit on the left side in Fig. 1,
which was the last set according to Location 2, is updated
according to Location 3.

FIGURE 3. Deviant driving conditions, such as when a vehicle turns a
corner.

However, deviant conditions can arise, as illustrated
in Fig. 3(a). Here, the straight line formed by the vehicle
starting location and the second location is not parallel to
the road. As such, the generated straight driving line does
not reflect the actual vehicle driving direction. Nonetheless,

the third location falls within the straight line vehicle driv-
ing area, and the end location and finish time information
of Location 2 in the location information storage unit are
updated as Location 3. However, we note from Fig. 3(b) that
Location 4 falls outside of the straight line vehicle driving
area. Accordingly, the vehicle is considered as exhibiting a
swerving behavior, and a new location information storage
unit will be constructed. Then, the end location and finish
time information in the previous location information storage
unit pertaining to Location 3 are set to the initial location
and starting time of the new location information storage
unit. Subsequently, the end location and finish time of the
new location information storage unit are set according to
Location 4. This construction process is illustrated in Fig. 4.
This process results in a newly generated straight driving line
determined by Locations 3 and 4, as shown in Fig. 3(b), and
subsequently collected location information is compressed
according to this line.

FIGURE 4. Compressed location information storage under the conditions
illustrated in Fig. 3.

B. DATA COMPRESSION STRATEGY FOR
SWERVING TRAJECTORIES
As demonstrated by the discussion above, the width of the
straight line vehicle driving area is twice as large as the
maximum road width. Figure 5 presents a condition in which
a vehicle conducts a substantial swerving operation and
reverses its direction of motion. Under the condition illus-
trated in the figure, the vehicle continues to reside within the
previous straight line vehicle driving area while conducting
the swerving action and after reversing its direction. Here,
we note that the distance between Location l and each end
location first increases and then decreases. The locations
from Location i to Locationm successively cover Location h.
As a result, only Locations l and m are saved in the location

FIGURE 5. Location point relationships under a substantial vehicle
swerving trajectory.
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FIGURE 6. Compressed location information storage under the conditions illustrated in Fig. 5.

information storage unit, thereby forming a straight line from
Location l to Location m. This trajectory obviously devi-
ates from the actual driving trajectory, which will introduce
substantial distortion in the trajectories after compression.
The present work addresses this problem by introducing the
swerve angle θ to determine when a vehicle conducts a
swerving operation.

According to Fig. 5, θ is the angle between the current
driving direction line j formed from current location data
point (i) and the last location data point (j), and previously
defined straight driving line i. As such, θ is defined as

θ =

∣∣∣arctan( ki − kj
(1+ kj ∗ ki)

) ∗
180.0
π

∣∣∣ (5)

where ki is the slope of straight driving line i, and kj is the
slope of the current driving direction line j, which is given as

kj =
yj − yi
xj − xi

(6)

Accordingly, if θ is greater than 90◦, the vehicle is deemed
to be engaging in swerving behavior, and a new location infor-
mation storage unit is created. The location storage structure
resulting from the conditions illustrated in Fig. 5 is shown
in Fig. 6: The end location of the old location storage unit
is regarded as the initial location of the new storage unit; the
current location is regarded as the end location of the location
storage unit; and the current time is regarded as the finish
time of the location storage time. Moreover, when the vehicle
runs outside the straight vehicle driving line area, the straight
driving line is updated automatically. As such, the straight
driving line is nearly equivalent to the road direction.

FIGURE 7. Decompressed trajectories obtained for the example
illustrated in Fig. 5.

Figure 7 presents the path information (decompressed) of
the compressed location information given in Fig. 5. As such,

the decompressed trajectories are very similar to the actual
trajectories in this example.

C. DYNAMIC COMPUTING COMPRESSION PERIOD
The compression period is the basis of theWDA compression
algorithm: it compresses two or more trajectory points into
one storage unit if their interval is less than or equal to
the maximum compression period and meets compression
conditions. Conversely, a new storage unit is created. The
maximum compression period can be dynamically computed
using the terminal upload frequency and the network delay.
The relation of the maximum compression period, new stor-
age unit, terminal upload period and network delay is shown
in Fig. 8.

FIGURE 8. The relation of the maximum compression period and terminal
upload period.

The length of the line segment ending with a solid or
hollow circle denotes the total data upload delay. The length
of the line segment above the terminal upload period denotes
the network delay. The line segment ending with the solid
circle denotes that the total delay exceeds the compression
period. Therefore, a new storage unit must be created. The
dotted arrow from the solid circle to the right indicates the
data upload range that can be covered by the updated max-
imum compression period. According to their relationship,
the maximum compression period can be computed using
formula 7.

ctn =

{
ctn ∗ δ + (1− δ) ∗ t t > ct;

t t ≤ ct.
(7)

where ctn denotes the newly estimated compression period,
cto denotes the current maximum compression period,
t denotes the total delay of current data upload, and δ is
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TABLE 1. Compression ratios and compression times of the WDA and TRAJIC compression algorithms for six typical trajectories.2

FIGURE 9. The dynamic adjustment process of the maximum
compression period.

the smoothing factor, where δ is 7/8. The dynamic adjust-
ment process of the maximum compression period is shown
in Fig. 9.

V. EXPERIMENTS
We evaluated the performance of the proposed WDA-based
trajectory compression algorithm according to three aspects,
including the compression time, compression ratio, and sim-
ilarity between the compressed and original trajectories.
In addition, we compared its performance with that of the
Trajic compression algorithm [11]. The Trajic algorithm con-
siders the residual of the coordinate values between the pre-
dicted trajectory points and actual trajectory location points,
and considers other details, such as residual encoding. Thus,
the Trajic algorithm requires a specific decompression algo-
rithm for generating trajectory data from the compressed
trajectory data.

We compiled the C++11 code of the WDA and the
Trajic compression algorithms using the GNU compiler col-

21. The output volume of the WDA algorithm consists of the number of
compressed longitude and latitude coordinates of trajectory location data
points. The output volume of the Trajic algorithm consists of the number of
compressed residuals between two location points. Therefore, the numbers of
location data points after and before compression are employed for calculat-
ing the compression ratio of theWDA algorithm, while the compression ratio
of the Trajic algorithm is calculated as the volume of compressed data divided
by the original data volume. 2. The Trajic algorithm requires a specific
decompression algorithm for generating trajectory data.

FIGURE 10. Comparison of the original G1 trajectory with the compressed
trajectories.

lection (GCC) version 5.4.0 with the O3 optimization flag.
The results were produced on an Intelr Xeonr CPU E5-
2680 v3 processor clocked at 2.5 GHz with 2 GB of RAM,
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FIGURE 11. Comparison of the original G2 trajectory with the compressed
trajectories.

and running Ubuntu Linux. The test data were obtained
from the vehicle trajectory data of the Microsoft GeoLife
project [23]. The GeoLife data contains 17,621 trajectories
with an average sample rate of 1 sample per 3 s taken with
a variety of GPS devices. To better test the practicability
of the WDA algorithm, the selected test data must have
good representativeness in two aspects: trajectory shape and
number of trajectory points. According to the standard, six
typical vehicle trajectory data were selected for testing and
analysis. Based on the features of selected trajectory data,
the spatial error of the trajectory data was controlled under
20-25 m, and the temporal error was less than 1-3 s.
Figures 10-15 present comparisons of the six original tra-
jectories and location points with their compressed trajecto-
ries and location points obtained using the Trajic and WDA
compression algorithms. Here, the stacked lines that are off-
set along the ordinate axis direction of the graphs given on
the left-hand sides represent the similarity of the original
trajectories and the compressed trajectories. The scatter dia-
grams given by the graphs on the right-hand sides represent

FIGURE 12. Comparison of the original G3 trajectory with the compressed
trajectories.

the location points of the original trajectories and those of
the compressed trajectories. The performance test results of
the WDA and Trajic compression algorithms on these six
trajectories are presented in Table 1.

A. COMPRESSION TIME
The results in Table 1 indicate that the WDA algorithm
performs obviously better than the Trajic algorithm for
both single trajectory and the average compression time.
The average compression time of the Trajic algorithm is
approximately 2.4 times greater than that of the WDA
algorithm (i.e., 2.78/1.15). Moreover, the WDA algorithm
has a more obvious advantage from the standpoint of
compression/decompression time. The average compres-
sion/decompression time of the Trajic algorithm is approx-
imately 3.3 times greater than that of the WDA algorithm.
Here, we note that the complex predicting and encod-
ing/decoding technologies of the Trajic algorithm require
a considerable amount of computation time. In contrast,
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FIGURE 13. Comparison of the original G4 trajectory with the compressed
trajectories.

the compression process of theWDA algorithm and its output
are both directly related to the actual location data points,
which avoids complex encoding/decoding operations. There-
fore, the additional time required for calculating the residual
of the coordinate values between the predicted trajectory
points and actual trajectory location points as well as the time
required for encoding the data are why the Trajic algorithm
requires much greater compression time than the WDA algo-
rithm.

Figure 16 presents a plot of the compression time required
by the WDA and Trajic algorithms as a function of the
number of location data points in the six original trajecto-
ries. As shown in the figure, the compression times for both
the WDA and Trajic algorithms can increase approximately
linearly with an increasing number of location data points in
the original trajectories, while the compression time for the
WDA algorithm increases at a slower rate. We also note from
Figs. 10-15 and Table 1 that the complexity of a trajectory
has a substantial effect on the compression time required

FIGURE 14. Comparison of the original G5 trajectory with the compressed
trajectories.

by the WDA algorithm. Naturally, the compression scheme
employed by the WDA algorithm causes the compression
time to decrease as the trajectory increasingly approaches a
straight line. As such, the compression time increases with
increasing trajectory complexity. For example, the G5 tra-
jectory represents a fairly straight trajectory for which the
WDA algorithm compresses quickly, while the G6 trajectory
includes a high proportion of swerving trajectories, and the
WDA algorithm requires much greater computational time to
evaluate and track the swerving direction information.

B. COMPRESSION RATIO AND THE SIMILARITY BETWEEN
COMPRESSED TRAJECTORIES AND ORIGINAL
TRAJECTORIES
The compression ratio refers to the ratio of the compressed
trajectory location data volume N to the original trajectory
location data volume M as a percentage (i.e., N/M Ã- 100%).
From Table 1, we note that the average compression ratio of

VOLUME 7, 2019 71455



H. Zhang et al.: Efficient IoV Trajectory Compression Method in Vehicle Terminals

FIGURE 15. Comparison of the original G6 trajectory with the compressed
trajectories.

FIGURE 16. Compression time with respect to the volume of trajectory
data.

the WDA algorithm is 62.97% that of the Trajic algorithm.
Therefore, the compression performance of the WDA algo-
rithm is significantly greater than that of the Trajic algorithm.

Moreover, the compression ratios obtained by both algo-
rithms are stable. For rather complex trajectories, particularly
for trajectories with continuous sharp swerving or continuous
left and right vehicle motions, the compression ratio of the
Trajic algorithm is relatively stable.

Regarding the similarity between uncompressed and com-
pressed trajectories, the WDA and Trajic algorithms both
satisfy the requirement for low trajectory error. For common
trajectories such as G1-G3 shown in Figs. 10-12, the trajec-
tories compressed by the WDA and Trajic algorithms both
obtain ideal effects. For rather complex trajectories, such as
G5-G6, the trajectory errors of the compressed trajectories
are rather low, which demonstrates that the Trajic algorithm
has a good prediction function. In addition, we also note for
trajectories G5 and G6 shown in Figs. 14 and 15, respectively,
the WDA algorithm loses a greater number of significant
trajectory points than the Trajic algorithm, leading to distor-
tion in a portion of the compressed trajectory or resulting
in a high compression ratio,which occurs for two different
reasons. First, the WDA algorithm considers a portion of the
trajectories exhibiting abrupt swerving or oscillating motion
within a continuous small range as straight lines, which leads
to a low compression ratio that is accompanied by trajectory
distortion. Second, the WDA algorithm preserves numerous
location data points at locations representative of swerving
trajectories to guarantee low trajectory error for swerving
trajectories, which results in a relatively high compression
ratio.

VI. CONCLUSION
The proposed WDA compression algorithm focuses on
road width, driving direction, and swerve angle, which are
relatively macrotype information. WDA adopts different
compressionmethods for rectilinear and swerving vehicle tra-
jectories, which enables the algorithm to provide a relatively
high compression ratio and low compression/decompression
time while satisfying the similarity of the compression trajec-
tory. To evaluate the proposed methods, we used a Microsoft
GeoLife dataset that contains all types of empirical vehi-
cle trajectories. The selected typical dataset tests show that
the proposed algorithm attains an average compression ratio
of 4.03% for vehicle trajectory data, and the average com-
pression time is 1.15 m/each. Therefore, the algorithm is well
suited for the compression demands of IoV streaming tra-
jectory compression applications with constrained resources,
intensive data, and the requirement for near real-time perfor-
mance.

While the compression ratio and compression time results
given in Section V demonstrated that the WDA algorithm
presently achieves rather excellent results, there are two prob-
lems to be solved. First, the present development of theWDA
algorithm does not consider key location points with special
semantic significance during the compression process, which
may lead to the loss of semantic information. In general,
semantic information mainly refers to POI and some spe-
cial trajectory points. To retain more semantic information,
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the more corresponding auxiliary information needs to be
added. This information is often difficult to compress. Con-
versely, if a high compression ratio is required, some seman-
tic information will be lost. Moreover, the compression of
semantic information often takesmore time and space. There-
fore, it needs to find a better balance point. Second, the WDA
algorithm requires a preset road width W , which limits its
application. Finally, we note that the source code for a
working implementation of the WDA compression algorithm
may be found at https://github.com/CoreVista/WDA-Path-
Compression.git
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